Predicting Subcutaneous Glucose Concentration Using a Latent-Variable-Based Statistical Method for Type 1 Diabetes Mellitus

Chunhui Zhao, Ph.D.,1 Eyal Dassau, Ph.D.,1 Lois Jovanović, M.D.,2 Howard C. Zisser, M.D.,2 Francis J. Doyle III, Ph.D.,1 and Dale E. Seborg, Ph.D.1

Abstract

Background:
Accurate prediction of future glucose concentration for type 1 diabetes mellitus (T1DM) is needed to improve glycemic control and to facilitate proactive management before glucose concentrations reach undesirable concentrations. The availability of frequent glucose measurements, insulin infusion rates, and meal carbohydrate estimates can be used to good advantage to capture important information concerning glucose dynamics.

Methods:
This article evaluates the feasibility of using a latent variable (LV)-based statistical method to model glucose dynamics and to forecast future glucose concentrations for T1DM applications. The prediction models are developed using a proposed LV-based approach and are evaluated for retrospective clinical data from seven individuals with T1DM and for In silico simulations using the Food and Drug Administration-accepted University of Virginia/University of Padova metabolic simulator. This article provides comparisons of the prediction accuracy of the LV-based method with that of a standard modeling alternative. The influence of key design parameters on the performance of the LV-based method is also illustrated.

Results:
In general, the LV-based method provided improved prediction accuracy in comparison with conventional autoregressive (AR) models and autoregressive with exogenous input (ARX) models. For larger prediction horizons (≥30 min), the LV-based model with exogenous inputs achieved the best prediction performance based on a paired t-test (α = 0.05).

Conclusions:
The LV-based method resulted in models whose glucose prediction accuracy was as least as good as the accuracies of standard AR/ARX models and a simple model-free approach. Furthermore, the new approach is less sensitive to changing conditions and the effect of key design parameters.

Author Affiliations: 1Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California; and 2Sansum Diabetes Research Institute, Santa Barbara, California

Abbreviations: (AR) autoregressive, (ARX) autoregressive with exogenous input, (CCA) canonical correlation analysis, (CG) continuous glucose, (CGM) continuous glucose monitoring, (CHO) carbohydrate, (CVP) constant value prediction, (EGA) error-grid analysis, (FDA) Food and Drug Administration, (I:C) insulin-to-carbohydrate ratio, (LV) latent variable, (LVX) latent variable with exogenous input, (MAD) mean absolute deviation, (PLS) partial least squares, (RMSE) root mean-square error, (T1DM) type 1 diabetes mellitus, (UVA/Padova) University of Virginia/University of Padova

Keywords: autoregressive model, autoregressive model with exogenous inputs, continuous glucose monitoring, glucose concentration prediction, latent variable model, latent variable model with exogenous inputs, type 1 diabetes mellitus

Corresponding Author: Dale E. Seborg, Ph.D., Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-5080; email address seborg@engineering.ucsb.edu
Predicting Subcutaneous Glucose Concentration Using a Latent-Variable-Based Statistical Method for Type 1 Diabetes Mellitus

Zhao

Introduction

Type 1 diabetes mellitus (T1DM) is a disease characterized by the inability of the body to regulate blood glucose concentration. Type 1 diabetes mellitus results from autoimmune destruction of pancreatic β cells, which produce the hormone insulin. Without appropriate treatment with exogenous insulin, people with T1DM have difficulty maintaining their blood glucose concentration within a normal range (e.g., 70–150 mg/dl). Consequently, they can suffer from large glycemic excursions, including episodes with very low glucose levels (hypoglycemia) and very high glucose levels (hyperglycemia); both situations are detrimental to the quality of life.¹

Insulin boluses are commonly taken simultaneously with meals and in a specified ratio to the meal carbohydrates (CHO).² From a modeling perspective, insulin boluses and meal CHO are two input variables that affect the output variable, blood glucose concentration. A careful balance is required between a person’s daily activities, diet, and insulin administration in order to sustain the blood glucose concentration in the near-normal range. This balancing is not an easy task, because large glycemic variations often go undetected, including asymptomatic hypoglycemia or hypoglycemia unawareness.²

Developments in continuous glucose monitoring (CGM) devices have created new opportunities for improved glycemia management of T1DM. For commercial CGM devices, frequent glucose measurements (e.g., every 1–5 min) are displayed in real time, which provide important information about a person’s current glycemic state and its trend. If the recent glucose history follows previous known patterns, future blood glucose values can be anticipated from past experience.³ In particular, an empirical model of glucose dynamics can facilitate glucose management.

A model-based controller for an artificial pancreas has the potential to automatically regulate blood glucose levels based on available glucose measurements, insulin infusion and meal information, and model predictions of future glucose trends. Thus the identification of simple, accurate glucose prediction models is a key step in the development of an effective artificial pancreas. Many empirical (or “data-driven”) modeling techniques have been evaluated in both in silico and clinical studies.⁴⁻¹⁴

The existing dynamic empirical models for T1DM include linear input–output models and nonlinear models such as neural networks, as summarized by Finan and colleagues.⁴ Bremer and Gough³ first suggested that glucose time-series data had an inherent structure that could be described by a simple linear dynamic model. The linear models that have received the most attention for T1DM applications are autoregressive (AR) models and autoregressive with exogenous inputs (ARX) models. Only CGM data are required to develop an AR model and to predict future glucose concentrations as a linear combination of recent measurements. Cobelli and associates⁵,⁶ have proposed low-order AR models and polynomial models with time-varying parameters determined by weighted least squares. Reifman and colleagues⁷ have clinically evaluated subject-specific AR models with high model orders in order to improve management of glucose concentrations. Eren-Oruklu and coworkers⁸,⁹ have reported subject-specific recursive AR models wherein the model parameters were recursively updated to reflect the recent glucose history.

The ARX models are an extension of AR models to include two exogenous inputs: insulin delivery and meal CHO. Finan and collaborators⁴,¹⁰,¹¹ have developed ARX models for in silico and human subjects. They also analyzed the effect of design parameters such as input excitation on glucose prediction performance. Both AR and ARX model parameters can be easily estimated using standard least squares analysis. Other modeling techniques such as radial basis function, neural network models,¹³⁻¹⁵ and Kalman filters¹²,¹⁶,¹⁷ have also been reported.

Multivariate statistical methods¹⁸,¹⁹ based on the fundamental concept of latent variables (LVs), such as partial least squares (PLS) and principal component analysis, have proven to be powerful tools for data analysis, modeling, and prediction. Although there have been many successful applications in the process industries, few applications²⁰ have been reported for T1DM.

In this paper, a LV-based technique²¹ is employed to develop an empirical glucose prediction model from T1DM subject data. The LV-based modeling technique consists of two steps. First, a PLS model is developed to predict future glucose concentrations (the model output)
from available time series data for the predictor variables: glucose measurements, insulin boluses, and meal CHO estimates (the model inputs). The PLS model is based on a small number of uncorrelated LVs. In the second step, the PLS model is improved by postprocessing using canonical correlation analysis (CCA). In general, the TIDM data are highly correlated due to the small sampling period for glucose measurement and because the insulin bolus is calculated to be a constant ratio of the estimated meal CHOs. By contrast, LVs are a small number of uncorrelated variables that are linear combinations of the predictor variables.

In this article the LV-based prediction method is evaluated using both retrospective clinical data and in silico prospective simulations. The clinical data for seven subjects were collected at the Samsun Diabetes Research Institute in Santa Barbara, CA. In silico evaluation was performed for 10 adult subjects who were simulated using the Food and Drug Administration (FDA)-accepted University of Virginia/University of Padova (UVa/Padova) metabolic simulator. This article provides comparisons of the prediction accuracy of the LV-based method with the accuracy of a standard modeling alternative, the ARX method. The performance of the LV-based method to the choice of key design parameters is also illustrated.

Methodology

Latent-Variable-Based Statistical Analysis

The LV-based models for this paper are empirical, linear dynamic models that predict an output variable, future glucose concentration from past glucose measurements, insulin boluses, and meal CHO estimates (the predictor variables). Because these predictor data tend to be highly correlated, multivariable statistical methods are a natural choice since they have the ability to analyze large amounts of highly correlated data. The underlying assumption is that the predictor data can be described by a small number of orthogonal LVs that can be directly linked to the output variable via regression analysis.

A variety of LV-based regression methods have been developed, with the chief difference being how the LVs are calculated. A general comparison of LV-based methods has been reported by Burnham and associates. The LV-based methods used in this paper are briefly described here.

Partial least squares is a common LV-based regression method. The LVs are linear combinations of the predictor variables that result in maximal covariance with the output variable. Thus the first LV (or score) can be expressed as

$$t_1 = Xw_1$$

where $X(N \times J_p)$ is the predictor data matrix wherein N is the number of samples and J_p is the number of predictor variables. The first weight vector w_1 is a value of w that maximizes the objective function:

$$\arg \max_w (w^T X^T y y^T X w)$$

subject to $w^T w = 1$

where vector $y(N \times 1)$ denotes the output variable data. Thus w_1 is the eigenvector that corresponds to the largest eigenvalue of matrix $X^T y y^T X$.

The second weight w_2 is calculated in a similar manner after X and y have been deflated by t_1:

$$p_1^T = (t_1^T t_1)^{-1} t_1^T X$$

$$E_1 = X - t_1 p_1^T$$

$$q_1 = (t_1^T t_1)^{-1} t_1^T y$$

$$f_1 = y - t_1 q_1$$

where p_1 and q_1 are the PLS loadings for the predictor variables and the output variable, respectively. In order to calculate w_2, the calculation in Equation (2) is repeated with E_1 and f_1 replacing X and y, respectively. The remaining weight vectors are also calculated using this iterative procedure. The number of LVs in the PLS model, N_{LV}, is an important design parameter that can be as large as the rank of X. In this paper, an appropriate value of N_{LV} was determined by cross validation.

Next, the weight vectors w_1, w_2, \ldots are collected in a weight matrix W while the loadings for the predictor variables and the output variable are collected in matrix P and vector q, respectively. Finally, the score vectors t_1, t_2, \ldots are arranged as the columns of matrix T. Then the output variable prediction is given by

$$\hat{y} = X R q = T q$$

where

$$R = W (P^T W)^{-1}$$
A classical PLS calculation procedure is described by Lindgren and colleagues.25

One problem associated with the PLS method requires special attention. The PLS objective is to model the variations in X and maximize their covariance with y, but large covariance does not necessarily mean strong correlation. When the predictor matrix X contains a considerable amount of process variations that are uncorrelated with y, it is possible that the PLS LVs may capture the major systematic variations in the predictors X but only have relatively weak correlation with y. This situation leads to a complex model structure and an overfitting problem.

Unlike PLS, CCA26–28 inherently ignores the variations in X that are uncorrelated with y and directly maximizes the variations that are correlated with y. The CCA objective function is to determine the weight vectors w so that

$$\arg \max_w (w^\top X^\top y)$$

subject to $w^\top X^\top X w = 1$ \hfill (9)

The first weight vector w_1 is the eigenvector corresponding to the largest eigenvalue of matrix $(X^\top X)^{-1} X^\top y (y^\top y)^{-1} y^\top X$. The maximum number of CCA LVs can be up to $L_{\text{cca}} = \min (I_x, I_y)$, where I_x and I_y are the numbers of predictor and output variables, respectively. In this paper, a single output variable is considered, thus $L_{\text{cca}} = 1$. A comparison of Equations (2) and (9) indicates that the CCA objective is to maximize correlation, while the PLS objective is to maximize covariance.

For CCA, the single LV and loading for the output variable are calculated as

$$t = Xw$$ \hfill (10)

$$q = (t^\top t)^{-1} t^\top y = t^\top y$$ \hfill (11)

Finally, the output prediction is given by

$$\hat{y} = Xwq = Tq$$ \hfill (12)

Unfortunately, directly applying CCA to the $[X, y]$ data can lead to ill-conditioned problems resulting from the $(X^\top X)^{-1}$ term in the calculations. To avoid this problem, Yu and MacGregor21 have suggested a two-step LV-based modeling algorithm (PLS-CCA), where CCA is used as a postprocessing technique to further improve the PLS LVs. In this way, a parsimonious regression model with the same prediction ability as the standard PLS model can be obtained. Based on these considerations, their PLS-CCA algorithm is employed in this paper to develop the empirical model for glucose concentration prediction. Compared with the conventional AR and ARX modeling methods, the y-related variability in the predictor data is modeled by only a few LVs, which are calculated in order based on their relationship with future glucose values.

Latent Variable/Latent Variable with Exogenous Input Prediction Model

In order to apply the LV-based modeling technique, the predictor and output data sets must be organized in an appropriate manner. For both the simulation and the clinical studies, the predictor data were available for multiple days using a 5 min sampling period. Previous publications from our research group20,21,29 have demonstrated that model accuracy improves when the exogenous input data are preprocessed prior to model identification. The preprocessing consists of passing each input impulse (i.e., the insulin boluses and CHO estimates) through a simple transfer function model, thus producing time-smoothed inputs. In this paper, the second-order transfer function models reported by Grosman and coworkers29 are used. The data arrangement procedure is described in Appendix A.

The training data $[X, y]$ are normalized to zero mean and unit variance, respectively, which reduces the data nonlinearity to some extent. After applying the PLS-CCA approach to the normalized data, the final LV-based regression model can be readily calculated:

$$t_c = Xw_c$$ \hfill (13)

$$q_c = (t_c^\top t_c)^{-1} t_c^\top y$$ \hfill (14)

$$\hat{y}_c = t_c^\top q_c$$ \hfill (15)

where $w_c(I_x \times 1)$ is the single PLS-CCA weight vector. Latent variable t_c is a linear combination of the predictor variables and weight vector $w_c(I_x \times 1)$, indicating the systematic variations in predictor variables that are closely related to the output variable. The vector of prediction errors f is defined

$$f = y - \hat{y}_c$$ \hfill (16)

The two-step modeling method can be summarized as follows. First, the PLS LVs are calculated, and then CCA
is used to further process them and to calculate the final predictions in Equation (15). In this paper, only one PLS-CCA LV can be used because of the single output variable, regardless of the number of PLS LVs. Thus, only the underlying systematic glycemic variability that is closely related to the output variable (predicted glucose concentration) is captured by the single PLS-CCA LV.

The loading coefficient for the output variable, scalar q_c, is obtained by regressing y on t_c, which indicates how much t_c contributes to y. Then the future glucose prediction \hat{y}_c and the prediction error $f(N \times 1)$ can be calculated.

A flowchart for the proposed modeling strategy is given in Figure 1. The key MATLAB m-files for model development are shown in Appendices B and C. The developed latent variable with exogenous input (LVX)/LV model is then used for online application to new data. During the online application, the newly available predictor vector $x_{\text{new}}^T(1 \times J)$ at each sampling instant can be expressed as $[g_{\text{new}}^T(1 \times L_G), u_{\text{new}}^T(1 \times L_I), u_{\text{M,new}}^T(1 \times L_M)]$, where L_G is the number of current and past glucose measurements and L_I and L_M are the corresponding values for the insulin boluses and meal CHO estimates, respectively. The data normalization of x_{new}^T is based on information obtained from training data; then the normalized x_{new}^T is projected onto the LVX/LV model in order to make the PH-step-ahead prediction, \hat{y}_{new}. The prediction error f_{new} can be calculated after PH samples when the new measurement y_{new} becomes available:

$$t_{\text{new}} = x_{\text{new}}^T w_c \quad (17)$$

$$\hat{y}_{\text{new}} = t_{\text{new}} q_c \quad (18)$$

$$f_{\text{new}} = y_{\text{new}} - \hat{y}_{\text{new}} \quad (19)$$

For LV-based prediction models, the important design parameters are

1. Δt, the data sampling period;
2. J_x, the predictor length, i.e., the number of samples in each row of predictor matrix X;
3. PH, the prediction horizon (expressed as the number of samples into the future); and
4. N_{LV}, the number of LVs that are used in the PLS model.

For clarity, the resulting LV-based glucose prediction model will be denoted as an LVX model when the exogenous inputs (bolus insulin and meal CHOs) are included in the predictor matrix X and as an LV model when they are not. For comparison, the conventional
AR and ARX models are described in Appendix D. For online applications, the future input measurements for the LVX and ARX models are assumed to be zero. However, the smoothed future meal and insulin-related signals generated using data available at the current time are used for prediction.

Results and Discussion

In Silico Study

The simulated subject data were generated for a 5 min sampling period using the FDA-accepted UVa/Padova metabolic simulator. The simulations included a three-meal scenario for breakfast, lunch, and dinner taken at approximately 7:00 AM, 12:00 PM, and 6:00 PM with 40, 85, and 60 g of CHO, respectively. An optimal bolus insulin was given immediately based on the ideal insulin-to-carbohydrate ratio (I:C). This situation is used as the nominal case for model identification. Three additional cases were considered to assess the performance of the identified models to nonideal situations:

Case I: The meal timing and CHO meal content were varied to represent variations in daily life. Thus a 1 h shift (forward or backward) in meal timing and ±75% variation in CHO amount were implemented.

Case II: In addition to the meal variations of case I, a 30% increase in I:C was considered, which resulted in lower peak glucose measurements.

Case III: It is the same as case I except that a 30% decrease in the I:C was considered, which resulted in higher peak glucose measurements.

Cases II and III were used to test whether the identified prediction model for the nominal case is valid due to inaccurate CHO estimates.

Glucose predictor length L_G was evaluated to assess its effects on prediction performance. On one hand, a larger L_G value will increase the predictor information for the glucose prediction, which may improve prediction accuracy. On the other hand, if L_G is too large, the oldest information may not be useful for prediction and thus actually reduce prediction accuracy.

The prediction accuracy of the identified models can be evaluated and compared using several standard metrics. In this paper, two metrics are used. One metric is the root mean-square error (RMSE), which is defined as

$$\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i \in N} (y_i - \hat{y}_i)^2}$$ \hspace{1cm} (20)

where \hat{y}_i is the predicted value, y_i is the CGM measurement, and N is the number of samples.

The other metric is the continuous glucose (CG) error-grid analysis (EGA), which is specific to diabetes applications. Here CGM data are used as the reference for analyzing how accurate the glucose predictions are according to the CG-EGA metric. In the following results, the EGA label refers to the percentage of the model predictions that lie in the “clinically accurate” region A.

The optimal value of L_G was either 7 or 8 for both the LV and the AR models and for all subjects. For the ARX and LVX models, the optimal numbers of L_I and L_M were more subject dependent, as were the input time delays k_{ins} and k_{meal} in Appendix D. An additional 5 days of simulated testing data were used to evaluate model accuracy.

Figure 2 shows the influence of glucose predictor length L_G on model accuracy for the four identification methods, three cases, and a prediction horizon of 30 min (i.e., $PH = 6$). The RMSE values in Figure 2 for cases I–III are averages for the 10 in silico subjects and five days of testing data. For case I, the RMSE index for all four models is insensitive to changes in L_G for $L_G > 7$. For nonideal cases II and III, the ARX model performance is rather erratic and becomes worse as L_G increases. For a specific value of L_G, the LVX model is the most accurate model based on the RMSE metric and a paired t-test for individual subjects ($\alpha = 0.05$). These LV and AR models exhibit similar prediction accuracy, and their differences are not statistically significant based on a paired t-test ($\alpha = 0.05$).
The choice of prediction horizon PH involves a trade-off. It should be large enough to ensure adequate time for a necessary intervention or corrective action in order to avoid abnormal glycemia. On the other hand, a larger PH value may result in less accurate glucose predictions. Figure 3 shows the prediction accuracy for different identification methods and PH values up to 12 when the optimal values of L_G were used for different methods and subjects. The RMSE values were averaged for 10 adults and five days of testing data. As expected, the prediction accuracy decreases as PH increases. For $PH \geq 6$, the differences in prediction accuracy for the four types of models become more significant. The LVX model is statistically more accurate based on a paired t-test ($\alpha = 0.05$) for cases II and III; for case I, its accuracy is similar to that of the ARX model. The LV and AR models achieve similar accuracy and the differences are not statistically significant based on a paired t-test ($\alpha = 0.05$). Figures 2 and 3 demonstrate that an ARX model developed for the nominal case conditions is less accurate for cases II and III, in comparison with the other methods.

The number of LVs for the PLS calculations, N_{LV}, determines how much predictor information is retained in the PLS model. In general, using a small value of N_{LV} indicates that much of the information in the predictor...
data X is considered to be uninformative for prediction purposes and thus is excluded from the PLS model. Preliminary simulations indicated that a value of $N_{LV} = 4$ or 5 gave good results.

Figure 4 compares model accuracy for subject #1, 30 min predictions, cases I–III, and a representative day of testing data. For case I, both the ARX and LVX models capture the general glucose trend with similar accuracy. For cases II and III, the ARX model provides less accurate predictions at the peaks of the glucose profiles. Similar conclusions occur for subject #7 in **Figure 5**, where a representative day of test data is considered for the three cases.

Tables 1 and 2 summarize model prediction accuracy for the 10 *in silico* adults based on two metrics, RMSE (mg/dl) and EGA (%) in region A. Both the mean absolute deviation (MAD) and median average deviation values are shown. The shaded values in a column indicate models that are statistically superior compared with the unshaded models in the column, based on a paired t-test ($\alpha = 0.05$). Tables 1 and 2 also include results for a simple model-free method, constant value prediction (CVP). In this approach, the prediction PH samples ahead is simply the current value.

In general, the LVX model in **Table 1** gives the lowest RMSE values and thus is the most accurate. For case I, all four modeling methods are superior to the CVP approach. But for cases II and III, the ARX model usually gives worse results than the CVP approach. For the EGA (%) results in **Table 2**, all models except ARX give better results for case III than for cases I and II, even though this trend is not present for the RMSE values in **Table 1**. This anomaly occurs because the glucose values are higher for case III due to insulin underdelivery. Region A of the EGA becomes larger when the glucose values are higher. From this viewpoint, the EGA index is a less sensitive metric than the RMSE index.

Figure 4. Comparison of measured values and 30 min predictions for LVX and ARX models and *in silico* subject #1 over a one-day period: (A) case I, (B) case II, and (C) case III. A green left triangle indicates the time of a meal and an insulin bolus injection, which are taken at the same time.

Figure 5. Comparison of measured values and 30 min predictions for LVX and ARX models and *in silico* subject #7 over a one-day period: (A) case I, (B) case II, and (C) case III. A green left triangle indicates the time of a meal and an insulin bolus injection, which are taken at the same time.
Retrospective Clinical Data

In the retrospective clinical evaluation, several days of data for each of the seven ambulatory subjects were available. The subjects had given their voluntary and written informed consent to participate in the study. The key characteristics for the seven subjects (four males and three females) are

- Age: 48 ± 15 years
- Weight: 87 ± 25 kg
- Height: 174 ± 11 cm
- Correction factor: 35 ± 14 mg/dl/U
- I:C: 1:9 ± 1:2 U/g

The CGM glucose data were collected using a DexCom 7 Plus™ device (DexCom, San Diego) with a 5 min sampling period. The estimated meal CHO values and recorded insulin boluses were used as the exogenous inputs. The data were divided into 24 h time segments from 4:00 AM to 4:00 AM. One day of data was used for model identification.

The two impulse inputs were transformed into time-smoothed inputs using the second-order transfer functions of a previous study. The estimated model predictor lengths and input time delays were selected based on cross validation. The optimal predictor length L_G for glucose was 7 or 8 for all empirical models and subjects. For ARX and LVX models, the optimal model parameters for two exogenous inputs are more subject dependent, including the predictor lengths and input time delays. The identified prediction models were then tested using other segments of data for each subject.

The weak influence of L_G on model accuracy is illustrated in Figure 6 for 30 min predictions and test data. The mean RMSE value and MAD from median value are shown for the seven clinical subjects. Based on a paired t-test ($\alpha = 0.05$) for individual subjects, the LVX model is statistically superior to the other models.

The effect of prediction horizon PH on average prediction performance is shown in Figure 7. The optimal predictor length L_G for glucose was used for different empirical models and subjects. As expected, as PH increases, the average RMSE value increases and the MAD of the RMSE index also increases. The four types of models produce

<table>
<thead>
<tr>
<th>Table 1. Root Mean-Square Error Results (mg/dl; Mean ± Mean Absolute Deviation) for Glucose Prediction and 10 in Silico Subjects</th>
<th>PH = 6 (30 min)</th>
<th>PH = 12 (60 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case I</td>
<td>Case II</td>
</tr>
<tr>
<td>LVX</td>
<td>8.9 ± 0.7</td>
<td>8.5 ± 0.6</td>
</tr>
<tr>
<td>ARX</td>
<td>9.8 ± 0.5</td>
<td>14.7 ± 3.7</td>
</tr>
<tr>
<td>LV</td>
<td>11.2 ± 1.1</td>
<td>11.5 ± 1.1</td>
</tr>
<tr>
<td>AR</td>
<td>11.6 ± 1.1</td>
<td>11.6 ± 1.2</td>
</tr>
<tr>
<td>CVP</td>
<td>13.9 ± 1.8</td>
<td>13.9 ± 1.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Error-Grid Analysis Results (% in Region A; Mean ± Mean Absolute Deviation) for Glucose Prediction and 10 in Silico Subjects</th>
<th>PH = 6 (30 min)</th>
<th>PH = 12 (60 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case I</td>
<td>Case II</td>
</tr>
<tr>
<td>LVX</td>
<td>97.9 ± 0.7</td>
<td>95.2 ± 0.5</td>
</tr>
<tr>
<td>ARX</td>
<td>97.8 ± 0.8</td>
<td>91.1 ± 3.2</td>
</tr>
<tr>
<td>LV</td>
<td>96.4 ± 1.5</td>
<td>93.5 ± 1.4</td>
</tr>
<tr>
<td>AR</td>
<td>97.1 ± 1.0</td>
<td>94.9 ± 1.0</td>
</tr>
<tr>
<td>CVP</td>
<td>94.3 ± 1.9</td>
<td>90.6 ± 2.2</td>
</tr>
</tbody>
</table>
Predicting Subcutaneous Glucose Concentration Using a Latent-Variable-Based Statistical Method for Type 1 Diabetes Mellitus

Zhao

Figure 6. The effect of glucose predictor length L_G on model prediction accuracy for seven clinical subjects, $PH = 6$, and different modeling techniques. (A) mean RMSE (mg/dl); (B) MAD of RMSE (mg/dl).

Essentially the same prediction accuracy for small values of PH. However, when $PH \geq 6$, the LVX model is the most accurate, while the AR model is the least accurate. For $PH \geq 6$, a paired t-test ($\alpha = 0.05$) indicates that the LVX model is usually statistically superior to the other methods.

The measured and predicted glucose profiles for the LVX and ARX models are shown in Figure 8 for two representative subjects and one day of test data. The ARX and LVX models give similar results for the two subjects. Similar results are shown in Figure 9 for AR and LV models for the same two subjects.

Tables 3 and 4 summarize model prediction accuracy for the seven clinical subjects based on RMSE (mg/dl) and EGA (% in region A), respectively. The shaded values in a column indicate models that are statistically superior compared with the unshaded models in the column, based on a paired t-test ($\alpha = 0.05$). All four modeling techniques were much more accurate than the CVP model-free method. For $PH = 3$, the four modeling

Tables 3 and 4 summarize model prediction accuracy for the seven clinical subjects based on RMSE (mg/dl) and EGA (% in region A), respectively. The shaded values in a column indicate models that are statistically superior compared with the unshaded models in the column, based on a paired t-test ($\alpha = 0.05$). All four modeling techniques were much more accurate than the CVP model-free method. For $PH = 3$, the four modeling

Table 3.
Root Mean-Square Error Results (mg/dl; Mean ± Mean Absolute Deviation) for Glucose Prediction and Seven Clinical Subjects

<table>
<thead>
<tr>
<th>Methods</th>
<th>PH = 3 (15 min)</th>
<th>PH = 6 (30 min)</th>
<th>PH = 9 (45 min)</th>
<th>PH = 12 (60 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVX</td>
<td>11.1 ± 2.4</td>
<td>18.7 ± 3.7</td>
<td>24.4 ± 4.7</td>
<td>29.2 ± 5.5</td>
</tr>
<tr>
<td>ARX</td>
<td>11.3 ± 2.5</td>
<td>19.5 ± 3.8</td>
<td>25.5 ± 4.6</td>
<td>30.3 ± 5.3</td>
</tr>
<tr>
<td>LV</td>
<td>11.3 ± 2.4</td>
<td>19.7 ± 3.3</td>
<td>26.0 ± 3.8</td>
<td>31.2 ± 4.0</td>
</tr>
<tr>
<td>AR</td>
<td>11.6 ± 2.4</td>
<td>20.8 ± 3.5</td>
<td>28.3 ± 4.2</td>
<td>34.9 ± 4.5</td>
</tr>
<tr>
<td>CVP</td>
<td>21.7 ± 3.8</td>
<td>26.9 ± 3.2</td>
<td>31.0 ± 2.9</td>
<td>37.5 ± 2.5</td>
</tr>
</tbody>
</table>

Table 4.
Error-Grid Analysis Results (% in Region A; Mean ± Mean Absolute Deviation) for Glucose Prediction and Seven Clinical Subjects

<table>
<thead>
<tr>
<th>Methods</th>
<th>PH = 3 (15 min)</th>
<th>PH = 6 (30 min)</th>
<th>PH = 9 (45 min)</th>
<th>PH = 12 (60 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVX</td>
<td>96.8 ± 1.8</td>
<td>86.1 ± 7.5</td>
<td>78.8 ± 9.9</td>
<td>72.1 ± 10.6</td>
</tr>
<tr>
<td>ARX</td>
<td>96.5 ± 2.1</td>
<td>84.9 ± 7.9</td>
<td>77.5 ± 8.8</td>
<td>70.1 ± 10.3</td>
</tr>
<tr>
<td>LV</td>
<td>96.4 ± 2.0</td>
<td>84.9 ± 7.6</td>
<td>76.3 ± 10.2</td>
<td>68.4 ± 9.6</td>
</tr>
<tr>
<td>AR</td>
<td>96.2 ± 2.3</td>
<td>84.4 ± 7.5</td>
<td>74.8 ± 8.8</td>
<td>66.5 ± 9.8</td>
</tr>
<tr>
<td>CVP</td>
<td>84.0 ± 5.8</td>
<td>76.9 ± 6.1</td>
<td>71.1 ± 6.6</td>
<td>63.0 ± 6.2</td>
</tr>
</tbody>
</table>
methods exhibit similar prediction performance. But as \(PH \) increases, the differences become significant. For \(PH \geq 6 \), the LVX models in Table 3 are statistically superior, as indicated by a paired \(t \)-test (\(\alpha = 0.05 \)) for the RMSE index.

Conclusions

Glucose prediction models based on a LV-based approach have been evaluated for both an in silico study and a retrospective analysis of clinical data. The new LV and LVX models were compared with standard AR and ARX models and a simple model-free approach (CVP), where the future prediction is merely set equal to the current value. For both investigations, the empirical models were more accurate than the model-free method.

For the in silico study, the LV-based modeling method gave more accurate predictions than the AR/ARX alternative for changing conditions such as meal timing, meal amounts, and I:C. For large prediction horizons (\(\geq 30 \) min), the LVX model was statistically superior to LV and AR models based on a paired \(t \)-test (\(\alpha = 0.05 \)) for all cases and superior to the ARX models for cases II and III.

For retrospective clinical data, the LV and LVX models provided modest improvements in prediction accuracy compared with the corresponding standard models (AR and ARX). For \(PH \geq 6 \), the inclusion of exogenous inputs in the models (LVX and ARX) resulted in more accurate models compared with the models without exogenous inputs (LV and AR), respectively.

These promising modeling results should encourage extensions of this research methodology. For example, a critical problem concerns the generation of hypoglycemic event alerts based on an online statistical analysis of current and past data.

Funding:

The research work was supported by the Juvenile Diabetes Research Foundation (grants 22-2009-797, 22-2009-76) and the National Institutes of Health (DK085628-01).
References:

Appendix A. Data Arrangement

The CGM glucose data can be represented as a data vector $g(K \times 1)$, where K is the number of samples. Recorded insulin boluses and estimated meal CHOs are denoted by $u_i(K \times 1)$ and $u_M(K \times 1)$, respectively. It is desired to predict the glucose concentration PH time steps ahead, where PH is the prediction horizon. These predictions are based on recent values of the predictor variables. A key question is how many past values of glucose and the two exogenous inputs should be included in the model. Let L_G, L_U and L_M denote the numbers of past samples for glucose, insulin, and meal CHOs, respectively, that are used to make the predictions. These parameters will be referred to as the predictor lengths, PLs.

For the model development, the training data are organized as follows. The predictor matrix is defined as

\[X(N \times J_x) = [G(N \times L_G), U_i(N \times L_I), U_M(N \times L_M)] \quad (A1) \]

where N is the number of glucose measurements to be predicted, $N = K - L - PH + 1$, $L = \max(L_G, L_I + D - 1, L_M + D - 1)$, and D is the input time delay for both the insulin bolus and the meal CHOs. Note that $N < K$ due to the initialization period required to acquire the past data for the first glucose prediction. Model parameter $J_x = L_G + L_I + L_M$ is the number of variables in the arranged data matrix. The insulin bolus predictor data are arranged as

\[U_i(N \times L_I) = \begin{bmatrix} u_{i,1}^T&(1 \times L_I) \\ u_{i,2}^T&(1 \times L_I) \\ \vdots \\ u_{i,L-I-PH+1}^T&(1 \times L_I) \end{bmatrix} \quad (A2) \]

Each row vector $u_{i,j}^T(1 \times L_I)(i = 1, 2, \ldots, N)$ contains the bolus insulin information from time $i + L - L_I$ to $i + L - 1$. Similarly, the analogous predictor matrices for the other two predictor variables are denoted by $U_M(N \times L_M)$ and $G(N \times L_G)$, respectively.

The model output data are arranged as

\[y(N \times 1) = \begin{bmatrix} g_{L+PH} \\ g_{L+PH+1} \\ \vdots \\ g_K \end{bmatrix} \quad (A3) \]

where g_{L+PH} is the glucose measurement at time $L+PH$.
Appendix B. MATLAB Codes for the Latent-Variable-Based Modeling Algorithm

function [LVmodel]=LV_modeling(X,Y,A)
 %% LVX/LV modeling algorithm to calculate the PLS-CCA prediction model
 %% Reference: [Post processing methods (PLS-CCA): simple alternatives to
 %% Inputs X and Y are the preprocessed predictor and output matrices
 %% A is the number of PLS LVs to be retained
 [Nx, Jx]=size(X);
 [Ny, Jy]=size(Y);
 if Nx~= Ny
 disp('unmatched data size');
 end
 [Wpls, Ppls, Qpls, Rpls,betapl]=mkernel(X,Y,A);
 Tpls=X*Rpls;
 [Wccax, Wccay] = canoncorr(Tpls,Y);
 Tcca=Tpls*Wccax;
 Pcca=(inv(Tcca'*Tcca)*Tcca'*X)';
 Qcca=(inv(Tcca'*Tcca)*Tcca'*Y)';
 LVXmodel=Rpls*Wccax*Qcca';

In the MATLAB code, two key subfunctions are used, which are shown as follows:

Subfunction 1. Partial Least Squares Modeling Algorithm

function [W, P, Q, R, beta,TU,U]=mkernel(X,Y,A)
 %% The PLS algorithm to calculate the PLS model parameters
 %% This is the modified kernel PLS algorithm by Dayal and MacGregor
 %% Inputs X and Y are the preprocessed predictor and output matrices
 %% A is the number of PLS LVs to be retained
 W=[];
 P=[];
 Q=[];
 R=[];
 TU=[];
 U=[];
 [Nx, Jx]=size(X);
 [Ny, Jy]=size(Y);
 if Nx~= Ny
 disp('unmatched data size');
 end
 XY=X'*Y;
 for i=1:A
 if Jy==1
 w=XY;
 else
 [C,D]=eig(XY'*XY);
 q=C(:,find(diag(D)==max(diag(D))));
 w=XY'*q;
 end
 w=w/sqrt(w'*w);
 r=w;
 end
for j=1:i-1
 r=r-(P(:,j)'*w)*R(:,j);
end
t=X*r;
tt=t'*t;
p=(X'*t)/tt;
q=(r'*XY)/tt;
u=Y*q'/(q*q');
tucov=w'*XY*q';
XY=XY-(p*q)*tt;
Y=Y-t*q;
W=[W w];
P=[P p];
Q=[Q q'];
R=[R r];
TU=[TU tucov];
U=[U u];
end
beta=R*Q';

Subfunction 2. Canonical Correlation Analysis Modeling Algorithm

It uses the direct MATLAB statistics toolbox function [Wx,Wy] = canoncorr(X,Y).
Appendix C. MATLAB Codes for Glucose Prediction Using the Developed Latent Variable/Latent Variable with Exogenous Input Model

function [Yhat,Eval]=LV_prediction(X,Y,LVmodel,Y_mean,Y_std,option)
%% Glucose prediction to evaluate the model performance;
%% Inputs X and Y are the preprocessed predictor and output matrices;
%% LVmodel is the developed LVX/LV model;
%% Y_mean and Y_std are the data normalization information calculated from training data, mean and standard deviation respectively, which are used to preprocess and normalize Y before;
%% option is used to determine which evaluation index to be calculated;
%% Outputs Yhat is the prediction and Predstat is the calculated statistical index value to evaluate the prediction accuracy.
[Nx, Jx]=size(X);
[Ny, Jy]=size(Y);
if Nx~= Ny
 disp('unmatched data size');
end
Yhat=X*LVmodel*Y_var+ Y_mean;
Predstat=Statis_calculation(Y,Yhat,option);

Subfunction 1. The Calculation of Prediction Errors by Different Evaluation Indices
function [Predstat]=Statis_calculation(Y,Yhat,option)
%% Prediction error calculation to evaluate the prediction accuracy;
%% Inputs Y and Yhat both are single output vectors;
%% Yhat is the prediction and Y is the corresponding CGM measurement after PH steps from the measurement time for Y;
%% option is used to determine which evaluation index to be calculated;
%% Output Predstat is the calculated statistical index to evaluate the prediction accuracy.
[Ny, Jy]=size(Y);
[Nyhat, Jyhat]=size(Yhat);
if Ny~= Nyhat
 disp('unmatched data size');
end
if Jy~=1&Jyhat~=1
 disp('not single output vector');
end
switch option
 case 1
 RMSEy=sqrt(mse(Yhat-Y)); %% to calculate root mean squared errors
 Predstat=RMSEy;
 case 2
 R2y=1-sum((Yhat-Y).^2)/sum((mean(Y)-Y).^2); %% to calculate R-square
 Predstat=R2y;
 case 3
 MADy=mean(abs(Yhat-Y)); %% to calculate mean absolute differences
 Predstat=MADy;
end

Note: In the function Statis_calculation, only three evaluation indices are show here. You can add the concerned indices as you want.
Appendix D. Autoregressive/Autoregressive with Exogenous Input Prediction Model

The AR and ARX models are linear dynamic models having been widely considered for prediction and control calculations in the diabetes control literature. The general form of the ARX model used in this article is given by Equation (D1),

\[A(q^{-1})g_t = B_{ins}(q^{-1})u_{ins,t-k_{ins}} + B_{meal}(q^{-1})u_{meal,t-k_{meal}} + \beta + \epsilon_t \]

(D1)

where \(g_t \) denotes glucose concentration at sampling instant \(t \), \(u_{ins,t} \) and \(u_{meal,t} \) are the exogenous inputs, bolus insulin, and meal CHO content at time \(t \), \(\beta \) is a constant bias term, and \(\epsilon_t \) is a zero mean, random disturbance at time \(t \). Note that this ARX model is somewhat unusual because it is based on physical variables and a bias term rather than deviation variables. The advantage of this approach is that it eliminates the need to specify an appropriate steady-state reference value for the glucose concentration, information that may be difficult to determine in practice because of the inherent dynamic behavior of blood glucose concentration. In Equation (D1) the input time delays, \(k_{ins} \) and \(k_{meal} \), can be different for each input. The time delays are expressed as integer multiples of the sampling period, \(\Delta t \). In this paper, the sampling period is 5 min.

In Equation (D1), \(A(q^{-1}) \), \(B_1(q^{-1}) \), and \(B_2(q^{-1}) \) denote polynomials in \(q^{-1} \), where \(q^{-1} \) is the backward shift operator, i.e., \(q^{-1}g_t \equiv g_{t-1} \). For example,

\[A(q^{-1}) = a_0 + a_1q^{-1} + a_2q^{-2} + \ldots + a_{n_A}q^{-n_A} \]

(D2)

where \(n_A \) is the order of the \(A(q^{-1}) \) polynomial. It determines the number of previous glucose measurements that are relevant for prediction. When polynomials \(B_1 \) and \(B_2 \) are set equal to zero, the ARX model in Equation (D1) reduces to an AR model.

The identification of an AR or ARX model corresponds with specified model orders and can be performed analytically using standard least-squares regression\(^3\) to estimate the model coefficients (e.g., \(a_i \)). However, if the training data are highly correlated, an ill-conditioned or rank-deficient problem can arise in the least squares calculations. To address this problem, a regularization modification to the least squares calculations was used by Gani and associates\(^3\) to provide a trade-off between the fit to the training data and the smoothness of future predictions. The net effect of regularization is the introduction of a small bias to the standard least squares solution.