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Abstract 

Motivated by challenges in flow-contingency management, we introduce a stochastic network model for 
the spatiotemporal evolution of weather impact at a strategic time horizon.  Specifically, we argue that a 
model that represents weather-impact propagation using local probabilistic influences can capture the 
rich dynamics and inherent variability in weather impact at the spatial and temporal resolution of 
interest.  We then illustrate that such an influence model for weather impact is simple enough to permit 
a family of analyses that are needed for decision-support, including 1) model parameterization to meet 
probabilistic forecasts at time snapshots, 2) fast simulation of representative weather trajectories and 
impact probabilities, and 3) computation of correlations and higher-order statistics in weather impact. 
Also, lower-order representation of the stochastic dynamics at critical locations in the airspace is 
considered.  Finally, a brief exploratory discussion is given on how the weather-impact model may 
eventually be used in tandem with network flow models to study flow contingency management. 

 

1.  Motivation and Goals 

As the Next Generation Air Transportation System (NextGen) comes into operation, a wide array of new 
decision-support tools for traffic flow management (TFM) are needed, in order to meet the performance 
requirements of the new system and to take advantage of its new hardware capabilities.  Although 
decision-support for tactical TFM has been advanced significantly during the last few years, TFM design 
at the strategic and planning time horizons (2hrs – 1day, and days – months/years, respectively) remains 
challenging.   A major obstacle in current TFM operations is the often overly conservative actions taken 
when demand exceeds capacity in either predicted or impending operations.  A lack of information 
availability and integration, as well as grave limitations in decision support systems that assist decision 
makers in identifying and alleviating potential congestion in a way that minimizes the impact on the 
National Airspace System (NAS), are understood to be current deficits in the system.  However, the 
details on exactly what decision support system capabilities are necessary, and the resulting products 
from these decision support systems, are not clearly defined. The work that we present here is motivated 
by this need for decision-support at the strategic time frame. 
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1.1. Broader Motivation: An Operational Framework for Flow Contingency Management 

To carefully motivate and position the research presented here, let us begin with an overview of the 
relevant aspects of and technical challenges in strategic TFM (see e.g. [1-4]). The NextGen Mid-Term 
Concept of Operations [1] defines activities in the strategic timeframe as two separate, yet intertwined 
components for developing effective TFM decisions:  Capacity Management (CM) and Flow Contingency 
Management (FCM).  Briefly, CM refers to the long-range to flight -day airspace design planning in order 
to define airspace and routing to best match capacity with demand.  FCM is the strategic planning of 
actions that result when the demand is predicted to exceed the planned capacity.  FCM must yield NAS-
wide guidance for traffic flows to achieve efficient resolution of capacity excesses under significant 
weather uncertainty, while also seamlessly translating to tactical management (TM) actions (i.e., to 
regional management efforts at a 2 hour time horizon). It is the FCM component of TFM decision 
support that we are primarily interested in here. 

Developing FCM for NextGen requires addressing a range of challenges in modeling uncertainties in the 
NAS, achieving practical decision-support in the face of these uncertainties, and allowing transition to 
TM solutions.  With these challenges in mind, we are developing an operational concept for strategic 
FCM in the NAS.  Let us give a brief overview of this proposed operational concept, to better motivate 
the particular research pursued here: 

The FCM operational concept described here is motivated by the desire to provide a scientific basis for 

strategic operational decisions.  As such, we propose using formal analysis methods that capture 

uncertainty in the available data in order to produce accurate plans that can be understood and utilized 

effectively by decision makers.  The overall concept evolves in three stages: predicting weather impacts, 

developing mitigation approaches, and defining a strategic operations plan.  The remainder of this 

section provides a brief overview of these three components.   

Weather impact predictions are essentially propagations of TFM impacts due to weather, or any such 

event that limits the available capacity.  We propose that by predicting the scope of weather impact we 

can better understand how an event may evolve and disrupt TFM operations.  As such, our operational 

concept begins by analyzing how flows are potentially impacted by reductions in capacity and how this 

capacity reduction propagates through the system.  Representative weather impact scenarios are 

aggregated from the set of potential outcomes, with associated statistics, to inform decision makers on 

the likely outcomes arising from an event.   

The second component of the FCM operational concept develops the mitigation plans linked to the 

weather impact forecasts.  Mitigation plans comprise the set of actions, such as ground delays, sector or 

flow controlled area rate restrictions, rerouting, or other necessary initiatives that must be taken to 

alleviate the congestion due to an imbalance between predicted capacity and predicted demand.  A 

mitigation plan outlines where and when these actions need to be implemented and how to best regain 

use of available capacity to reduce the overall impact on the system.  When developing the mitigation 

plans, metrics of utility such as throughput or delay are assessed to ensure that the mitigation plans 

suggested provide efficient traffic management initiatives.     
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However, as there are multiple weather impact outcomes, there are multiple mitigation plans and 

integrating these multiple plans into a single Current Decision Point Plan (CDPP) is the final step in the 

FCM process.  The CDPP reflects both the likelihood of the different weather-impact outcomes 

developing and their associated mitigation strategies being necessary, as well as input from both NAS 

users and service providers as to the relative priority of different disparate goals, given the situation.  

The CDPP is developed using a risk management decision framework which both weighs the benefits, 

costs, probabilities, and value of different actions to determine the necessary actions that should be 

settled upon now as well as the likely actions that will be recommended later.   

It is important to note here that the CDPP represents the agreed upon plan of action; however it is 

possible and even likely that the actions included in the CDPP at a given time will not be enacted until 

later and simply represent impending actions.  Airspace users, empowered with both the knowledge of 

impending actions as defined in the CDPP as well as the recommendations of all the mitigation plans, 

can adjust their schedules as they see fit.  The updated demand information, in combination with 

updated capacity predictions derived through the evolving weather impact updates, are then utilized to 

repeat the strategic decision process.   

1.2.  The particular  goal of this study 

Our operational concept for FCM (and the underlying challenges motivating this approach) highlights 
that tools for predicting and modeling weather impact at the strategic time frame are badly needed, as a 
key component of a FCM decision-support system. Weather uncertainty is particularly critical in 
understanding weather impact at the strategic timeframe, as small changes in weather realities can 
drastically impact TFM operations while in fact weather prediction capabilities leave open the possibility 
for not small but significant variability in weather.  

The aim of this work is to introduce a promising stochastic (probabilistic) spatiotemporal model for the 
impact of weather on traffic flows at the strategic time frame for use in FCM. Developing such models is 
challenging, because they must be accurate enough to capture the complex and uncertain evolution of 
weather impact at a multi-hour time scale, and yet simple enough to permit evaluation and eventually 
design of flow contingencies.  In our view, modeling weather at the strategic time frame for FCM must 
be based on the following observation: at the level of traffic flows, the uncertain time-evolution of a few 
critical weather events disproportionately impact the flows, capacities, and management actions, and 
hence hugely impact FCM performance.  The time-evolution of these critical weather uncertainties, and 
in particular their impact on traffic flows, must be modeled.  For instance, on a particular day, 
uncertainties regarding stratus-clearing times at San Francisco International Airport (SFO), the locations 
of a couple of convective-weather systems, and the duration of high winds at several terminals may 
critically impact traffic flows.  Thus, we need to accurately model these critical uncertainties over time.   

The literature on weather impacts at the strategic time horizon is quite sparse. A couple of recent works 
[5,26] have identified weather-impact modeling needs, and specifically have considered translating 
weather-model outputs to probabilistic forecasts of TFM-relevant parameters, like Sector capacities,  at 
particular future times.  However, to be used in design, we believe that weather-impact modeling must 
be enhanced to allow representation of 1) the onset and completion (or duration) of key weather events 
and 2) temporal and spatial correlations in flow-impacting weather events.  For instance, in summer 
time in the Southeastern United States, it is common that there may be a diffuse probability for 
convective weather over a fairly long period of time (e.g. due to a slowly-progressing and weak dry line 
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or during a period of unfocused convective activity); in this case,  finding the probability that a 
convective-weather event happens at all at a terminal (e.g. Dallas Fort-Worth International Airport 
(DFW)) and the probability density of the event duration (or start/finish times), will enhance TFM-
performance prediction and hence design as compared to finding capacity-reduction probabilities at 
particular times.  In such highly uncertain settings, temporal and spatial correlations in weather become 
important.  For instance, the chance of convection at DFW may be small, but if it occurs, Love Field is 
also likely to be impacted shortly before or after.  These needs in modeling weather at the strategic time 
frame are illustrated in Figure 1. 

    

  

Figure 1 – Actual evolution of weather in Fort Worth Center (ZFW) during a half-day time period, along with 
concurrent impacts on air traffic (upper plots).  The weather displays complex temporal and spatial correlations, 
which impact traffic flow and capacity in a complicated and correlated way in the Sectors in ZFW (bottom left plot) 
and hence require consideration in FCM.  Unfortunately, even at one-day (strategic) time horizon, weather 
forecasts fail to capture the complex evolution of weather impact, instead providing crude aggregate descriptions 
of weather (bottom right plot), or at best probabilistic forecasts of weather/impact at a few time instances (see, 
e.g., [5,10]). Our work aims to model the complex evolution of weather impact on airspace regions at a strategic 
time horizon, while respecting the inherent uncertainty in weather at that horizon. These maps were obtained 
from the Fort Worth Center Weather Service Unit, on February 3, 2010 [11].   

With FCM design in mind as an eventual goal, this work introduces a model for the uncertain 
spatiotemporal evolution of weather impact. Our core viewpoint is that, in order to capture the spatial 
and temporal correlations that are central to weather impact, we need a tractable spatial model that 
generates time-trajectories or scenarios of weather-impact, at airspace-relevant locations (e.g., Sectors, 
other regions, or at points like airports).  Here, we pursue modeling of weather impact using a tractable 
stochastic network model known as the influence model [9].  This influence model representation is 
compelling because it appears to capture the rich family of correlated dynamics observed in weather 
impact at the strategic time frame, and yet is especially tractable in several ways: 1) it can be 
parameterized to match probabilistic weather-impact forecasts at particular times such as those 
developed in [5]; 2) subsequently, it can be used to simulate weather impact and interpolate the 
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probabilistic forecasts; and 3) it permits fast analysis of correlations and higher-order statistics of 
weather impact.  Furthermore, promising tools are available for condensing the full spatiotemporal 
model into low-order Markov models for weather impact at a few critical locations.  Finally, we believe 
the model is promising in that it can be interfaced with dynamic models for traffic flow [6] using the 
jump-Markov modeling framework [7-8]. 

In this paper, we focus on conceptualizing the influence-model representation of weather impact, and 
presenting results on the parameterization and the simulation/analysis of the model, using 
representative examples.  We omit general mathematical formulations of the models and details of 
analysis techniques, both for the sake of giving an uncluttered presentation and because we continue to 
obtain more refined results on these aspects.  The reader is kindly asked to see the Appendix, as well as 
our previous and concurrent work on the influence model [9,12-15], for many of the details. 

2.  An Influence Model for Weather Impact: Formulation, 

Parameterization, and Analysis 

In this section, we develop a stochastic network model for weather impact.  This effort enhances 
weather-impact forecasting at the strategic time frame (see [5]), to capture the dynamics (time-
evolution) of weather impact in a way that can be incorporated into aggregate models for traffic flow 
dynamics, and can permit analysis of temporal and spatial correlations in weather impact.  We approach 
weather-impact modeling in two steps.   

Specifically, we first introduce the networked-Markov-process model for the spatial and temporal 
evolution of weather impacts (Section 2.1); the model that we develop falls in a class of models known 
as influence models. We take advantage of the special structure of the influence model to 1) 
parameterize the model based on current weather impact and a weather-impact forecast at a future 
time, such as would be generated by the methodology in [5] (Section 2.2); and 2) simulate and achieve 
statistical analysis of weather impact.   

2.1. Model Formulation 

At the strategic time frame, prediction of fine weather structure and its consequent impact on air traffic 
is probabilistic.  That is, weather prediction capabilities are accurate enough to yield probabilities of 
weather-impact events (see for instance [5]), but not to predict these events with certainty.  For 
instance, weather models may be able to predict the passage of a cold front through a terminal, but 
most likely will not be able to predict the precise locations of capacity-reducing convective cells along 
the front, nor pin down the front-passage time exactly.  Given this fundamentally probabilistic 
description of weather impact at the strategic time horizon, our our goal is to develop a model that 
provides a different sample of weather-impact dynamics (time-evolution) on each simulation (reflecting 
the inherent uncertainty at this time frame), but with statistics that match probabilistic forecasts at one 
or several times.   Such a stochastic model for weather impact is valuable because it can permit 
statistical evaluation of flow-management performance, through simulation and mathematical analysis 
(if the model is sufficiently tractable).   Let us describe a class of models that can capture stochastic 
weather-impact evolution, and then discuss selection of model parameters to match forecast 
probabilities. 

Let us consider modeling weather-impact states in regions of the airspace.  These may be selected 
according to the user’s preference, for instance the regions may be Sectors (see Figure 1) or may be 
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lattice squares in the airspace (see e.g. Figures 2 and 3 below.  Specifically, we view each region of the 
airspace (or site in the model) as having a discrete-valued weather-impact state evolving in time, which 
reflects the operational characteristics of the airspace region resulting from weather events during a 
strategic (one-day) time horizon.  For instance, en route airspace may be simply modeled as having 
three possible weather-impact states, Full Capacity (F), Reduced Capacity (R), and No Capacity (N), or 
more precisely modeled with multiple levels based on characterizations of capacity given in e.g. [16].   
We note that the modeling framework allows different cardinalities of weather-impact states in 
different regions, so for instance terminal-area airspaces could be represented at higher fidelity than en-
route ones. 

 Each region’s weather-impact state is viewed as evolving stochastically.  In particular, we model the 
weather-impact states’ evolutions as a networked Markov process: at each time, each region’s next 
state is generated based on probabilistic influences that are modulated by its neighbors’ current states.  
More precisely, we model each region at particular time instances as being probabilistically influenced 
through weighted random selection of a single neighboring upstream region (possibly including itself). 
Specifically, each site in the network is viewed as selecting one among several upstream neighbors (as 
specified by a network graph) with some probability, whereupon the current weather-impact state of 
the upstream neighbor specifies the probability of the site’s next state.  Stochastic update equations of 
this form can be used to capture typical weather-impact progressions, including generation, dissipation, 
persistence, and drift of weather impact, while still capturing the significant variability in weather at the 
strategic time frame.  Furthermore, the model for weather impact that we have given falls in the class of 
influence models, a sub-class of stochastic network models whose statistics are especially tractable, and 
easy to parameterize and simulate.   

We kindly ask the reader to see the Appendix and [12-15] for a thorough formulation and analysis of the 
influence model.  Very briefly, these studies show that the influence model has the following core 
tractability: statistics of individual sites and small groups of sites can be found with little computational 
effort, using low-order linear recursions.  The methods used in the context of the weather-impact model 
fundamentally derive from this special tractability.  

Now that the model has been formulated, let us summarize results on its parameterization, simulation, 
and analysis, before developing three examples.  

2.2. Parameterization 

To permit quantitative prediction using the weather-impact model, we must first parameterize the 
model.  We propose to parameterize the model so that its predicted weather impact matches current 
weather impact, as well as probabilistic forecasts of weather impact at one or more future time 
snapshots (see [5] and [26] for some preliminary ideas on how weather impact forecasts can be 
obtained from ensemble weather forecasts ).   We note that these probabilistic forecasts 1) only indicate 
weather-impact probabilities in individual regions and not correlations among weather impacts in 
several regions, and 2) are valid at only certain widely-spaced time snapshots.  Thus, the problem of 
parameterizing the weather-impact model can be viewed as that of designing an influence model’s 
interaction parameters, so that individual sites’ state probabilities meet forecasts at one or a few time-
snapshots.  We have addressed this snapshot-design problem in our concurrent work [15], and here 
propose using the developed methodology to parameterize the weather-impact model. 

Although our focus is on motivating and using the weather-impact model, let us briefly discuss the 
mathematics underlying the snapshot-design method, to give the reader some intuition into the model’s 
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parameterization.  The snapshot-design problem is related to numerous problems on inference of 
stochastic network models, but differs from the bulk of these problems in that the parameters are being 
obtained from a probabilistic forecast rather than from data, and in that information is available at only 
a few time snapshots.  Fundamentally, our method for snapshot design [15] derives from the core 
tractability of the influence model, enabling individual sites’ state probabilities (in our case, individual 
regions’ weather-impact probabilities) to be found over time using a low-order recursion.  The snapshot-
design problem thus can be viewed as a problem of designing the low-order recursion to achieve desired 
state probabilities at particular times, while maintaining the specified graph structure of the model (in 
our case, reflecting that influence interactions occur between geographical neighbors). This design 
problem is solved using both iterative methods and explicit computations in [15]; we ask the reader to 
see that paper for details (see also [17] for a related method).  It is worth noting that model parameters 
may remain free even after the probabilistic forecast is matched, and this additional freedom can be 
used to capture further qualitative features of the weather-impact dynamics.   

Beyond the systematic parameterization developed above, a couple of ad-hoc approaches are worth 
noting.  Of interest, if probabilistic forecasts are not available and instead only some aggregate 
predictions about weather-impact are available (e.g., location of a cold front), model parameters can be 
inferred so that the weather propagation has certain basic characteristics (e.g., a drift speed or a growth 
or decay characteristic over the time horizon).  Weather model outputs such as wind-field maps can also 
aid in constructing the networked Markov models.  We will explore this possibility in future work. We 
will also further study the automated translation of weather forecasts to weather-impact snapshots, so 
as to best leverage forecasting capabilities in parameterizing the weather-impact model. 

 

2.3. Simulation and Analysis 

The special structure of the influence model dynamics permits fast simulation and significant analysis of 
weather-impact, once the model has been parameterized.  Let us list several of the key analyses of 
weather impact that are permitted by the model’s special structure: 

1. Simulation of weather-impact over a one-day time horizon, with very little computational and 
storage effort (specifically, effort scaling linearly with the number of regions and the duration of 
the simulation).  Multiple representative spatiotemporal trajectories can be easily obtained 
based on the probabilistic description, and so the range of possibilities in weather impact can be 
obtained.  These weather-impact scenarios may be valuable for both designing and evaluating 
FCM strategies. 

2. Low-order analysis of the time-evolution of weather-impact probabilities in each region, using 
the linear recursion for individual regions’ state probabilities.  This basic analysis serves to 
interpolate the snapshot forecasts that are being matched through the parameterization, as 
may be needed in evaluating the performance of FCM strategies (in terms of e.g. delays). 

3. Low-order analysis of spatial and temporal correlations in weather impact at several locations, 
with the complexity of the analysis growing gracefully with the number of regions whose joint 
statistics must be ascertained.  This correlation analysis is necessary for the design and 
evaluation of FCM, since it can be used to indicate patterns in weather impact at critical 
locations in the airspace. 
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4. Analysis of several other temporal statistics of weather impact, for instance the duration or 
start/end time of a weather-impact event at a critical location in the airspace (e.g., in a terminal 
airspace).  Characterizing these temporal statistics of weather impact can aid in fast simulation 
of FCM strategies (see e.g. [18]) and in designing non-conservative FCM strategies. 

These various tractabilities of the weather-impact model readily follow from the core analysis of the 
influence model. In this paper, we have excluded these details, and ask the reader to see the theses [12-
14] for them.   

2.4. Examples 

We conclude the development of the weather-impact model with several examples, in order to illustrate 
the parameterization, simulation, and analysis of the model. We stress that these examples are meant 
to illustrate modeling concepts rather than to capture all the intricacies involved in using the model in 
practice.  For the examples, we define regions as lattice squares in the airspace rather than based on 
actual Sector boundaries, for convenience (and analogously with [18]).  However, the modeling 
paradigm naturally permits use of actual Sector maps instead. 

Example 1: We have developed a lattice model for capacity-reduction due to convective weather in a 
narrow strip along an Eastward-moving front over an 11-hour time horizon, see Figure 2.  Two 
simulations of the model in the front-progression example both indicate an Eastward-moving line of 
capacity reductions due to convection, but with significant differences at a fine temporal and spatial 
scale in the locations of capacity reduction. This variability is reflective of the actual inaccuracy in 
weather-impact prediction at the strategic time horizon. We also illustrate the analysis of weather-
impact probabilities for individual regions for this example, see Figure 3. In this example, we see that the 
location of the weather-impact becomes increasingly uncertain as time passes, in reflection of the 
increasing uncertainty in the front location and extent/structure of convection.  This increasing 
variability is reflected in the generated weather-impact scenarios, as shown in Figure 2.   

Example 2: We pursue development and analysis of a weather-impact model in a 20x20 grid of regions 
over a 15-hour period, which captures diffuse thunderstorm activity near a dry-line.  We model each 
region as having two weather-impact states, full capacity (F) and reduced capacity (R), which evolve in 
time according to a networked Markov process.   

At the initial time, a band of convection (and consequent capacity reduction) is present at the Western 
end of the grid.  As time progresses, this band of storms is expected to transition to a large area of 
scattered thunderstorms, with the densest concentration of storms shifting Eastward and Southward 
through the time period; individual storms are expected to move in a West-to-East direction, with  a 
significant chance of storms re-forming repeatedly in the same place.  A weather-impact forecast is 
available at 7.5 hours, which predicts the highest probability for capacity reduction along an axis from 
South-Central part of the grid to the North-East part, with decreasing but still significant probabilities 
away from this axis. 

We have developed and parameterized a weather-impact model that matches the probabilistic forecast 
at 7.5 hours (as given in Figure 4a) and has West-to-East moving-storms.  Once the model has been 
developed, it can be used to simulate weather impact and also to give probabilistic forecasts at other 
times.  We have obtained a forecast at another time (Figure 4b), and also show the state at two times 
(Figure 4c and 4d) during a simulation of the model.   
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Simulation Set a)    Simulation Set b) 

      

a: 1.5 hrs)     b: 1.5 hrs) 

      

a: 4.5 hrs)     b: 4.5 hrs) 

        

a: 7.5 hrs)     b: 7.5 hrs) 
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a: 10.5 hrs)     b: 10.5 hrs) 

Figure 2 – A Stochastic Weather-Impact Model for Strategic FCM: Two simulations (set a) and set b))of a 
spatiotemporal weather-impact model for convective weather impact during a cold-front passage at the strategic 
time horizon are shown, with the dark squares representing regions that are subject to capacity reduction due to 
the convection.  In each simulation, the capacity map is shown at 1.5 hours, 4.5 hours, 7.5 hours, and 10.5 hours in 
the future.  The model captures the significant uncertainty at this time horizon.  We note that, although we have 
defined regions as squares in a grid in this simulation, an arbitrary network of regions (e.g., one corresponding to 
Sectors and airports) can be used. 

 

 

Figure 3 – Probabilistic Analysis of the Weather-Impact Model: A statistical analysis of the spatio-temporal 
weather-impact model allows calculation of  probabilistic forecasts of weather impact at arbitrary times.  Here, we 
have used this analysis to find regional probabilities of capacity-reduction with time in the cold-front passage 
example introduced in Figure 2.  In this example, the narrow band of weather impact due to convection evolves 
toward a wider but more diffuse region of weather impact. 

We are especially concerned about capacity reductions in the airspace near two major airports 
corresponding to nearby cities (for convenience, let’s call them Yanville—located at the 16th row from 
the top  and the 15th column from the left—and  Craigsburg – located at the 16th row from the top and 
13th column from the left).  Let us use the model to analyze the duration of the capacity reduction at 
Yanville.  Through multiple simulations of the model, we have approximated the probability density 
function (pdf) of the duration, see Figure 4; meanwhile, the mean and variance of this duration can be 
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found with very little computational effort, by exploiting the special tractability of the influence model.  
Specifically, we find that the mean duration is 3.2 hours and the standard deviation in the duration is 2.1 
hours.  The pdf suggests that long periods of capacity reduction are possible during this weather event, 
and that capacity-reduction durations are quite variable at the time horizon of interest. 

We can also use the model to characterize the correlation between weather impact (capacity reduction) 
at Yanville and Craigsburg.   Given the close proximity between the two cities, we might expect the 
duration of capacity reduction for the two associated airspaces to be highly correlated.  In fact, analysis 
of the network model demonstrates that this is the case:  the durations of capacity reduction at the two 
terminals have a correlation coefficient of 0.359.  We have also included a scatter plot of the two 
capacity-reduction durations taken from over 5000 simulations, which illustrates the strong correlation. 

a) b)  

c) d)  

e)   f)  
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Figure 4 – Comprehensive Design and Analysis of the Spatiotemporal Model: A spatio-temporal stochastic 
weather model is designed to match current weather impact and a probabilistic forecast at 7.5 hours, in this case 
one that predicts a large area of moderate convective activity concentrated along a Southwest-Northeast axis (a).  
The model can then be used to analyze weather impact (capacity reduction) probabilities at other times (b), to 
simulate weather (c and d), to analyze weather-impact characteristics in one important region (e), and correlations 
among weather impact in two regions (f). 

Example 3:  We model a winter-weather event.  The particular example that we considered is roughly 
inspired by a predicted weather event in the Pacific Northwest, on the weekend of December 12th, 2009.  
An advance forecast for the weather event predicted a surface low-pressure center moving along a east-
west stationary weather front, producing a period of rain/sleet/snow along this trajectory.  There is 
significant uncertainty about the location of the front, with two possibilities roughly equally likely: a 
southern front location (in central Oregon), with a (relatively) weaker low pressure system moving along 
it; or a more northerly track with a stronger storm system.  Additionally, pop-up snow showers are 
possible, especially after passage of the low-pressure system.   

We show several plots.  We first show the time-course of weather-impact probabilities on the map, in 
Figure 5. (Note that the plots roughly capture from Central Oregon to the Canadian border in the vertical 
direction, and from slightly off the coast to Western Idaho in the horizontal direction.)  We then show 
two simulations of the weather model (Figures 6 and 7).  We note that one of the simulations (by 
chance) captures the southern low track, while the other one displays the northern track.  It is also 
evident from these simulations and others that, even when one low track occurs, significant variability in 
the weather impact itself is observed.  Also, we stress that the stochastic modeling approach can permit 
analysis of spatial correlations in weather.  For instance, in this example, at the 1.5 hour time horizon, 
Portland (5th column from left, 5th row from bottom) and Seattle (4th,14th) both have significant 
probability of weather impact (>25%), but the probability that they both have weather impact turns out 
to be less than 1%. 

1.5hr) 4.5hr)  

7.5hr) 10.5hr)  
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Figure 5 – Weather-Impact Probabilities, Winter-Weather Example. For the reader’s convenience, we have also 
overlayed the  weather-impact probabilities at 1.5 hours on a map of the Pacific Northwest, to illustrate the 
geographical extent and resolution of the example (lower plot). 

1.5hr)  4.5hr)  

7.5hr) 10.5hr)  

Figure 6 – Simulation, Winter-Weather Example: the storm takes a Southern track 
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1.5hr) 4.5hr)  

7.5hr) 10.5hr)  

Figure 7 – Simulation, Winter-Weather Example: the storm takes a Northern track 

 

3. Lower-Order Markov Models for Critical Weather-Impact 
Uncertainties 

Our eventual goal is to analyze and design traffic flow under weather uncertainty.  Given that a relatively 
small set of geographically-distant bottleneck points often play a dominant role in flow restriction and 
delay, it may sometimes be cumbersome to model weather impact throughout the entire NAS when 
only a few critical uncertainties are of importance. It is often possible to obtain much simpler (lower-
order) representations for weather uncertainties at these locations, since only a portion of the full 
spatial model may play a significant role in deciding the local weather, and further because 
geographically-distant locations often have uncorrelated uncertainties.  Thus, we are seeking lower-
order models for critical uncertain weather-impact events.  We propose developing such models in two 
ways: first, through approximation and reduction of the spatiotemporal model; and second, directly 
using weather forecasting tools such as the fog forecast for the San Francisco area.  As a very first 
analysis in this direction, we note that the pdf of weather-impact duration at Yanville in Example 2 can 
be approximated well using only a four-state Markov chain, see Figure 8 for the approximation.  We are 
in the process of developing systematic tools for approximating the weather-impact model with lower-
order Markov chain models. 
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Figure 8 – Low-Order Models for Critical Weather Uncertainties: Interestingly, a Markov-process model with only 
four states can be used to generate weather-impact events at one location (Yanville) which statistically match the 
durations predicted by the spatiotemporal model, as seen by comparing the above PDF with that in Figure 4e. 

4.  Future Work 

We stress that the weather-impact model developed in this paper is only one component in a 
comprehensive methodology for evaluating and designing FCM.  In pursuing a full solution to the FCM 
problem, a range of tasks involving the weather-impact model will need to be completed.  The following 
are some first tasks that need to be addressed in applying the weather-impact model to FCM. 

1) Motivated by the need for collaborative traffic flow management tools, we have been 
developing aggregate models for traffic flow and management as well as tools for simulation of 
the NAS under uncertainty [6,19-22] (see also e.g. [23-25]). The weather-impact model needs to 
be meshed with these aggregate flow models and simulation tools at the strategic horizon.  To 
do this, parameters in the aggregate-flow and queueing models (like capacities) must be 
represented by stochastic-process models for weather uncertainties which are derived from the 
weather-impact model.  Additionally, some simplicity/abstraction in modeling is helpful, to 
permit analysis of the meshed weather and flow models.   

2) The problem of FCM design under weather uncertainty must be formulated, perhaps by using a 
jump-Markov model formalism [7-9].  We expect this problem of design under uncertainty to 
lead to a family of rather ugly (and technically interesting) distributed resource-allocation 
problems.  We will need to advance our ongoing work on network design to address these 
problems. 
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NOTICE 

 

This work was produced for the U.S. Government under Contract DTFA01-01-C-00001 and is subject to 

Federal Aviation Administration Acquisition Management System Clause 3.5-13, Rights In Data-

General, Alt. III and Alt. IV (Oct. 1996). 

 

The contents of this document reflect the views of the author and The MITRE Corporation and do not 

necessarily reflect the views of the FAA or the DOT.  Neither the Federal Aviation Administration nor 

the Department of Transportation makes any warranty or guarantee, expressed or implied, 

concerning the content or accuracy of these views. 
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Appendix: Mathematical Formulation of the Influence Model 

A mathematical formulation of the influence model is given, to supplement the conceptual development 

in the main text.  This formulation is drawn directly from our concurrent work on parameterizing the 

influence model [15].  For ease of presentation, each site (or region in our case) is assumed to have two 

states.  We refer the reader to [9,12] for a complete formulation allowing more than two and varying 

numbers of states throughout the network.  These documents also extensively describe the tractabilities 

of the influence model. 

 

The influence model  [9,12-15] comprises a network of n components or nodes or sites (which represent 

airspace regions in this article). We label these sites as 1,…,n.  Each site has a binary status (which 

captures the weather-impact state of the region in this article) evolving in discrete time.  We find it 

convenient to represent the status of each site I at a time k using a two-element 0--1 indicator vector, 

which we call the local status vector or simply status vector for site i and denote as si[k].  The sites' 

statuses evolve in time due to probabilistic influences from neighboring sites (possibly including the site 

itself), as specified by a directed network graph Γ. (Notice that we permit self-loops, i.e., edges directed 

from vertices back to themselves, in the network graph).  Specifically, a site j's next- (or time k+1) status 

is influenced by a site i's current (time-k) status (where i may equal j), if there is an edge from i to j in Γ.  
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This influence is codified with two parameters:  a scalar interaction strength or weight dji that indicates 

the frequency with which i influences j (where the weights to j are between 0 and 1 and sum to 1) , and 

a  row-stochastic local transition matrix Aij that specifies the probabilistic rule by which site j's next 

status is determined by site i's current status.  Precisely, the sites' next-statuses are determined from 

their current statuses according to the following two-step procedure: 

1) For each site j, a (neighboring) site i is chosen as its influencing or determining site independently 

with probability dji. 

2) Each site's next-status is generated independently, according to a probability mass function (or 

probability vector) specified by its determining site's current status.  Specifically, the next-status of site j 

is chosen according to the probability mass function (pmf) specified in the vector si[k]’ Aij.  That is, if 

si[k]’=[1,0], the entries in the first row of Aij specify the probabilities that sj[k+1]’ equals [1,0] and [0,1], 

respectively. Similarly, if si[k]’=[0,1], the entries in the second row of Aij specify the probabilities that 

sj[k+1]’ equals [1,0] and [0,1], respectively. We have thus specified the time-evolution of the influence 

model. 

We have thus specified the stochastic dynamics of the influence model. 

The influence model is a promising tool for abstractly representing various stochastic network dynamics, 

because it can capture heterogeneous stochastic influences (e.g., in our case, translation, generation, or 

decay of weather impact) in a network with general graph structure [12].  Specifically, although the 

model is very specially structured in certain senses (e.g., in each site's selection of a determining site at 

each time step), the model also permits wide latitude in capturing stochastic influences in networks – 

including in allowing arbitrary graphical structures for influence, and in permitting generic and 

heterogeneous local-influence rules (e.g., copying or anti-copying influences as well as more general 

stochastic influences). Because of the model's ability to capture varying influence structures, it 

encompasses a diversity of stochastic network dynamics, including both ergodic and non-ergodic 

dynamics; settling, periodic, and apparently chaotic responses; and long-range spatial correlations and 

persistences in the asymptotics. This wide representation capability makes the influence model  suitable 

for numerous applications, including in modeling voting and decision-making processes, abstractly 

modeling failures in infrastructure networks, and (as developed here) capturing weather evolution; and 

in graph partitioning and distributed-agreement computations [14].  
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