Completion of a Truncated Attenuation Image from the Attenuated PET Emission Data

Johan Nuyts\textsuperscript{1}, Christian Michel\textsuperscript{2}, Matthias Fenchel\textsuperscript{3}, Girish Bal\textsuperscript{2}, Charles Watson\textsuperscript{2}

Abstract—Positron emission tomographs (PET) are currently almost exclusively designed as hybrid systems. The current standard is the PET/CT combination, while prototype PET/MRI systems are being studied by several research groups. One problem in these systems is that the transaxial field of view of the second system is smaller than that of the PET camera. The problem is limited for PET/CT, it is more pronounced in PET/MRI. Because this second system provides the image for attenuation correction, the smaller field of view causes truncation of the attenuation map. In this paper, we propose a maximum-a-posteriori algorithm for estimating the missing part of the attenuation map from the PET emission data.

I. INTRODUCTION

In hybrid PET systems, there are two hurdles complicating the estimation of the PET attenuation map. One is the truncation mentioned already in the abstract, the other one is the conversion of the image values to linear attenuation coefficient at 511 keV. Although not fully solved for PET/CT systems, the current conversion methods produce satisfactory results in most cases. The problem is more difficult in MRI, because the MRI signal does not correlate with electron density. In this paper, this problem is not considered; we simply assume that an effective method is available for transforming the possibly truncated MRI image into the corresponding truncated PET attenuation image. An overview of existing methods is given in [1].

The problem of estimating the missing part of the attenuation map is a milder version of the problem of simultaneously estimating the entire attenuation map (and the tracer distribution) from the attenuated emission data. The latter problem has been studied by several groups, both for PET and SPECT [2]–[9]. These algorithms can be roughly divided in three classes: algorithms based on 1) analytical consistency conditions, 2) discrete consistency conditions and 3) iterative reconstruction, often using the maximum likelihood criterion. Here, we present results on an adaptation of the iterative “MLAA” reconstruction algorithm of [5] to the problem at hand (MLAA stands for maximum likelihood reconstruction of attenuation and activity).

Recently, Salomon et al. proposed a related ML-algorithm, not for estimating the truncated region but for assigning attenuation values to MRI-regions, based on time-of-flight PET data [10], [11]. This algorithm is related to that of Laymon and Bowsher [12], who used a maximum likelihood approach to recover localized defects in the PET attenuation map.

In the following, the proposed (modified) MLAA algorithm is described. It has been evaluated on five PET/CT patient data sets, where the (nearly) untruncated CT-image was truncated to a reduced field-of-view. The truncated part of the CT-based attenuation map was estimated with MLAA, and the results were compared to those obtained with the original, untruncated attenuation map. We also examined the sensitivity of the MLAA-approach to segmentation errors in the known part of the attenuation map, and to scatter correction. Finally, a simulation experiment was done to assess the performance of the MLAA algorithm for reconstructing cold objects, such as coils, which are not included in the measured, truncated attenuation map.

II. METHODS

A. Objective function

Let $y_i$, $i = 1 \ldots I$ represent the measured (attenuated) PET data acquired by detector pair $i$. The expectation $\hat{y}_i$ of the data $y_i$ can be written as

$$\hat{y}_i = \sum_j g_{ij} a_i \lambda_j + s_i \quad \text{and} \quad a_i = \exp \left( - \sum_j l_{ij} \mu_j \right)$$

(1)

where $\lambda_j$ is the amount of radioactivity in $j$, $g_{ij}$ is the probability that a photon pair travelling along LOR $i$ contributes a detection event to line of response (LOR) $j$ in absence of attenuation, $a_i$ is the probability that a photon pair travelling along LOR $i$ will not be attenuated, $l_{ij}$ is the intersection length of LOR $i$ with voxel $j$, $\mu_j$ is the linear attenuation coefficient in voxel $j$ and $s_i$ is an estimate of the scatter contribution.

Assuming perfect conversion from MRI values to linear attenuation coefficients, the MRI image provides reliable estimates of $\mu_j$ in the central part of the PET field of view. Outside that region, however, $\mu_j$ is unknown. Denoting the region where $\mu$ is known as $K$ and its complement as $U$, we can write

$$a_i = m_i \exp \left( - \sum_{j \in U} l_{ij} \mu_j \right) \quad \text{with} \quad m_i = \exp \left( - \sum_{j \in K} l_{ij} \mu_j \right)$$

(2)

The PET data is acquired to produce the image $\hat{\lambda}$, which is an estimate of the true tracer distribution $\lambda$. To reconstruct this image from the data $y$, we have to estimate the unknown attenuation values $\{\mu_j, j \in U\}$ as well. Because PET data are Poisson distributed, the log-likelihood of this estimation problem can be written as

$$L(\hat{\lambda}, \hat{\mu}; y, m) = \sum_i y_i \ln(\hat{y}_i) - \hat{y}_i$$

(3)

$$\hat{y}_i = \sum_j g_{ij} \hat{a}_i \hat{\lambda}_j + s_i$$

(4)

$$\hat{a}_i = m_i \exp \left( - \sum_{j \in U} l_{ij} \hat{\mu}_j \right)$$

(5)

This function is maximised to estimate $\hat{\mu}$ and $\hat{\lambda}$. Because this problem is under-determined, regularisation is recommended. To encourage smooth solutions of $\hat{\mu}$, two priors are combined for the attenuation image. The first prior $P_1(\hat{\mu})$ favours the attenuation coefficients of air and tissue. It is assumed that the truncated part will contain mostly air, tissue and bone, the lungs should be in the region $K$. The prior is created by combining Gaussian functions centered at the favoured

1 Nuclear Medicine, K.U.Leuven, B-3000 Leuven, Belgium, 2 Siemens Medical Solutions, MI, Knoxville, TN, USA, 3 Siemens AG, Erlangen, Germany
patient data sets from our PET/CT systems. The CT data were
A. Truncated CT-based attenuation maps
in all patients, suggesting that the method can be applied in
P
and
ˆ
Consequently, with fixed
λ
of (3) is replaced with the posterior function
Q
be different from the parameters used in
P
with the relative difference prior. Because its parameters may
increased tolerance of the prior to large relative differences.

The reconstruction of the activity image is also regularised
with the relative difference prior. Because its parameters may
be different from the parameters used in
P
, we denote it
with a different symbol
P
and
ˆ
further increased by updating
µ
. This sequence is considered a
single iteration, and it is repeated until convergence is deemed
satisfactory.

With fixed
µ
, the optimisation of
Q
reduces to standard
maximum-a-posteriori (MAP) reconstruction in emission
tomography. Hence, an update of
λ
is computed with a single
iteration of a MAP-algorithm, here we used the algorithm
proposed in [13]. In this step, the priors
P
1
and
P
2
can be
ignored because they are independent of
λ
.

Combining (4) and (5) one obtains:

\[
g_{i} = \left( \sum_{j} g_{ij} \hat{\lambda}_{j} m_{i} \right) \exp \left( - \sum_{j \in U} l_{ij} \hat{\mu}_{j} \right). \tag{7}
\]

Consequently, with fixed
λ
, the optimisation of
Q
reduces
to standard MAP reconstruction in transmission tomography.
The first factor in (7) represents all the activity along LOR
i
, weighted with the detection probabilities
g_{ij}
and attenuated
by the known attenuation in
K
. This quantity plays the role of
the blank scan in standard transmission tomography. For the
update of
µ
, we used a MAP reconstruction for transmission
tomography [14] with the priors
P
3
and
P
2
. The reconstruction
was accelerated by using ordered subsets [15]. We used 6
iterations with 42 subsets.

C. Parameter values
The parameter
γ
was set to 5 in
P
3
(\hat{\mu})
and
P
2
(\hat{\mu})
and to 20
in
P
3(\hat{\lambda})
based on visual inspection of the resulting images.
We found that the results are not sensitive to the weight for
the prior
P
3(\hat{\lambda})
. In contrast, the weights for the priors
P
3(\hat{\mu})
and
P
2(\hat{\mu})
had to be carefully tuned to obtain good results.
However, the same set of parameters produced good results
in all patients, suggesting that the method can be applied in
clinical practice.

III. RESULTS
A. Truncated CT-based attenuation maps
The method was evaluated in 5
18F-FDG whole body
patient data sets from our PET/CT systems. The CT data were
truncked to a central field of view of 40 cm, and the algorithm
was applied to estimate the missing attenuation values. It
was assumed that the shape, position and attenuation of the
patient bed was known, and therefore, the patient bed was also
inserted as a known portion into the truncated image.

The MLAA algorithm estimates both the attenuation and
the activity, but the features of the activity image are different
from the typical clinical images, because of the high number of
iterations and the use of
P
3(\lambda)
. Therefore, a final “clinical”
activity image is computed with OSEM using the MLAA-
estimated attenuation map.

Emission images were reconstructed using 1) the untrun-
cated attenuation map (reference), 2) the truncated attenuation
map and 3) the truncated and completed attenuation map.
These images were compared to assess the severity of trunc-
ation induced errors, and the performance of the proposed
completion algorithm. The three final emission images were
reconstructed with 3 OSEM iterations, using 21, 16 and
8 subsets respectively. Figure 1 shows maximum intensity
projections of the three image sets (and their difference with
the reference) for one particular patient. Figure 2 gives the
relative errors in the reconstructed PET as a function of the
reference standardised uptake value (SUV). Figure 3 shows
the original, the truncated and MLAA-completed attenuation
maps for the other 4 patient studies.

The truncation of the arms causes the SUV to be under-
estimated by 10 to 25%. After MAP-based estimation of the
missing attenuation values, this error was reduced to about 5%
in 4 studies. In the first study of figure 3 the error was larger
(about 10%), but we suspect this is due to the truncation error
in the original CT-image, which led to over-estimation of the
attenuation in the arms (see figure 3), and therefore errors in
the reference image.
3

Fig. 2. The relative error in the reconstructed PET image as a function of the reference SUV value. For each SUV value, the mean relative error and the [10%, 90%] confidence interval is shown. In red are the errors for the case with truncation, in blue for the case of truncation + MAP-based completion. The reference PET values are taken from the untruncated attenuation image.

Fig. 3. Maximum intensity projections of the original (top row) and truncated CT-based attenuation map (middle row), and the corresponding images completed with MLAA (last row).

B. Completion of a segmented attenuation map

As mentioned above, converting the MRI-voxel values to linear attenuation coefficients at 511 keV is a non-trivial problem. In particular the identification of bone is problematic. Some currently available segmentation methods produce approximate attenuation maps, where bone and soft tissue are combined in a single tissue class, which is given the attenuation coefficient of soft tissue. To simulate this approach, the CT-attenuation maps were segmented accordingly, and the performance of MLAA for estimating truncated parts was assessed as before. Figure 4 shows the results for the same study as in figure 1. Also for the other studies, the MLAA completions were very similar to that obtained using the non-segmented attenuation maps.

C. Influence of scatter correction

In the experiments presented above, an estimate of the scatter contribution was created with the scatter correction algorithm of [16], using the original, non-truncated attenuation map. In practice, this attenuation map will not be available, and some other, probably less accurate first estimate for the scatter contribution will have to be used. To evaluate the sensitivity of the MLAA performance to the scatter estimate, the MLAA algorithm has been applied to the patient studies without scatter correction at all (i.e. \( \sigma_i \) in (4) was set to zero). A result is shown in figure 5. In the absence of scatter correction, the shape of the arms estimated by MLAA were similar, but the estimated attenuation coefficients were slightly lower than when scatter was taken into account. This indicates that one can make a first MLAA reconstruction without or with approximate scatter correction. With this first attenuation image an accurate scatter estimate can be computed, which would be used for a final MLAA calculation. Alternatively, the scatter estimation could be included as a part of the iterative MLAA procedure.

D. MLAA-reconstruction of cold objects

The previous experiments indicate that MLAA is capable of producing a useful estimate of arms and shoulders of a patient if these have been truncated in the attenuation image. In these studies, the tracer was \(^{18}\text{F-FDG}\), which has a non-specific accumulation in the entire body. Therefore, these experiments do not predict the performance of MLAA for estimating the attenuation by cold objects that might be in the scanner but are not seen in the (truncated) anatomical image. In particular, in PET-MRI systems, coils may be present in the PET-field of view, and these coils are not seen in the MRI-image.

As a first assessment of MLAA performance for reconstructing the attenuation of such cold objects, a simulation has been carried out. The NCAT phantom [17] was used to create a voxel model of the attenuation and activity images for a PET \(^{18}\text{F-FDG}\) study. In front of the patient, 6 rods were placed. Three rods had a diameter of 10 mm and attenuation values of 0.2, 0.15 and 0.095/cm (i.e. higher than or equal to tissue). The other three rods had a diameter of 6 mm and
attenuation coefficients of 0.095, 0.08 and 0.06/cm (i.e. less than or equal to tissue). A fully 3D PET acquisition using the Siemens TruePoint PET system geometry was simulated using analytical projection with attenuation. A noisy-free scatter distribution was added. The resulting maximum count in the noise-free sinogram was 15, Poisson noise was added accordingly. The true and truncated attenuation images are shown in figure 6. The rods are not seen in the truncated attenuation image. Figure 6 also shows the MLAA-completion of the attenuation image. All six rods can be identified in the reconstruction. The reconstruction of the rods is better for the thicker and denser rods.

![True, Truncated, MLAA images](image)

Fig. 6. The left column shows a transaxial slice, a coronal slice and a maximum intensity projection of the true attenuation image; the image at the bottom left is a maximum intensity projection of the six rods located in front of the patient. The central column shows the corresponding images after truncation. This image does not contain the rods. The right column shows the corresponding images after MLAA-completion.

IV. DISCUSSION

In experiments not shown here, we found that MLAA did not produce good reconstructions of the patient table, but it did reconstruct small metal objects present in the table. We assume that small attenuating objects yield very localized inconsistencies in the sinogram, which are more easily reconstructed that the inconsistencies produced by large smooth objects.

In [5], some artificial operations had to be introduced to ensure that the attenuation of the background was set to zero. Here, this turned out to be unnecessary, because the relative difference prior [13] was used as a regularizer. In a (nearly) zero background, small fluctuations yield large relative differences, and therefore very strong smoothing by the relative difference prior. In contrast, the smoothing effect of the quadratic or Huber priors in the same background would be far less, because the absolute differences between neighboring voxel values are always fairly small in the background.

It has been reported previously that algorithms such as MLAA suffer from “cross-talk” between the activity and attenuation values: a localized decrease of the activity can be compensated well with a corresponding localized decrease of the attenuation, to yield almost the same sinogram. However, in the cold background, MLAA cannot decrease the activity because of the nonnegativity constraint, and as a result, the cross-talk effect does not seem to hamper the reconstruction of detailed cold objects in the background.

V. CONCLUSION

A modification of the previously developed MLAA algorithm has been proposed, to estimate the missing objects in a truncated attenuation map. The method has been validated on a set of PET/CT patient studies with simulated truncation. The experiments also indicate that the method is not sensitive to small segmentation errors in the known portion of the attenuation map. Failure to correct for scatter resulted in a slight underestimation of the attenuation coefficients, but the shape of the truncated arms was reconstructed well. This suggests that the approach can be combined with image based scatter estimation algorithms. Finally, in a simulation experiment, the MLAA algorithm produced useful reconstructions of cold thin rods with medium to low attenuation coefficients. Therefore, the MLAA method seems to be suitable for the completion of MRI-based attenuation maps in hybrid PET/MRI systems.

REFERENCES
