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Abstract

Data-driven models drawn from statistical correlations between brain activity and behavior are used to inform
theory-driven models, such as those described by computational models, which provide a mechanistic account
of these correlations. This article introduces a novel multivariate approach for bootstrapping neurologically-
plausible computational models that accurately encodes cortical effective connectivity from resting state func-
tional neuroimaging data (rs-fMRI). We show that a network modularity algorithm finds comparable resting
state networks within connectivity matrices produced by our approach and by the benchmark method. Unlike
existing methods, however, ours permits simulation of brain activation that is a direct reflection of this cortical
connectivity. Cross-validation of our model suggests that neural activity in some regions may be more consistent
between individuals, providing novel insight into brain function. We suggest this method to make an important
contribution toward modeling macro-scale human brain activity, and it has the potential to advance our under-
standing of complex neurological disorders and the development of neural connectivity.

Introduction

Aprimary goal of cognitive neuroscience is to generate
models of how cognition arises from the organized ac-

tivity of a network of billions of individual neurons. It has
become common practice to generate hypotheses from data-
driven models of brain-behavior correlations, translate these
hypotheses into computational models, and use them to pre-
dict brain activity (Friston, 2009). To create a neurologically
plausible computational model, however, one inevitably
faces the challenge of identifying those brain regions (or
nodes) that importantly participate in a given cognitive pro-
cess, and how these nodes might influence one another.
Though these decisions may be guided to some extent by the-
ory, this approach carries with it a number of limitations, of
which we list just a few: Models founded on invalid theories
are necessarily invalid and may be of limited use (though this
approach is routinely used to help evaluate the validity of a
theory). Assuming the validity of the underlying theory,
faithful implementation of a cognitive theory in a computa-
tional model requires considerable domain expertise. More-
over, these theories (and thus, any associated models) may

miss the contributions of nodes that have not been previously
implicated in a given process, but nonetheless play an impor-
tant role. Finally, the modeler will find it increasingly difficult
to consider complex networks, and the nonobvious interac-
tions that may occur in them. We present a novel data-driven
method for deriving computational models that encode effec-
tive connectivity directly from statistical correlations present
within functional neuroimaging data (fMRI) data. These
models may be subsequently analyzed using graph-theoretic
measures commonly applied to investigations of brain con-
nectivity. Importantly, unlike the statistical descriptions of
brain connectivity produced using conventional methods,
these models may be used to simulate and thus predict
neural activity.

Models and Connectivity

We assume cognitive processes transpire within an inter-
connected network of brain regions. Graph-theory, which
has been increasingly applied to studies of brain networks
in recent years, describes networks as sets of nodes (e.g., rep-
resenting brain regions) linked by connections (Bressler
and Menon, 2010; Bullmore and Sporns, 2009). Connections
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implicitly have weight (assuming binary or real values), in-
dicating the potential for nodes to influence one another.
Functional connectivity networks are often derived from sta-
tistically thresholded cross-correlations between time-series
data (Sporns et al., 2004), and describe statistical dependen-
cies between brain regions. Connections in models of effective
connectivity–the causal effect of one node over another
(Sporns et al., 2004)–such as those associated with Granger
Causality Analysis (GCA) or Dynamic Causal Modeling
(DCM) (Roebroeck et al., 2011) additionally have directional-
ity. Inter-regional weights within these networks may be
asymmetric, in contrast to those derived from correlations,
which are necessarily symmetrical.

A Connectionist Approach to Cognitive Neuroscience

Connectionist, or artificial neural networks (ANNs), are
among the most explicit brain-behavior models, and have
been used to implement brain-based models of a number of
phenomena, including hippocampal-based memory (Nor-
man and O’Reilly, 2003), working memory (Frank et al.,
2001), and hierarchical processing in the visual stream
(Casey and Sowden, 2012). ANNs simulate cognitive pro-
cesses within computational models composed of networks
of neuronally-inspired processing units or nodes linked by
weighted connections. These connection weights are itera-
tively learned through supervised learning using a training
algorithm, such as the backpropagation of error algorithm
(McClelland et al., 2010; Rumelhart et al., 1986). A recent
and widely accepted application of this algorithm involves
creating a multivoxel pattern analysis (MVPA) classifier
( Johnson et al., 2009). Over many training examples, the net-
work solves a constraint satisfaction problem, finding a set of
connection weights that produce the appropriate classifica-
tion output for a given activation pattern while minimizing
error. MVPA can be viewed as a particular case of category
learning in a connectionist network: MVPA network associ-
ates brain regions and experimental conditions, whereas
ours associates the activity levels of each brain region with
that of every other region.

Whether describing relationships among brain regions or
artificial neurons, contemporary approaches to cortical con-
nectivity and ANNs operate over the same mathematical
structures underlying graph theory: nodes and weighted
edges. To be clear, graph-theoretic analyses are not always ap-
plied to studies of fMRI connectivity. For example, principle
component analyses (PCA) carried out on resting state-
fMRI (rs-fMRI) data map brain regions associated with func-
tional sub-networks, but do not directly measure connectivity
within or between networks. Nonetheless, embedded net-
works revealed by these methods implicitly comprise collec-
tions of regions (or nodes) that are connected in some
manner, and there is consequently a transparent mapping be-
tween connectionist and connectivity networks. We propose
applying a commonly-used machine learning algorithm to
neuroimaging data to encode neural connectivity within a
computational model. Applied to investigations of brain con-
nectivity, our method has several advantages over current
approaches. One is that our network naturally detects effec-
tive connectivity between brain regions but, unlike many
existing methods, does so without prior specification of any
causal model (Sporns et al., 2004). Structural equation model-

ing (SEM) and DCM, two common methods of specifying
causal models, require the experimenter to specify the hy-
pothesized network(s) prior to testing it. Yet, many models
may fit the data, and an exhaustive search of the model
space may be intractable for networks of even modest size.
In contrast, our approach is strictly data-driven and thus cir-
cumvents this concern. This is because supervised learning
allows the network to detect conditional co-occurrence prob-
abilities embedded within training patterns, the asymmetry
of which may reflect causal relationships. GCA is a data-
driven method for determining effective connectivity
among neural populations that, like ours, does not rely on a
priori model specification (Roebroeck et al., 2005). However,
as with all current methods of identifying functional net-
works within neuroimaging data and measuring connectivity
within them, GCA provides a static description of connectiv-
ity. It is unclear, in such models, how these patterns of con-
nectivity arose over time, what are the consequences of
disruption of this connectivity, and how connectivity is
causally related to patterns of neural activity. The approach
we propose may provide important insight into all these
questions.

With appropriately recoded rs-fMRI time-series data cov-
ering the entire cortical surface, we use a leave-one-out
cross-validation approach to train nine feedforward connec-
tionist networks (described in more detail below) on these
data. These trained models represent nine artificial brains in
which individual nodes represent distinct cortical regions,
and weighted connections represent effective connectivity be-
tween these regions. The primary objective was to build a
neurologically plausible computational model that veridi-
cally encodes cortical connectivity. Because these models
are derived from rs-fMRI data, and because this class of
model has been shown to be sensitive to correlations within
the training data (McRae et al. 1997), we expected that
weights within our model would capture inter-regional con-
nectivity similar to that measured by rs-fMRI time-series cor-
relations. Moreover, we predicted that the similarity between
the model’s weight matrix and correlation-based connectivity
matrix should lead to the emergence of similar embedded
communities within both of these matrices. Moreover, we
demonstrate that our approach carries several advantages
over conventional approaches to investigating brain connec-
tivity. Specifically, we demonstrate that, because our model
is sensitive to correlations embedded within the training sig-
nal, it encodes directionality and valence of connections, and
permits simulations of regional activations as a function of ac-
tivity in other connected brain areas. We use a conventional
statistical correlation-based method for determining func-
tional connectivity within these data as a benchmark. Appli-
cation of a commonly-used network modularity algorithm to
the connectivity matrices calculated using our connectionist
approach and the benchmark method confirmed the predic-
tion that our method detects similar network structure. We
propose several network metrics for our connectionist net-
work, including a goodness of fit measure indicating the
fidelity with which simulated activity within each network
simulates actual fMRI activation data not used during train-
ing. Though our primary objective is to describe a novel
methodology, the assessment of our network’s performance
nonetheless provides new insight into the reliability of brain
activity patterns within resting state networks.
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Materials and Methods

fMRI data set

The resting state paradigm is a passive condition in which
brain activity is recorded while participants engage in a mini-
mally demanding task. Though it was not our objective to
make strong theoretical claims about resting state connectivity,
there were two factors that suggested rs-fMRI data for this
experiment. First, a large body of resting state neuroimaging lit-
erature reliably reports a network of brain regions that sponta-
neously activates during passive tasks (Buckner, 2012). The
replicability of resting state networks within the neuroimaging
literature maximized the likelihood that they would emerge
from the training data and would be readily recognizable.

A second factor was the availability of large rs-fMRI data
sets on which to train our model. Our data were drawn
from the Cambridge_Buckner data set from the 1000 Func-
tional Connectomes Project (http://fcon_1000.projects.nitrc
.org/). We selected five age-matched pairs of right-handed
males and females (10 participants) from the larger data set,
though difficulties in anatomical labeling led to one partici-
pant being dropped. The remaining nine data sets repre-
sented five females and four males, ranging in age from 18
to 24 years, none reporting any neurological or psychiatric
condition. We began with a small subset of the available rs-
fMRI data because the amount of time required for training
the neural networks was unknown at the outset, and we
note that resting state networks are highly consistent in the
literature, even among individuals (Power et al., 2011).

MRI data were acquired on a Siemens 3T Tim Trio scanner
(Siemens, Germany). A single functional run, approximately
6 min in duration (119 volumes), was acquired using the
following parameters: repetition time (TR) = 3 sec, 3 mm iso-
tropic voxels, and field of view (FOV): 216 mm. Participants
were instructed to remain still with eyes open and remain
awake during the functional run.

Structural MRI preprocessing

Cortical reconstruction and volumetric segmentation was
performed with the 64-bit FreeSurfer 5.0 image analysis
suite (http://surfer.nmr.mgh.harvard.edu) on a Debian-
based Linux computer. The technical details of the cortical re-
construction procedures are described in prior publications
(Dale et al., 1999; Fischl et al., 1999, 2001, 2002, 2004). Briefly,
FreeSurfer constructs a three-dimensional surface mesh of the
cortical surface for each hemisphere, registered to a spherical
atlas, and parcellates the surface into anatomical regions
based on the individual gyral and sulcal structure (Desikan
et al., 2006; Fischl et al., 2004). Cortical parcellations of each
surface model were examined to ensure the automated par-
cellation algorithm arrived at reasonable regional bound-
aries for each participant (Fig. 1a). These parcellations were
further subdivided into a set of 1000 smaller regions of
interest (ROIs), each of approximately equal size (*1.5 cm2)
(Hagmann et al., 2008) using the ConnectomeMapper (www
.cmtk.org) function library for the Python programming
language (Fig. 1b). Importantly, there is a one-to-one corre-
spondence among these ROIs across all participants, and
each ROI covers roughly the same anatomical region across
all participants. Note that these ROIs do not correspond to
any distinct functional or anatomical region, other than that

the two-stage parcellation scheme ensured that individual
ROIs were constrained to a single anatomical region and
were homologous across participants. Rather, they were a
means of dividing the cortex into a large but manageable
number of comparably-sized areas for subsequent topo-
graphical analysis.

Functional MRI preprocessing

Functional data were preprocessed using FSL 4.1 software
( Jenkinson et al., 2012). Each participant’s functional run was
masked and co-registered to their cortical surface map. Func-
tional data were slice-time corrected and motion corrected.
Spatial smoothing was not applied. Each run was then
detrended, to remove signal drift (Friman et al., 2004).

The mean time series for each of the 1000 ROIs were then
extracted within each participant’s native surface space and
imported into MATLAB and passed through the SPM8
(www.fil.ion.ucl.ac.uk/spm/) high-pass filter with a 128 sec
cutoff, and first-order autocorrelations were regressed out.
Low-pass filtering of rs-fMRI data is often used to improve
signal-to-noise ratio (Cordes et al., 2001), but was deemed
not critical to the performance of the network or to our overall
methodological objective, but neither is it precluded by our
approach. Histograms of the filtered time-series activations
followed a normal distribution. Each time series was trans-
formed to have a mean of 0 and a standard deviation (SD)
of 1. Outlier values, exceeding – 2.5 SDs from the mean,
were censored but not deleted (see below). The remaining
values were clipped and scaled to fall between 0 and 1 so
that activations greater than 1.64 SDs from the mean (the
top and bottom 5% tails of the distribution) were mapped
to 1 and 0, respectively, and the mean of each time series
was 0.5. We selected the upper and lower 5% tails of the nor-
mal distribution as our operational definition for high and
low activation values, respectively, because this threshold is
generally accepted in the scientific community as denoting
an extreme or ‘‘significant’’ value.

Connectionist network

We implemented a connectionist network using in-
house software compiled on a 64-bit Linux operating system
using MikeNet (www.cnbc.cmu.edu/*mharm/research/
tools/mikenet/), a flexible set of high-level C programming
language libraries for implementing connectionist models
using the backpropagation through time training algorithm
(among others). Though the backpropagation through time al-
gorithm was designed to accommodate more complex net-
works that use layers of hidden units (Hinton, 1989), it is
nonetheless suitable for our relatively simple network, which
comprised two input layers and one output layer (Fig. 2).
The network was a feedforward network ( Jordan and Rumel-
hart, 1992): The input layers had forward connections to the
output layer that had no reciprocal backward connections to ei-
ther input layer. Because we used a leave-one-out cross-valida-
tion procedure, each network was trained on a different subset
of eight of the nine participants. The ‘‘Subjects’’ input layer
thus contained eight nodes coding the individuals appearing
in any given training set, and they were intended to account
for between-subject variance in response profiles. The cortical
input and output layers each contained 1000 nodes, allowing
the model to represent activations for each ROI. All subject
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nodes were connected to all cortical output nodes, and all cor-
tical input nodes were connected to all but one cortical output
node. Input and output nodes corresponding to the same ROI
were disconnected, preventing the input activation for a given
ROI from affecting the activation of the corresponding output
node. Thus, activation of each cortical output node was a func-
tion of the activation of all other ROIs and of participant iden-
tity and did not reflect a trivial autocorrelation.

Training data

We created a set of training patterns from each partici-
pant’s scaled time-series data as follows: To minimize any in-

fluences attributable to field inhomogeneity that commonly
arises at the onset of an fMRI run, the first four time points,
corresponding to the first 12 sec of each functional run,
were omitted from the time series and thus neither used for
training or testing the computational models. For each of
the remaining 115 time points, we extracted a vector of scaled
activation value, rounded to the nearest 0.1, for each of the
1000 ROIs. This level of precision was selected because it
was the minimum precision required to discriminate among
minimum (0.0), maximum (1.0), and average (0.5) activation,
and there was no apparent advantage to using more precise
values to represent values in between. These 115 vectors rep-
resented the pool of potential cortical input vectors for the

FIG. 1. Structural and func-
tional fMRI data processing
workflow. Anatomical par-
cellations (a) and regions of
interest (b) were created in
each participant’s native
cortical space. From each re-
gion of interest, the mean
time series was extracted (c),
detrended (d), normalized
and winsorized (e), and
scaled to fall between 0 and 1
(f ). Activations across all
regions were extracted for
each time point and used as
training data for the connec-
tionist model (g).
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model. The fractional values in the input vectors provide the
network information about the activation state of each re-
gion at each time point, across a range of activation levels.
Though any non-negative real number can be assigned to
a network input value, the backpropagation through time
training algorithm (Pearlmutter, 1995) assumes binary tar-
get activations (i.e., 1 or 0). Thus, though input vectors con-
tained fractional values, output target vectors were
restricted to binary values. We copied each cortical input
vector to a cortical output target vector, setting all fractions
to a special value (‘‘NaN’’, or ‘‘not a number’’, also used to
censor outlier values), that directed the simulator to ignore
that output node for that trial only. For example, three
input units with values {0.0, 0.5, 1.0} would have output
targets of {0.0, NaN, 1.0} for that trial. Because the training
algorithm does not adjust the weights connected to ignored
nodes, we restricted the training set to time points where a
relatively large proportion (at least 150 of 1000) cortical out-
put nodes had target values to improve training efficiency.
Between 24 and 37 vector pairs met this criterion for each
participant. Because target values were not presented for
nodes with nonbinary activations, and training examples
had only time points for which at least 150 nodes had target
values, nodes differed with respect to the number of times
they had target activations in each training set, though
each was trained between 30 and 93 times, with an average
of about 63 training events for each node. A complete train-
ing pattern for a single time point comprised a cortical input
vector, the corresponding cortical output pattern vector, and
the subject input vector with one of eight nodes set to 1 and
the remainder set to 0. We created nine training sets by con-
catenating the training patterns for each of the nine possible
subsets of eight participants, each including between 243
and 258 patterns.

Network training paradigm

We ran nine simulations, following Cree and associates,
(2006), which used this connectionist platform to investigate
network connectivity within a large-scale ( > 2500 output
unit) fully interconnected neural network. Because the pres-
ent network was of a similar scale with respect to the number
of nodes, connections, and layers, we thus followed the train-
ing parameters from that model. Each network was initial-
ized with connection weights set to random values falling
between – 0.05, and trained each model on a different training
set. Because each training set omitted the data from one
participant, we were able to subsequently assess the net-
work’s ability to generalize to novel input. We trained the
network using batch learning (Hinton, 1989), an initial learn-
ing rate of 0.01, which decreased as overall network error de-
creased, and a momentum of 0.9 (Pearlmutter, 1995). On each
trial, we clamped input activation for two arbitrary time units
(‘‘ticks’’), computed error at the cortical output layer on the
third time tick. In batch learning, the error gradients, on
which connection weight adjustments are based, are summed
across the set of training examples presented in a single train-
ing epoch (i.e., one complete pass through the entire training
set). These gradients are back propagated to update the con-
nection weights once, after all input–output pairs have been
presented. Each network was trained for 10,000 epochs, at
which point the average (across all training patterns)
summed error across output nodes was under 0.1 in all net-
works and the reduction in network error had effectively
asymptoted. This corresponded to an average deviation of
less than .007 from the target outputs.

Results

Connectivity analysis

We extracted a 1000 · 1000 matrix of weights from each cor-
tical input unit to each cortical output unit from each of the
nine trained networks, and averaged the matrices to create a
composite connectivity network. For benchmarking purposes,
we additionally calculated a matrix of cross-correlations be-
tween time courses, collapsed across all participants, which
is a commonly used connectivity index in functional connectiv-
ity studies of rs-fMRI (Sporns et al., 2004). The sensitivity of
connectionist networks to correlations is reflected by the signif-
icant correlation between network weights and time-series
cross-correlations, r(998) = 0.54, p < 10�8.

Though there are multiple approaches for finding em-
bedded network communities within neuroimaging data
(e.g., PCA), a network modularity algorithm was most appro-
priate, given the nature of our connectivity data. Moreover,
we note that similar approaches are commonly used to inves-
tigate how functional networks arise from patterns of brain
connectivity (Fair et al., 2009; He et al., 2009; Meunier et al.,
2009a, 2010). We applied the Louvain clustering algo-
rithm (Blondel et al., 2008) to both connectionist weight and
time course correlation matrices to uncover the embedded
network communities. Though statistical thresholds are
commonly applied to data-driven connectivity estimates
(e.g., eliminating weights corresponding to nonsignificant
correlations), as we explain in the Discussion section, it is
not clear what should constitute a ‘‘significant weight’’ in
our model. We thus retained all weights in both matrices to

1000 Cortical Output Nodes

LACC1 LACC2

LACC1 LACC2

RTTC3

RTTC3

1000 Cortical Input Nodes
8 Participant
Input Nodes

s08

s02

s01

...

...

...

FIG. 2. Connectionist network architecture. Each cortical
input node has a forward connection to all but the corre-
sponding cortical output node, forcing the model to estimate
a node’s output activity from patterns of activity within the
rest of the network. Participant input nodes provide informa-
tion about idiosyncratic activation trends for each node.
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preserve parallelism between approaches. The matrices clus-
tered similarly into four sub-networks (hereafter: communi-
ties, to differentiate these sub-networks from the overall
cortical networks), though the three largest communities in
each matrix collectively accounted for most of the cortical sur-
face. Figure 3a and b show the connectivity matrices associ-
ated with the connectionist weight-based clustering and
correlation-based clustering, respectively, and the spatial ex-
tents of the three largest communities. A closer examination
of these cluster assignments found the connectionist-based
and correlation-based approaches yielded identical cluster as-

signments for 852 of the 1000 regions. Because no connections
were removed, the matrices retained a large degree of connec-
tivity between regions characteristic of the default mode net-
work (DMN) and the frontoparietal control network. This
connectivity was sufficient for these regions to be clustered
into the largest community in both the weight-based and cor-
relation-based matrices. We also note that the communities
detected using both approaches bear some similarity to the
vascularization pathways of the middle cerebral artery (red)
and anterior cerebral artery (green), which might suggest
that these communities capture cerebrovascular correlations

FIG. 3. Connectionist
weight-based and correlation-
based connectivity analysis.
The connectionist weight
matrix (a) clustered similar to
the time series correlation
matrix (b), each containing
four sub-networks. The
weight matrix indicates
z-transformed weights. The
three largest sub-networks
are shown in blue, red, and
green, respectively for the
weight-based (left) and
correlation-based (right)
clustering.
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in the blood oxygen level-dependent (BOLD) data. Though
the connectivity matrices produced by either method are
likely influenced by factors other than those strictly associ-
ated with neural connectivity, it is unlikely that these commu-
nities are reducible to trivial spatial correlations for several
reasons: First, the high-pass filter to which the data were sub-
jected is commonly used in fMRI analyses to eliminate blood-
flow artifacts. Second, ROIs were sharply delineated and
sampled over a relatively large number of voxels that were
not subjected to spatial smoothing. Thus, any spatial correla-
tions existing between voxels along the perimeter of each ROI
would have little impact on the correlations between the
mean signals for adjacent regions. Third, at least for the con-
nectionist approach, the activity of the node representing
each ROI was determined by activity across the entire cortical
surface. The weights from nearby nodes thus account for a
small fraction of the input to each node in the connectionist
network. Because the benchmark and our connectionist ap-
proaches are data-driven, spurious correlations contributing
toward the topography of the detected communities are
properties of the training data. Thus, our method may take
advantage of measures taken to remove spurious correlations
within the data.

Many graph-theoretic metrics have been applied to brain
connectivity networks (Sporns, 2002; Sporns et al., 2004)
though these measures generally assume pruning of sub-
threshold weights. Because all weights were retained, connec-
tivity metrics such as degree (the number of nodes to which a
node is connected) and path length (the number of connec-
tions required to travel between two nodes) were not mean-
ingful; nodes were generally connected to every other node
with a path length of 1 (though many of those connections
may have had weights close to zero). Consequently, we pro-
pose connectivity in our model may be measured in terms of
sums of weights for different types of connections that can ac-
commodate asymmetric weights. Though our network was a
feedforward network, and thus weights went only from the
input to the output layer, one can think of corresponding
input and output node pairs (i.e., the nodes in the input
and output layers that encode the same anatomical location)
as a single region. Thus, we can refer to a node’s efferent con-
nections (i.e., all outgoing weights connected to the node
encoding regionr in the input layer) and its afferent connec-
tions (i.e., all incoming weights connected the node encoding
regionr in the output layer). Potential network metrics might
include efferent connectivity (sum of the absolute values of
the outgoing connections to a region), afferent connectivity
(sum of the absolute values of the incoming connections to
a region), excitatory connectivity (sum of the positive outgo-
ing connections from a region), and inhibitory connectivity
(sum of negative outgoing connections from a region).
These measures capture many of the properties of graph-
theoretic metrics used in previous studies of causal networks.
For example, out-degree, or the number of causal afferent
connections from a node (Sridharan et al., 2008) is a special
case of our afferent connectivity metric, wherein weights
are thresholded and binarized before summation.

Finally, we assess the utility of the participant input nodes
by examining the weights from these nodes to the cortical
output nodes. Each participant has a corresponding input
node in eight of the nine networks. We assumed that the net-
work would take advantage of input from these units to min-

imize error during training. By representing the participant
associated with a particular training trial, the network should
learn to adjust the predicted output to account for between-
subject differences in activation patterns. Figure 4A plots
the weights between the participant input node associated
with each participant and the cortical output nodes, averaged
across the eight networks in which he or she appeared. Posi-
tive weights bias the output activations toward 1, and nega-
tive weights bias the output activations toward 0. A weight
of zero indicates that the subject node had no influence on
an output unit. Thus, if the subject input units were ineffec-
tual, we would expect these weights to have mean values
close to zero, and have little or no variance. Overall, the sub-
ject units had an inhibitory influence (M =�0.19, SD = 0.24),
and a considerable degree of variance between the subjects
is readily apparent across different output nodes. For exam-
ple, positive spikes in Figure 4A indicate cortical regions
where a participant would tend to have higher than expected
activations. For these regions, providing the network input
about the subject’s identity caused the network to increase
the estimated activity for that region for that subject. In
doing so, the network arrived at more accurate activation es-
timates for that subject in that region. Moreover, Figure 4A
clearly shows that activations for one participant (Participant
9) were best estimated by inhibiting outputs across nearly all
regions, suggesting that this participant had lower overall ac-
tivation than the cohort. A hierarchical cluster analysis of the
participant weight distributions was used to assess between-
participant similarity in high-dimensional weight space.
Using Ward’s method, three clusters emerged (Fig. 4B), indi-
cating that the subject weights accommodated three distinct
activation profiles in the training data. Unfortunately, be-
cause the data set contained only basic demographic informa-
tion about each participant (i.e., sex, age, and handedness),
we could not further further explore factors that may have
been related to these activation trends. Nonetheless, this anal-
ysis suggests a means by which individual or group differ-
ences might be investigated within our framework.

fMRI simulation–model generalization

It is important that connectionist networks are able to gen-
eralize to novel data (McClelland et al., 2010), as this cross-
validates the model and demonstrates that it has not merely
memorized the training data. We carried out simulations
within the nine trained models by presenting to each the cor-
tical input vectors for all but the first four time points of the
time series to which the network had not been exposed dur-
ing training. We presented test input patterns for three time
ticks, setting each participant input node activation to .125
(one-eighth) to represent an ‘‘average participant’’ for three
time ticks. We compared the activation of each output node
on the third time tick to that of the corresponding input,
and calculated network error as the mean squared error
across the 115 time points for every node in each network.

We averaged network error for each node across the nine
networks (Fig. 5a). Note that the logistic activation function
is biased toward generating values asymptotically close to 1
or 0, whereas each time series was normally distributed
about 0.5, with relatively few values reaching 1 or 0, and
the error calculation was thus conservatively biased toward
generating larger error values. However, because node
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activations followed the same distribution, this bias was
evenly applied across all nodes, permitting comparisons be-
tween regions. Despite the rather stringent error metric
used, mean squared error ranged from 0.09 to 0.24
(M = 0.14, SD = 0.02) indicating that the networks were, on av-
erage, able to predict whether activity of each node would be
above or below the mean signal in the worst case, and they
were successful in estimating node activity, even for interme-
diate values (e.g., predicting an activation of 1.0 for a target
activation of 0.7).

Though the above analyses provide some indication of the
accuracy with which our trained model can predict activity
within a node, any evaluation of network performance is
subjective without some measure of significance. We non-
parametrically assessed network simulation performance
through a set of Monte Carlo simulations as follows: we per-
formed 1000 simulations for each network as described
above, but randomly reassigned for each simulation the
weights within the network to arrive at a random network
with an identical weight distribution. Essentially, this analy-
sis answers the question of whether the predicted activations
for a given node are better following training than for a ran-

dom network with an identical distribution of weights. Mean
squared error for each node was calculated as above. We tal-
lied the number of times that the error for a node within the
intact network was lower than that within a randomized net-
work, and summed these values across the nine networks. 81
left hemisphere nodes performed better than chance 95 times
out of 100 (Fig. 5b), collapsed across all simulations. These
nodes were predominantly concentrated in two clusters (left
angular gyrus and left posterior cingulate cortex) associated
with the frontoparietal control and the DMNs, respectively.
We wish to emphasize that these simulations used novel
data, and that we did not restrict our simulator accuracy cal-
culations to any single cluster or subset of nodes. Thus, sim-
ulator accuracy in these regions was not an artifact of the
clustering algorithm (the cluster to which each node was
assigned was not a factor in the simulations), nor of proper-
ties of any particular training or testing set. Rather, these re-
sults show regions for which resting state activity was most
predictable from the activity within the rest of the network.

We carried out a stepwise regression to determine which, if
any, network metrics were significant predictors of simulator
accuracy across the whole network. Mean signal to noise ratio

FIG. 4. Participant input weight
analyses. (a) Plots the weight of
the connection from each partici-
pant input node to each cortical
output node. Weights were gener-
ally consistent across individuals,
evident in the largely overlapping
plots. For a few individuals, positive
or negative spikes show regions
for which that individual had
above- or below-average activa-
tions, compared to his or her cohort.
A hierarchical clustering of these
weight profiles appears in (b).
Participants clustered into three
response profiles, suggesting these
weights can be used to investigate
individual and group differences.
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(SNR) for each node was included as an additional predictor
variable. As expected, SNR was a significant predictor of sim-
ulator accuracy (partial r =�0.42, p < 10�8), indicating predic-
tion accuracy was reduced for brain areas prone to scanner
artifacts or low signal. Additionally, the sum of the weights
from a node to nodes outside of its cluster (partial r = 0.12,
p < 0.0003) and the sum of the absolute values of the outgoing
connections from a node to other nodes within its cluster (af-
ferent connectivity) (partial r = 0.07, p < 0.04), were significant
predictors F(3,996) = 77.41, p < 10�8, and all three variables
accounted for .187 of the simulation fit variance.

Discussion

The results demonstrate that a neurologically plausible
computational model can be directly bootstrapped from neu-
roimaging data. Models derived in this way encode activa-
tion co-occurrence probabilities within these data, and thus
can be used to investigate cortical connectivity and to simu-
late brain activity, directly bridging existing neuroimaging

and connectionist approaches. Our method discovered em-
bedded functional sub-networks within the cortical model
and performed comparably to a conventional approach to
identifying functional networks within rs-fMRI, but with sev-
eral advantages over existing methods. First, asymmetric co-
activation probabilities are captured by asymmetric weights,
allowing the modeling of effective connectivity without ne-
cessitating any prior assumptions about the nodes or connec-
tivity. Cross-correlations, in contrast, are always symmetric,
and thus fail to capture asymmetric co-activations in the data.
Though theory-driven methods, such as GCM, exist that
model effective connectivity and therefore capture these asym-
metries, they require a priori model selection. As indicated ear-
lier, the pool of candidate models grows exponentially with
model complexity (there are 2n potential models involving
n nodes), making model selection an intractable problem for
networks that are orders of magnitude smaller than ours.

Second, our approach operates on fMRI data passed
through conventional processing pipelines, requiring no par-
ticular assumptions about the nature of the data. Innovations

FIG. 5. Simulated fMRI goodness
of fit. Mean square error collapsed
across all simulations between
simulated and actual activation
values for each node (a). Monte
Carlo simulations against random
networks detected clusters of nodes
within the default mode and fron-
toparietal control networks in the
left hemisphere with activations
that are reliably predictable from
activity within the rest of the cortex.
These nodes are depicted in (b),
which shows the probability of a
random network yielding equiva-
lent or better mean squared error
for nodes where p < 0.05.
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in acquiring and processing neuroimaging data for studying
neural connectivity should be generally applicable to our ap-
proach. For example, Power and colleagues (2011) argued
that subject motion may have a distance-dependent influence
on correlations between measured activity between two re-
gions. This could be addressed in a straightforward way by
censoring (‘‘scrubbing’’) time points for which movement
exceeded a certain threshold. Murphy and colleagues (2013)
discuss many such confounds and the techniques that have
been used to mitigate them, and we note that none are pre-
cluded by our approach. Relatedly, we point out that, though
our training data was derived from continuous fMRI time se-
ries, the models were not trained on time-series data, in the
strictest sense. Because the training set excluded time points
for which fewer than 15% of the nodes had extreme values,
and presented in randomized order those that were retained,
it would be more accurate to say that the model was trained
on individual time points. However, the similarity between
the connectionist weight matrix and the cross-correlation ma-
trix (which was derived from the intact time series) suggests
not only that this detail is not relevant to training, but that our
method is robust and can handle cases where only a fraction
of the data is usable.

Third, our network architecture is modular in two senses:
First, it supports arbitrary inputs (e.g., movement parameters
or participants) and outputs (e.g., classifier nodes for condi-
tions or participants). Input nodes encoding scan-to-scan
movement might be used to account for spurious move-
ment-related activations that might impact network connec-
tivity (Power et al., 2012). MVPA identifies patterns of
activity among neural units that distinguish between experi-
mental conditions (Norman et al., 2006). The Princeton
MVPA Toolbox (https://code.google.com/p/princeton-mvpa-
toolbox/) relies on a variant of the backpropagation through
time machine learning algorithm used to train our network.
Moreover, backpropagation learning is only one member of
a family of regression-type classifiers, which includes support
vector machines (SVM), which have also been applied to the
neuroimaging domain (LaConte et al., 2005; Misaki and
Miyauchi, 2006). Thus, our approach could be seen as an ex-
tension of existing regression-type classifiers to the classifica-
tion of coherent networks, rather than the classification of
conditions. It would be straightforward to add classifier out-
put nodes, parsimoniously allowing condition classification
and connectivity analyses within one model. Inferences can
be made within such models about causal relationships be-
tween connectivity and neural responses to an experimental
manipulation. Our approach is modular in a second sense be-
cause networks may be self-similar. In our network, each
node represents a cortical patch approximately 1.5 cm2.
Nodes within well-studied areas, such as the visual process-
ing stream, may be further decomposed into smaller net-
works that may be individually modeled (Meunier et al.,
2009b; Pouget et al., 2002). The connectionist platform we
have adopted permits the conjoining of independently
trained sub-networks (Harm and Seidenberg, 1999). Thus,
networks describing different regions in more detail may be
incorporated into a larger network. These networks may con-
strain or complement one another, allowing an examination
of the same system at different levels of specificity.

Most importantly and uniquely, this approach permits the
simulation of the BOLD response, given an input activation

state as a function of connectivity within a data-driven
model. This raises the prospect of modeling the consequences
of disordered brain function, such as those arising develop-
mentally or as a consequence of neurodegenerative disease
or brain injury. As an illustrative example, cross-validation
of our model provided novel insight into resting state net-
works, showing that activity within two large posterior clus-
ters and a number of medial frontal regions was reliably
predictable across subjects. Because they are not task-related,
we assume that these activations are not driven by external
conditions. Rather, because the predicted activations in
these regions are inferred from activity in other brain regions,
one interpretation of the cross-validation results is that these
regions are primarily driven by endogenous brain activity.
Resting state imaging places minimal cognitive demands on
participants, and is consequently widely used in clinical set-
tings, where it can serve as a biomarker for disease (Greicius,
2008). Thus, resting state activity in regions shown to have
predictable states within a control group may be diagnosti-
cally useful in detecting disease-related neurological changes.

We also note that although the simulations presented here
were applied to rs-fMRI data, nothing precludes its applica-
tion to any fMRI experiment employing a blocked design.
In an application of this approach to task-related fMRI, one
important consideration might be the contributions of non-
task-related regions. We independently normalize each time
series because inter-regional differences in mean signal
strength are attributable to uninteresting factors such as cere-
bral vascularization (Gati et al., 1997) or acquisition parame-
ters. Indeed, for this reason, fMRI analyses are regularly
presented in terms of percent signal change, effectively nor-
malizing the data for each voxel independently. Because non-
task-related regions are never truly ‘‘off,’’ normalizing
activity from these regions may exaggerate noise within the
network. This may be desirable, as these noise activations
may represent sporadic activations of other networks (e.g., al-
ternating between the task network and the DMN). However,
if these activations are truly noise signals, they should be un-
correlated with activity elsewhere. Noisy regions should thus
be unconnected from other communities. Consequently, the
main disadvantage associated with retaining all regions is
that noisy signals increase network error, which may thus
lengthen training time required to reach a particular error
threshold. Alternatively, a conventional ANOVA of the
BOLD response might be used, retaining time series only
for regions showing significant task-related variance, simul-
taneously reducing noise and simplifying the network.

We used a simple two-layer feedforward network, provid-
ing information only about activations from the current time
point, which spanned a 3 sec acquisition period. It could thus
be argued that not all connections describe effective (i.e.,
causal) relationships, though it is certain that our model con-
tains information lost when asymmetrical co-occurrence
probabilities are summarized by a symmetrical correlation.
The back-propagation through time training algorithm we
used supports networks of arbitrary depth, however, and
permits prediction from both current and previous network
states. This would allow the network to learn time-dependen-
cies (Elman, 1990) and provide stronger evidence for causal
relationships. Such an analysis should be possible within
our framework, though not without modification, as the
increased complexity of such a model would certainly
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introduce a number of challenges. For example, consecutive
extreme activations should be less frequent, posing a prob-
lem for setting targets across time. Relatedly, because activa-
tions within the model unfold over discrete units of time, it
raises the possibility that it may be used as part of a multi-
modal approach in which timing information from event-
related potentials or magnetoencephalography constrains
node activations.

Unsurprisingly, the model was sensitive to noise within the
fMRI data. Although this is true of all neuroimaging tech-
niques, we also note that our procedure can be made more ro-
bust to noisy inputs by more conservatively censoring the
input data. We defined outlier activations as those more
than 2.5 SDs from the mean, and these did not contribute to
training. In addition to changing the outlier threshold, activa-
tions from regions below a certain SNR threshold could be
similarly censored, allowing a data set to contribute to the
model if it exhibits low SNR in some regions but otherwise
passes other data quality checks. Because we were primarily
interested in preserving parallelism between our approach
and the benchmark correlation-based method, we used a
stringent binarization threshold. This ensured that only fairly
extreme values (i.e., > .95 and < .05) were mapped to 1 or 0,
thus allowing the training data to accurately encode correla-
tions within the training data, but at the expense of censoring
a fairly large proportion of data. Though only this small frac-
tion of data was required for training, a more liberal binariza-
tion would allow the network to train on a larger training set
(but see our discussion of alternative methods of assessing
simulation performance below).

One notable obstacle was the lack of a clear weight-
elimination threshold because all weights contributed
toward network performance. It was inappropriate to elim-
inate all weights below an arbitrary threshold, as the resulting
network would have different performance characteristics.
Indeed, eliminating connections in this manner is one way
in which a neurodegenerative disease might be simulated in
the trained model. Thus, reduction of network complexity
must be done during training to allow the developing net-
work to accommodate the pruning of connections. Possible
approaches might include eliminating or decaying weights
outside of an anatomical connectivity matrix (e.g., from diffu-
sion tensor imaging) or involving topographically distant re-
gions. Though these weight thresholding techniques are less
straightforward than eliminating nonsignificant correlations,
they do highlight another advantage of this approach.
Because connectivity gradually emerges within the network,
and can be experimentally constrained in different ways over
the training period, this may provide important insight into
how connectivity develops in the human brain.

A second obstacle concerned the best way to evaluate the
network’s simulation performance. The novelty of our ap-
proach precluded the application of any prior weight or
error distribution, and thus required a nonparametric analy-
sis. However, given the nature of the activation function
and the nonbinary targets in the testing set, we used perhaps
the most stringent of many alternative means of calculating
network error. For example, machine learning problems
such as those addressed using MVPA, make use of a win-
ner-take-all classification rule (Heinzle et al., 2012), essentially
producing binary outputs and targets. Our network could
have been similarly evaluated by transforming target outputs

in the testing set such that all targets above or below 0.5 were
mapped to 1 or 0, respectively. Alternatively, we could have
counted activations as correct if they were greater than 0.7 for
targets above the mean and less than 0.3 for targets below the
mean, as in Cree and associates (2006). We expect each of
these alternatives would have produced somewhat different
(and certainly less conservative) measures of simulator per-
formance. However, because each of these approaches dis-
cards information, they are likely to be less sensitive
measures, and thus less likely to highlight inter-regional dif-
ferences. Because our networks correctly predicted above ver-
sus below mean activations on average for all nodes, many
more regions would have performed better than chance
using less stringent error metrics. Our particular choice of
error metric was thus motivated by a desire for precision, at
the expense of understating our model’s predictive power.
Thus, evaluating a computational model is not a straightfor-
ward matter, and the selection of appropriate performance
metrics and statistical tests should take into account the par-
ticular goals of the application.

Limitations of the model

The lack of an unambiguous criterion for what constitutes
a ‘‘significant weight’’ in the trained model is a challenge for
brain researchers primarily interested in using this approach
to derive connectivity matrices. For the reasons outlined
above, we chose to retain all connections, and our model con-
tained nearly one million weights, a large proportion of
which likely permitted only minimal influence between any
given pair of nodes. Moreover, as our networks were derived
from rs-fMRI data, those derived from task-related activa-
tions may have different weight distributions. This suggests
that there is no universal solution to the problem, which
will thus require further investigation.

Also problematic for those primarily interested in the ap-
plication of this approach to investigations of cortical connec-
tivity is the stochastic nature of this method. That is, repeated
application of conventional statistical methods (e.g., cross-
correlations, multiple regression, etc.) to the same data will
produce identical connectivity matrices. The initial weight
space and the training sequence in our models, however,
were determined pseudorandomly. Thus, two models trained
on the same data are unlikely to be identical, even when
trained to the same accuracy criterion. It may be helpful to
think of these models, not as statistical descriptions of a par-
ticular data set (as in a correlation matrix calculated over
these data), but rather as descriptions of composite individu-
als. That is, each connectivity matrix represents a hypothetical
individual that is an amalgamation of multiple datasets.
Thus, a more stable estimate of connectivity within a data
set requires training several models and averaging over
these connectivity matrices as we have done.

With these limitations in mind, our method might be inap-
propriate for investigations solely focused on obtaining a
static description of functional or effective brain connectivity:
Though our method is at least as effective at uncovering pat-
terns of brain connectivity as existing methods, those meth-
ods will do so with much less computational effort. As we
have demonstrated, an examination of the weight matrix
within a trained neural network can yield valuable insight
into brain connectivity. It is important to bear in mind,
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however, these networks are not primarily intended to pro-
vide a statistical measure of connectivity, but do so as a con-
sequence of their sensitivity to correlations within training
data. Rather, they provide a platform for modeling and test-
ing complex systems. Within a computational model, one can
directly test interdependencies and outcomes of connectivity
within the system; for example, how removing one connec-
tion might strengthen another. Were one to remove a connec-
tion from a DCM graph or correlation matrix, one would gain
no additional insight into how the remaining network might
handle the loss. Analyses such as these are simply not possi-
ble using conventional methods of exploring brain connectiv-
ity. Thus, the strength of our connectionist approach is that it
greatly facilitates the creation of neurologically plausible
models of brain functionality, and within these models
makes possible investigations of the causal role that connec-
tivity plays in various cognitive processes.

Conclusion

In this article we presented a novel data-driven approach for
constructing neurologically plausible computational models
from conventionally-acquired and processed fMRI data. We
demonstrated that, by learning activation co-occurrence proba-
bilities within fMRI time series from a network of brain regions,
our method discovers embedded network communities nearly
identical to those discovered using current methods of assessing
functional connectivity but additionally encodes information
about effective connectivity. Unlike any current method, how-
ever, our approach produces models that gradually emerge
with experience and permit simulations of neural activity within
neurologically plausible computational models, the dynamics of
which may be altered through virtual lesions. This approach
thus has many important applications for brain research and
may generate important insight into brain development and dis-
ordered functioning following damage or disease.
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