Restricted Natural Language Processing for Case Simulation Tools

Christoph U. Lehmann, M.D.*,†, Bach Nguyen‡, George R. Kim, M.D.*, Kevin B. Johnson, M.D.*†, and Harold P. Lehmann, M.D., Ph.D.‡†
*Department of Pediatrics and †Division of Biomedical Information Sciences
Johns Hopkins University School of Medicine
Baltimore, Maryland

For Interactive Patient II, a multimedia case simulation designed to improve history-taking skills, we created a new natural language interface called GRASP (General Recognition and Analysis of Sentences and Phrases) that allows students to interact with the program at a higher level of realism. Requirements included the ability to handle ambiguous word senses and to match user questions/queries to unique Canonical Phrases, which are used to identify case findings in our knowledge database.

In a simulation of fifty user queries, some of which contained ambiguous words, this tool was 96% accurate in identifying concepts.

INTRODUCTION

Computers and especially simulations have been identified as effective tools for stimulating educational interest and increasing learning.1 In medicine, computer-based case simulations of patient encounters, using varying degrees of verisimilitude, have been recognized as a popular and beneficial format for medical education.2 Simulated patient encounters transmit cognitive and procedural information to medical trainees without having to expose real patients to the student.3 Case simulations enable students to acquire evaluation and management skills and become familiar with current developments in the management of illnesses4 in an efficient and reproducible manner.

Case simulations are representations of patient encounters with varying degrees of complexity. The needed complexity of the simulation corresponds to the desired educational goals. Essential to clinical learning is mastery of history-taking and physical examination skills to arrive at a differential diagnosis. To develop good history-taking skills, the trainee must learn to elicit responses from patients in a logical, sensitive and appropriate fashion. Prepared history menus5, while popular, limit the learning experience by giving away clues through limited choices and do not reflect the open-endedness of a real patient encounter.6 However, the use of Natural Language Processing (NLP) forces the student to formulate the appropriate options on their own and develop a line of “questioning” based upon their knowledge and observations. While more challenging to implement, NLP provides a higher degree of realism and an improved learning experience in this crucial area.

METHODS

Interactive Patient II

We are currently developing Interactive Patient II, a multimedia, Web-based clinical simulation environment designed to teach medical trainees history-taking and physical examination skills, as well as skills in efficient selection of diagnostic tests and treatment options. The Internet’s ubiquitous access, relative ease of use, and platform independence made it the medium of choice for this application.7 A key component of the design was the desire to allow users to formulate, type and submit natural language questions that will be “understood” by the simulated patient and result in appropriate multimedia responses. For the Interactive Patient II natural language interface, we envisioned the use of information retrieval technology to query our knowledge database and return responses relevant to the user’s question.

Features

An Interactive Patient II user should be able to inquire about any history-related knowledge in a number of different ways. Inquiries are expected to be appropriate for a physician-patient relationship (e.g., a question that includes a profanity would be considered inappropriate). A user might be interested in the duration of a patient’s headache:

1. How long has your head been hurting?
2. You have had the headache since when?
3. What is the duration of the pain in your head?

While these sample questions vary in syntax, choice of words and style, they all attempt to derive the same information. The minimum requirement for the natural language parsing is to relate all these queries...
to the same knowledge representation and ultimately the same finding from our knowledge database: "My headache has lasted for two days now."

For medical applications, different systems utilizing concept-based algorithms have been used in free-text processing\(^8\) including history-taking\(^9\) and medical literature indexing and retrieval.\(^1\)

To accomplish our goals, a natural language parser in a case simulation must contain the following features:

The ability to handle queries that contain words with ambiguous meanings (i.e. "drugs") and the capability to identify the meaning of interest for the user. While QMed\(^10\) and CAPIS\(^8\) do not allow for ambiguous words, SAPHIRE\(^11,12\) returns in the case of ambiguity a weighted list of concepts based on the number of synonyms and their proximity to each other.

Because of our belief that understanding users' questions containing ambiguous words is of importance for this simulation, we developed a natural language parser called GRASP (General Recognition and Analysis of Sentences and Phrases) to fulfill this specification.

Design

The knowledge in Interactive Patient II is represented by a unique concept representation called Canonical Phrase. The core process of GRASP is to return a Canonical Phrase and the related case finding in response to any user query. This is done in two steps: First, word-level synonyms are identified and Canonical Terms are returned. Second, Canonical Phrase synonyms are used to determine the correct Canonical Phrase.

Any question submitted by a user is compared to a table of phrases. (Figure 1) These phrases can be single words (example: "pain" or "hurt") or combination of words (example: "how old"). If a phrase is found to be a substring of the query/question string, a related Canonical Term is added to the Canonical Term Query.

Figure 1: GRASP Data flow diagram

In case a phrase is a combination of more than one word (i.e., "how old"), the phrase is considered a substring if all words contained in the phrase ("old" and "how") are substrings of the original user
query/question. Any duplicate occurrences of Canonical Terms are removed from the Canonical Term Query.

The resulting Canonical Term Query is then compared to entries in a table containing all Canonical Term combinations for which a concept exists in the case knowledge database. The Canonical Term combinations are sorted according to their priority which is determined by the number of Canonical Terms that are contained in any given combination as well as some special knowledge rules. The special knowledge rules allow the developer to alter the priority of certain concepts (e.g., the concept "profanity" has the highest priority and overrides all other concepts contained in the question, effectively working as a filter). Once a Canonical Term combination is found to be a subset of the Canonical Term Query, the search is interrupted and the corresponding Canonical Phrase representing the knowledge concept is returned.

The Canonical Phrase, in turn, is used to return the case findings from a finding table, which may include text findings, images, sound files and small movies. All user queries/questions as well as the resulting Canonical Phrases and findings are saved and periodically reviewed to evaluate GRASP’s accuracy and to utilize user requests that were not adequately matched to enlarge our knowledge database.

Implementation
GRASP was programmed as a Java server application. Embedded in an HTML interface, a client-side Java applet allows users to submit their question to the server via a socket connection. GRASP uses server-side JDBC to interact with the database on the Interactive Patient II server and to return the resulting case finding to the user.

The phrase table, Canonical Term Combination table as well as the knowledge tables were developed in Microsoft Access. GRASP and the corresponding database are housed on a Windows NT Server on a Pentium II 200 MHz computer.

The first case of Interactive Patient II is currently being developed based on an Adolescent Medicine case. The history knowledge base is divided into a default finding table and a case-specific table. Any query resulting in a Canonical Phrase returns a finding in the adolescent case including multimedia files and a text response. If there is no related finding in the adolescent case table, the corresponding finding from the default table is used. This will facilitate the development of new cases in the future. (Figure 2)

To evaluate GRASP against its specifications, fifty random findings from the knowledge database were chosen and questions/queries formulated by the authors that a user might use to access these findings through GRASP (Table 1). All queries were entered into GRASP and in 48 cases (96%), GRASP returned a Canonical Phrase that correlated to the desired finding. In one case, a misspelled phrase in the Phrase list resulted in a mismatch, while in the other case, a related Canonical Phrase was returned which had a higher priority in the sorting of Canonical Term combinations. While the resulting Canonical Phrase was not an exact match, the concept returned was similar enough to result in a meaningful answer to a user’s query.

The delay between a query and the return of a Canonical Term and the related finding in the knowledge database varied significantly. Detailed and specific queries (i.e. "Does your chest pain radiate into your arm?") resulted in significantly faster (less than 2 seconds) responses than broader and more generalized queries (i.e. "Do you have pain?") (3 - 5 seconds).

DISCUSSION

We developed a restricted natural language processing tool for a clinical case simulation that will allow students to interact with a simulation through "questioning" the program. In tests, this tool has proven to efficiently produce accurate phrase identification while allowing usage of ambiguous words.

While word sense disambiguation has developed as an important area of natural language processing, we developed a natural language interface for a clinical simulation that rejects the notion of word sense disambiguation in favor of sense discrimination. Word sense disambiguation and discrimination both identify distinct senses and classify the occurrence of the word as belonging to one of these senses. Word discrimination however does not label the senses or associates them with an external knowledge source (in our case this knowledge is intrinsic to our Canonical Term combination table). By allowing phrases to be linked to multiple Canonical Terms we allowed for the recognition of ambiguous terms. Using these Canonical Terms with terms generated by other phrases in the same query, GRASP was able to identify the correct Canonical Phrase and implicitly determine the appropriate word sense. We demonstrated this with a number of sample questions containing ambiguous words ("arms", "drugs").
GRASP's ability to discriminate word sense is in part secondary to the fact that the vast majority of ambiguity found in the English language is of little or no significance in our application. First, our case simulation deals with a very specific context, the history and examination of a patient. Since a specific sublanguage is used, the occurrence of an ambiguous word means that it will most likely be in that context. Second, GRASP is capable of interpreting only those queries for which there exists a specific finding in our knowledge database.

The Interactive Patient prototype 17-18 utilized a single table Canonical Phrase look-up, limiting the number of potential user queries by excluding word level synonyms. In the Interactive Patient II, the use of word and Canonical Phrase synonyms11 allowed us to represent a large number of possible queries that could be accurately identified by GRASP, despite a limited number of concepts represented to date. Furthermore, in our experience with the Interactive Patient prototype 17-18, problems did not occur (according to user feedback) secondary to word sense ambiguity but due to incomplete knowledge representations. For instance, compound queries / conjunctions (e.g., "Do you have vomiting AND diarrhea") that are not represented in the knowledge base, will result in only one finding ("self vomiting" or "self diarrhea"). Utilizing user queries/questions and the resulting Canonical Phrases and findings to evaluate the NLP tool for omissions and inadequacies has proven very efficient in the Interactive Patient prototype.17-18 Approximately 40% of case findings in the prototype were added after users were allowed to interact with the simulation. At the time of this study, the navigational interface for the Interactive Patient II was only partially developed, forcing us to generate testing questions from random findings in the knowledge database introducing an element of bias. After completion of the first case, we will repeat this test with questions formulated by actual users.

As demonstrated by the sample questions, GRASP is capable of determining relevant findings in the knowledge database with a high degree of accuracy. The reason for this accuracy is two-fold. First, due to the format presented to the user, only one query is submitted at any given time. This allowed us to omit parsing for sentences8,10 and to assume that all Canonical Terms identified in this query are related and may be used for word sense discrimination. Second, since all user queries are assumed to be questions to a patient, there is no need to evaluate for negations8 in these queries since the resulting knowledge findings would be similar. ("Do you have a headache?" vs. "Don't you have a headache?") While in an ideal environment differences between these two queries would be identified since they represent subtle differences in the physician-patient relationship; this differentiation would be unnecessary in a learning tool as envisioned by us. We found a significant difference in the GRASP's response time for general versus specific concepts. This difference can be explained by the fact that more general concepts usually are matched to Canonical Term combinations with low priority and a subsequent longer duration of searching.

The goal for the development of GRASP was to allow users of a case simulation to interact on a more realistic level with the program using a natural language interface. This interface had to fulfill levels of word sense discrimination that existing parsers did not provide.8,11 Since the order of questions during history-taking depends on the interviewer who is responsible for "completeness", we were able to omit, the need to generate the large complex grammers8,10 that describe the relationships of the different concepts in the knowledge database.

ACKNOWLEDGEMENTS

This work was funded in part by the National Library of Medicine (Grant # F38LM00064) and by the National Board of Medical Examiners (Project # 34-9798). The authors are indebted to Joan Freedman, M.S. and Bonnie Cosner from the Office of Medical Informatics Education at Johns Hopkins University.

<table>
<thead>
<tr>
<th>Query</th>
<th>Canonical Phrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>How long have you had the headache?</td>
<td>self head pain duration</td>
</tr>
<tr>
<td>Do you own any arms?</td>
<td>self arm</td>
</tr>
<tr>
<td>Do you have pain in your arm?</td>
<td>self arm pain</td>
</tr>
<tr>
<td>Do you smoke?</td>
<td>self smoke</td>
</tr>
<tr>
<td>Do you smoke cigarettes or cigars?</td>
<td>self smoke smok object</td>
</tr>
</tbody>
</table>
How many do you smoke?
How long have you had the pain?
Do you have any burning on urination?
* Does it hurt when you pee?
Does urination hurt?
What color is your urine?
Do you have any blood in your urine?
Do you have any discharge from your penis?
* Do you have a history of kidney stones?

Any other problems?
What makes your problem better?
How was your health in the past?
Are you exposed to asbestos?
Did you have an injury at work?
What kind of heat do you have at home?
Do you have a gun at home?
Do you use a seatbelt?
Is your mother alive?
How old is your mother?
Where does your father live?
Did your mother graduate from college?
Are your parents alive?
Are your parents married or divorced?

How long does the nausea last?
Do you get dizzy drinking alcohol?
Do you have vomiting and diarrhea?
Is your stool soft?
Do you have blood in your stool?
Any heartburn?
Do you take drugs for your cough?
How long have your lymphnodes been swollen?
Do you friends have a problem with drugs?

Are you sexually active?
Do you have any pain?
Where do you have it?
Does the pain radiate into your back?
Is the pain stabbing?
Do you have any pain in your extremities?
When did the pain start?
When did your pain stop?
Is your pain sharp?
Does your pain radiate?
Where does the pain radiate?
Does your chest pain radiate into your arm?
Do you have left-sided chest pain?

self smoke amount
self pain duration
self urination burn
*when self urination pain
self urination burn
self urination color
self urination blood
self male genitalia discharge
*self family kidney stone
history
other self problem
better self problem
history quality self health
exposure self asbestos
self injury occupation
self home heat
self home gun
self seatbelt
self mother alive
self mother age
where self father home
complete self mother school
self father mother alive
quality self father mother
marital status
self nausea duration
self dizziness alcohol
sub abuser
self vomit diarrhea
self stool consistency
self stool blood
self heartburn
self cough medication
self lymphnode swelling
duration
self friend o drugs problem
self sexual activity
self pain
where self pain
self back pain radiate
self pain sharp
self arm leg pain
self pain when start
self pain when stop
self pain sharp
self pain radiate
where self pain radiate
self chest pain radiate arm
self chest pain left

Table 1: Queries and resulting Canonical Phrases.

* Unexpected Canonical Phrases.

REFERENCES