
Thomas Brihaye, Christian Michaux
Université de Mons-Hainaut, Institut de Mathématique, 6, Avenue de Champ de Mars, 7000 Mons, Belgique

In the proof of Theorem 4.21 we make use of an assumption not explicitly stated in the hypothesis of the statement. Here we make this hypothesis precise in order to make the argument used sound. Notations and definitions are the same.

1. The hypothesis

We first need to introduce some new definitions.

Definition 1.1. Given a multidotted word $\tilde{u}_1 \in \tilde{\Omega}_A$ and a letter $A \in \Delta$, we say that A is simply dotted in \tilde{u} if the letter A occurs dotted only once in \tilde{u}; we say that A is multidotted in \tilde{u} if the letter A occurs dotted strictly more than once in \tilde{u}.

We have that A is simply dotted in $\dot{A}BABA$ but A is multidotted in $\dot{A}B\dot{A}BA$.

Definition 1.2. Let (\mathcal{M}, γ) be an o-minimal dynamical system, let T_{γ} be the associated transition system on M^{k_2}, and let \mathcal{P} be a finite definable partition of M^{k_2}. Let us recall that Δ is the finite definable partition induced by the dynamical types on \mathcal{P}. We say that the set of multidotted words $\tilde{\Omega}_A$ is simple if the following conditions hold. For all multidotted word $\tilde{u}_1 \in \tilde{\Omega}_A$ and for all letter $A \in \Delta$ we have that

1. If A is multidotted in \tilde{u}_1, then all the occurrences of A in \tilde{u}_1 are dotted.
2. If A is simply dotted in \tilde{u}_1, then for all word $\tilde{u}_2 \in \tilde{\Omega}_A$ containing the letter A, if A is dotted in \tilde{u}_2 then A is simply dotted in \tilde{u}_2.

0885-064X/â© 2006 Elsevier Inc. All rights reserved.
In fact, the previous conditions prevent the two following types of situation:
1. $\dot{A}B\dot{A}B\dot{A}A \notin \Omega_A$,
2. $A\dot{B}A \in \Omega_A$ and $\dot{A}B\dot{A} \in \Omega_A$.

We can now state Theorem 4.21 in a more precise way.

Theorem 1.3. Let (\mathcal{M}, γ) be an o-minimal dynamical system, let T_γ be the associated transition system on M^{k_2}, and let P be a finite definable partition of M^{k_2} such that Ω_A is simple. If there exists a unique multidotted word associated with each $y \in M^{k_2}$, then there exists a finite bisimulation of T_γ that respects P.

In this context we reformulate Corollary 4.22.

Definition 1.4. Let (\mathcal{M}, γ) be an o-minimal dynamical system. Given $y \in M^{k_2}$ we define $T(y) = \{t | \exists x \gamma(x, t) = y\}$.

The set $T(y)$ is clearly a definable subset of M. Hence it has a finite number K of connected components. This number K is related to the number of times that the trajectory Γ_x crosses the point y.

Definition 1.5. Let (\mathcal{M}, γ) be an o-minimal dynamical system. We say that a point $y \in M^{k_2}$ has a looping behavior if there exists $x \in M^{k_1}$ such that $T(y)$ has at least two connected components.

Definition 1.6. Let (\mathcal{M}, γ) be an o-minimal dynamical system. We denote by Loop the set of points of M^{k_2} which have a looping behavior.

Definition 1.7. We say that (\mathcal{M}, γ, P) is simple if given any trajectory Γ_x any two points y_1 and $y_2 \in \Gamma_x \cap \text{Loop}$, we have that y_1 and y_2 belong to different pieces of P.

Let us remark that all the examples of system (\mathcal{M}, γ, P) exhibited are simple.

Corollary 1.8. Let (\mathcal{M}, γ) be an o-minimal dynamical system, let T_γ be the associated transition system on M^{k_2}, and let P be a finite definable partition of M^{k_2} such that (\mathcal{M}, γ, P) is simple. If there exists a unique trajectory (with possible self-intersections) associated with each $y \in M^{k_2}$, then there exists a finite bisimulation of T_γ that respects P.

2. Why is this hypothesis needed?

We exhibit an o-minimal dynamical system (\mathcal{M}, γ), with a unique trajectory associated with each point y of M^{k_2}, together with a finite partition P such that (\mathcal{M}, γ, P) is not simple; and we see that T_{Ω_A} (the multidotted symbolic transition system) is not bisimilar to T_γ (the transition system associated with (\mathcal{M}, γ)). This shows the necessity of the previously introduced hypothesis.

Example 2.1. Let us consider the dynamical system (\mathcal{M}, γ) of Fig. 2. In order to understand correctly how the trajectory evolves, it is decomposed according to time evolution in Fig. 1. One can easily be convinced that (\mathcal{M}, γ) is an o-minimal dynamical system.
Without loss of generality we assume that (\mathcal{M}, γ) consists only in the trajectory drawn in Fig. 1. We denote this trajectory by Γ_x.

Let us consider the partition of the plane $\mathcal{P} = \{A, B\}$ where B is the shaded region (see Fig. 2). We show that the multidotted words encoding introduced in the original paper are not sufficient to recover a bisimulation w.r.t \mathcal{P}. First one can easily see that there is a unique word (ω_x) associated with (\mathcal{M}, γ) w.r.t \mathcal{P}. In particular we have that

$$\Omega = \{ABABA\}.$$

The set of dotted words associated with (\mathcal{M}, γ) w.r.t \mathcal{P} is given by

$$\hat{\Omega} = \{\hat{A}BABA, \ldots, ABA\hat{B}A\}.$$

We now consider the six dynamical types:

$$W_1 = \{\hat{A}BABA\}, \ldots, W_5 = \{ABAB\hat{A}\}, W_6 = \{A\hat{B}ABA, ABA\hat{B}A\}.$$

Let us notice that y_2 is the only point whose dynamical type is W_6. Although the trajectory crosses y_1 several times, it has a “simple” dynamical type (i.e., a dynamical type that contains a single dotted word).

The dynamical types induce a new partition Δ. Again there is a unique word (ω_x) associated with (\mathcal{M}, γ) w.r.t Δ. In particular we have that

$$\Omega_\Delta = \{W_1 W_2 W_6 W_2 W_3 W_4 W_6 W_4 W_5\}.$$
A unique multidotted word is associated with each point y of the trajectory Γ_x. Let us denote \bar{u}_{y_1} (resp. \bar{u}_{y_2} and \bar{u}_{y_3}) the multidotted word associated with y_1 (resp. y_2 and y_3) on A. We have that
\[
\bar{u}_{y_1} = W_1 \dot{W}_2 W_6 \dot{W}_2 W_3 W_4 W_6 W_4 W_5,
\]
\[
\bar{u}_{y_2} = W_1 W_2 \dot{W}_6 W_2 W_3 W_4 \dot{W}_6 W_4 W_5,
\]
\[
\bar{u}_{y_3} = W_1 W_2 W_6 \dot{W}_2 W_3 W_4 W_6 W_4 W_5.
\]

Following the proof of Theorem 4.21 the binary relation \sim should be a bisimulation between $T_{\bar{\Omega}_A}$ and $T_{\bar{\gamma}}$. We show that $T_{\bar{\gamma}}$ does not simulate $T_{\bar{\Omega}_A}$.

Let us take the two multidotted words \bar{u}_{y_1} and \bar{u}_{y_3}. We have that $\bar{u}_{y_3} \rightarrow_{\bar{\Omega}_A} \bar{u}_{y_1}$ using the definition of the transition in $T_{\bar{\Omega}_A}$. We also clearly have that $y_3 \sim \bar{u}_{y_3}$ (where \sim is the pretended bisimulation relation defined in the original paper). However, it is impossible to find a point y_3' on Γ_x such that $y_3 \rightarrow_{\bar{\gamma}} y_3'$ and $y_3' \sim \bar{u}_{y_1}$ due to the definition of the transition system $T_{\bar{\gamma}}$ which is not transitive.