Low-Latency Digit-Serial Systolic Double Basis Multiplier over $GF(2^m)$ Using Subquadratic Toeplitz Matrix-Vector Product Approach

Jeng-Shyang Pan, Senior Member, IEEE, Reza Azarderakhsh, Mehran Mozaffari Kermani, Member, IEEE, Chiou-Yng Lee, Senior Member, IEEE, Wen-Yo Lee, Che Wun Chiou, Member, IEEE, and Jim-Min Lin

Abstract—Recently, the multipliers with subquadratic space complexity for trinomials and some specific pentanomials have been proposed. For such kind of multipliers, alternatively, we use double basis multiplication which combines the polynomial basis and the modified polynomial basis to develop a new efficient digit-serial systolic multiplier. The proposed multiplier depends on trinomials and almost equally space pentanomials (AESPs), and utilizes the subquadratic Toeplitz matrix-vector product scheme to derive a low-latency digit-serial systolic architecture. If the selected digit-size is d bits, the proposed digit-serial multiplier for both polynomials, i.e., trinomials and AESPs, requires the latency of $2\lceil \sqrt{\frac{2d}{d+1}} \rceil$, while traditional ones take at least $O(\lceil \frac{m}{d} \rceil)$ clock cycles. Analytical and application-specific integrated circuit (ASIC) synthesis results indicate that both the area and the time \times area complexities of our proposed architecture are significantly lower than the existing digit-serial systolic multipliers.

Index Terms—Subquadratic Toeplitz matrix-vector product, digit-serial systolic multiplier, double basis, Elliptic curve cryptography.

1 INTRODUCTION

The Elliptic curve cryptography (ECC) [1], [2] has been attracted by the cryptography researchers in recent years. With the emergence of the ECC in public-key cryptosystems, several hardware implementations of the ECC applications have been also presented [3], [4]. We note that the NIST and the ANSI have also recommended finite fields for use in the ECDSA [5], [6]. NIST recommends five binary finite fields, i.e., $GF(2^{163})$, $GF(2^{233})$, $GF(2^{809})$, and $GF(2^{857})$. In the ECC-based cryptographic protocols, finite field multiplication is essential to compute the point multiplication. The efficient hardware realizations of crypto-systems are often constrained in terms of area cost, power consumption, and performance.

For high-speed very-large-scale integration (VLSI) implementations, systolic array architecture is a preferable approach. In the extended binary field $GF(2^m)$, various efficient systolic array multipliers have been presented and can be classified into architectures such as bit-parallel and bit-serial [7], [8], [9], [10], [11], [12]. Efficient bit-parallel systolic multipliers usually employ either the least-significant bit first (LSB-first) or most-significant bit first (MSB-first) algorithms. The major advantage of bit-parallel systolic multipliers is the high throughput of the computations. However, these architectures for polynomial basis of $GF(2^m)$ require $O(m^2)$ XOR gates, $O(m^2)$ AND gates, $O(m^2)$ 1-bit latches, and $O(m)$ latency complexity. To reduce the time and space complexities, Lee et al. [8], [9], [13] showed that finite field multiplication for some specific polynomials, such as all-one polynomials, pentanomials, and trinomials, can use Toeplitz matrix-vector product (TMVP) to develop fully bit-parallel systolic multipliers. Bit-serial systolic array multipliers require only $O(m)$ space complexity, but they impose longer computation delays.

For reaching the tradeoff between the time and the space complexities between the bit-parallel and the bit-serial multipliers, the digit-serial systolic multipliers [14], [15], [16], [17], [19], [20] have been proposed in the literature. The digit-serial shifted polynomial basis multiplier with digit-in parallel-out structure is proposed in [20]. In this multiplier, a field element of m-bit length is subdivided into $\lceil \frac{m}{d} \rceil$ d-bit sub-words. In every clock cycle, the multiplication of a d-bit sub-word and an m-bit multiplicand produces one m-bit product. A scalable and systolic multiplier using a fixed $d \times d$ bit-parallel Hankel matrix-vector multiplier has been proposed in [15], [16] whose...
latency is \((d + \left\lceil \frac{m}{q} \right\rceil)\) clock cycles. Digit-serial systolic multipliers using digit-in digit-out architectures are presented in \([14],[17],[18]\). The latency of these multipliers is \(2\left\lceil \frac{m}{q} \right\rceil\) clock cycles. As mentioned above, low-complexity design of systolic finite field multipliers depends on the selected irreducible polynomials and the chosen basis representation. We note that these digit-serial multipliers require high latencies to perform the operations.

The main contributions of this work are as follows. Referring to the modified polynomial basis (MPB) of \(GF(2^m)\) introduced in \([20]\), we combine the polynomial basis and the MPB to form the double basis multiplication. Some finite field multiplications can be obtained in bit-parallel architecture with subquadratic TMVP \([21],[22]\). In \(GF(2^m)\), irreducible trinomials and pentanomials are widely applied in cryptographic applications in which the field size may be large. In \([23]\), it is shown that the irreducible pentanomials of the form \(F(x) = 1 + x^2 + x^p + x^n + x^{m}\) with \(q \equiv \frac{m}{4}, p - q \equiv \frac{m}{4}\), and \(n - p \equiv \frac{m}{4}\) abundantly exist in \(GF(2^m)\) for \(m > 9\). This pentanomial is called the almost equally space pentanomial (AESP). By using the properties of reduction polynomial for two polynomials (trinomials and AESPs), we propose a new digit-serial systolic double basis multiplier with subquadratic TMVP formulae. In case a \(d \times d\) Toeplitz product is selected, the proposed architecture can achieve very low latency of \(2\left\lceil \sqrt{\frac{m}{q}} \right\rceil\) clock cycles, while traditional digit-serial multipliers require at least \(O\left(\left\lceil \frac{m}{q} \right\rceil\right)\) clock cycles, e.g., \(2\left\lceil \frac{m}{q} \right\rceil - 1\) and \(2\left\lceil \frac{m}{q} \right\rceil\) for \([17]\) and \([21]\), respectively.

The rest of this paper is organized as follows. Section 2 presents the preliminaries regarding the modified polynomial basis, double basis multiplication, basis conversion, and subquadratic TMVP. In Section 3, we present our proposed new digit-serial systolic subquadratic multiplier for double bases of \(GF(2^m)\). In Section 4, time and space complexities are analyzed. In Section 5, the results of our application-specific integrated circuit (ASIC) synthesis on a 65-nm CMOS standard-cell library are presented. Finally, we conclude the proposed work in Section 6.

2 Mathematical Background

In this section, we briefly review the double basis multiplication over \(GF(2^m)\) and the subquadratic TMVP algorithm.

2.1 Modified Polynomial Basis

Let the irreducible polynomial \(F(x) = f_0 + f_1 x + \cdots + f_{m-1} x^{m-1} + x^m\) be used to construct the field \(GF(2^m)\). The set \(N = \{1, x, x^2, \ldots, x^{m-1}\}\) is called the polynomial basis (PB) of \(GF(2^m)\). Assume that an element \(A\) in \(GF(2^m)\) is represented by

\[
A = a_0 + a_1 x + \cdots + a_{m-1} x^{m-1}.
\]

Then, we present the following definition.

Definition 1. \([24]\) Let a field be constructed by the irreducible trinomial formed by \(F(x) = 1 + x^n + x^m\). The corresponding modified polynomial basis (MPB) representation is then defined as follows:

\[
N' = \{\beta_0, \beta_1, \ldots, \beta_{m-1}\},
\]

where

\[
\beta_i = \begin{cases}
 x^i & \text{for } 0 \leq i \leq m - n - 1, \\
 x^i + x^{i-m+n} & \text{for } i \geq m - n.
\end{cases}
\]

For example, \(F(x) = 1 + x^2 + x^3\) is an irreducible polynomial in \(GF(2^5)\), then we have \(N' = \{\beta_0, \beta_1, \beta_2, \beta_3, \beta_4\} = \{1, x, x^2, x^3 + 1, x^4 + x\}\). According to the relation of (3), the following remark is obtained.

Remark 1. If \(F(x) = 1 + x^n + x^m\) is an irreducible trinomial, then the corresponding modified binomial polynomial (MPB) can be represented by \(F(x) = \beta_m + \beta_n\).

Assume that \(F(x) = 1 + x^2 + x^p + x^n + x^{m}\) with \(1 \leq q \leq p \leq n < m\) is an irreducible pentanomial of degree \(m\). If the corresponding MPB is presented by \(N' = \{\beta_0, \beta_1, \ldots, \beta_{m-1}\}\), where \(\beta_i = x^i\) for \(0 \leq i \leq m - n - 1\) and \(\beta_i = x^i + x^{i-m+n}\) for \(i \geq m - n\), then the corresponding modified quadrinomial (MQ) can be represented by \(F(x) = \beta_m + \beta_p + \beta_n + \beta_0\).

2.2 Double Basis Multiplication over \(GF(2^m)\) for MPB

In this subsection, two basis representations, PB and MPB, are used to perform a double basis multiplication. For clarity, let a field be constructed by an irreducible MPB. A double basis multiplication is performed by \(C = AB \mod F(x)\), where \(A\) is presented by PB; \(C\) and \(B\) are represented by MPB. Applying the double basis representation in Definition 1, product \(x\beta_i\) can be obtained as follows:

\[
x\beta_i = \begin{cases}
 \beta_{i+1} & \text{for } 0 \leq i \leq m - n - 2, \\
 \beta_0 + \beta_{i+1} & \text{for } i = m - n - 1, \\
 \beta_{i+1} & \text{for } i \geq m - n.
\end{cases}
\]

With the property of Remark 1, we can obtain the following formula

\[
\beta_{m+i} = \beta_i \text{ for } i > 0.
\]

Let an element \(B = b_0\beta_0 + b_1\beta_1 + \cdots + b_{m-1}\beta_{m-1}\) be represented by double basis representation. Assume that two operations are defined as

\[
B^{(i)} = x^iB = b_0^{(i)}\beta_0 + b_1^{(i)}\beta_1 + \cdots + b_{m-1}^{(i)}\beta_{m-1},
\]

\[
\overline{B}^{(i)} = b_{m-1}^{(i)}\beta_0 + b_0^{(i)}\beta_1 + \cdots + b_{m-2}^{(i)}\beta_{m-1}.
\]
According to (5)-(7), we obtain that the product xB can be obtained as

$$B^{(1)} = xB = b_0 x \beta_0 + b_1 x \beta_1 + \cdots + b_{m-1} x \beta_{m-1} = b_{m-1} \beta_0 + b_0 \beta_1 + \cdots + b_{m-2} \beta_{m-1} + b_{m-1} \beta_0 = B^{(0)} + b_{m-1} \beta_0,$$

(8)

Let two elements A and B in $GF(2^m)$ be represented by polynomial basis and double basis representations, respectively. The product C with double basis representation can be rewritten as

$$C = AB$$

$$= a_0 B + a_1 xB + \cdots + a_{m-1} B x^{m-1}$$

$$= a_0 B^{(0)} + a_1 B^{(1)} + \cdots + a_{m-1} B^{(m-1)}$$

$$= [B^{(0)}, B^{(1)}, \cdots, B^{(m-1)}] \cdot A$$

$$= M_B \cdot A.$$

(9)

From (9), the matrix M_B could be formed by a Toeplitz matrix. For clarity, we use the following example to illustrate a double basis multiplication.

Example 1. Let a field $GF(2^5)$ be generated by $F(x) = 1 + x^2 + x^5$. Assume that $A = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$ and $B = b_0 \beta_0 + b_1 \beta_1 + b_2 \beta_2 + b_3 \beta_3 + b_4 \beta_4$ are two elements in $GF(2^5)$. By using (9), the product C can be computed as follows.

$$\begin{bmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 c_3 \\
 c_4 \\
\end{bmatrix} =
\begin{bmatrix}
 b_0 & b_4 + b_1 & b_3 + b_0 & b_4 + b_2 + b_1 & b_3 + b_1 + b_0 \\
 b_1 & b_0 & b_4 + b_1 & b_3 + b_0 & b_4 + b_2 + b_1 \\
 b_2 & b_1 & b_0 & b_4 + b_1 & b_3 + b_0 \\
 b_3 & b_2 & b_1 & b_0 & b_3 + b_1 \\
 b_4 & b_3 & b_2 & b_1 & b_0 \\
\end{bmatrix} \cdot
\begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 a_3 \\
 a_4 \\
\end{bmatrix}$$

Referring to the above matrix M_B, it is required to compute the following terms:

$$b_4 + b_1, b_3 + b_0, b_4 + b_2 + b_1, b_3 + b_1 + b_0,$$

for constructing the matrix M_B.

2.3 Basis Conversion from MPB to PB

Assume that a field $GF(2^m)$ is constructed from $F(x) = 1 + x^n + x^m$. Let an element in $GF(2^m)$ be represented by double basis representation, e.g., $B = b_0 \beta_0 + b_1 \beta_1 + \cdots + b_{m-1} \beta_{m-1}$, where $\beta_i = x^i$ for $0 \leq i \leq m - n - 1$ and $\beta_{m-n+j} = x^{m-n+j} + x^j$ for $j \geq 0$. Thus, we obtain

$$B = b_0 \beta_0 + b_1 \beta_1 + \cdots + b_{m-1} \beta_{m-1} = b_0 + b_1 x + \cdots + b_{m-1} x^{m-1} + b_{m-n} (x^{m-n} + 1) + b_{m-n-1} (x^{m-n+1} + x) + \cdots + b_{m-1} (x^m + x^n) = b_0' + b_1' x + \cdots + b_{m-1} x^{m-1},$$

(10)

where

$$b_i' = \begin{cases}
 b_i + b_{m-n-i} & \text{for } 0 \leq i \leq n - 1 \\
 b_i & \text{for } n \leq i \leq m - 1.
\end{cases}$$

Therefore, the basis conversion from MPB to PB requires the following complexities:

- **Space complexity:** n XOR gates,
- **Time complexity:** one $TXOR$ delay.

It is noted that our proposed double basis multiplication architecture does not need the basis conversion from PB to MPB.

2.4 Subquadratic Toeplitz Matrix-Vector Product

In linear algebra, a Toeplitz matrix is a matrix in which each descending diagonal from left to right is constant. Assume that T is an $n \times n$ Toeplitz matrix. If the (i, j) entry of T is denoted by $t_{i,j}$, then we have $t_{i,j} = t_{i+1,j+1}$. The TMVP is widely applied to compute finite field multiplication, such as dual basis (DB), shifted polynomial basis, and normal basis multiplications. A Toeplitz matrix has the following properties:

Proposition 1. An $n \times n$ Toeplitz matrix is determined by the $2n - 1$ entries appearing in the first row and the first column. We can use the vector $t = (t_0, t_1, \cdots, t_{2n-2})$ to define a Toeplitz matrix T.

Proposition 2. If T_1 and T_2 are two $n \times n$ Toeplitz matrices, then $T_1 + T_2$ requires $2n - 1$ XOR gates.

To reduce the time and the space complexities, a subquadratic TMVP approach is recently proposed for implementing binary field multiplications [22]. In the following paragraphs, we briefly introduce the subquadratic TMVP multiplier approach.

Let $V = (v_0, v_1)$ be a given vector and $C = TV$, where T is a 2×2 Toeplitz matrix defined by the vector $t = (t_0, t_1, t_2)$. A Toeplitz product is described as

$$C = \begin{bmatrix}
 c_0 \\
 c_1 \\
\end{bmatrix} = \begin{bmatrix}
 t_1 & t_2 \\
 t_0 & t_1 \\
\end{bmatrix} \begin{bmatrix}
 v_0 \\
 v_1 \\
\end{bmatrix}.$$

(11)

By using divide-and-conquer method, (11) can be expressed by

$$\begin{bmatrix}
 c_0 \\
 c_1 \\
\end{bmatrix} = \begin{bmatrix}
 t_1(v_0 + v_1) + v_1(t_2 + t_1) \\
 t_0(v_0 + v_1) + v_0(t_0 + t_1) \\
\end{bmatrix}.$$

(12)
As mentioned before, we can use recursive three-step operations to implement a TMVP multiplier. Assume that we use an $n \times n$ Toeplitz matrix with $n = 2^i$. After $\log_2 n$ iterations by using evaluation point step, all matrix and vector components collapse into the corresponding single coefficients. Both matrix and vector components can be transformed into 3^i point coefficients, e.g., $CUMP(T) = (t_0, t_1, \cdots, t_{3^i-1})$ and $CVP(V) = (v_0, v_1, \cdots, v_{3^i-1})$. Next, the point-wise multiplication step is based on (15) to perform the operation $C = PWM(CUMP(T), CVP(V)) = (v_0 t_0, v_1 t_1, \cdots, v_{3^i-1} t_{3^i-1})$. Finally, the FR step uses (16) to recover the original product result. According to the three-step implementations, Fig. 1 shows a subquadratic TMVP multiplier. By using the recursive three-step operations, Fan and Hasan [21], [22] have shown that for the structure of Fig. 1 with $n = 2^i$, the time and the space complexities of each component are derived as listed in Table 1.

3 NEW DIGIT-SERIAL SYSTOLIC SUBQUADRATIC MULTIPLIER FOR DOUBLE BASES OF $GF(2^m)$

In this section, we develop a novel digit-serial multiplier using the subquadratic TMVP approach.

3.1 Notation of x^dB Computation

In what follows, we discuss the x^dB computations for trinomials and pentanomials. First, let the field be constructed from the trinomial $F(x) = 1 + x^n + x^m$ with $n \leq \frac{m}{2}$. From (6), the computation of $B(d) = x^dB$ is as follows:

\[
B(d) = x B(d-1) \mod F(x) = B(d-1) + b_{m-n-1}^{(d-1)} \beta_0
\]

\[
= b_0^{(d)} \beta_0 + b_1^{(d)} \beta_1 + \cdots + b_{m-1}^{(d)} \beta_{m-1},
\]

(17)

where

\[
b_i^{(d)} = \begin{cases}
 b_{m-n-1}^{(d-1)} + b_{m-n-1}^{(d-1)} & \text{for } i = 0 \\
 b_{i-1}^{(d-1)} & \text{for } i \geq 1
\end{cases}
\]

From (17), we can obtain the following time and space complexities.

Proposition 3. Assume that a field is constructed from irreducible trinomials of degree m. If an element B is represented by MPB, then the computation $B(d)$ requires d XOR gates and one T_X delay.

Next, let a field be constructed from pentanomials $F(x) = 1 + x^q + x^p + x^n + x^m$ with $q \approx \frac{m}{2}$, $p - q \approx \frac{m}{2}$, and $n - p \approx \frac{m}{2}$. Such type of pentanomial exists in $GF(2^m)$ for $m > 9$ [23]. As mentioned before, this polynomial is denoted by AESP. Table 2 lists the AESPs with some specific values of m. Therefore, for computing $B(d) = x^dB$, we have:

\[
B(d) = x B(d-1) \mod F(x)
\]

\[
= \overline{B}^{(d-1)} + b_{m-n-1}^{(d-1)} \beta_0 + b_{m-n-1}^{(d-1)} \beta_q + b_{m-1}^{(d-1)} \beta_p
\]

\[
= b_0^{(d)} \beta_0 + b_1^{(d)} \beta + \cdots + b_{m-1}^{(d)} \beta_{m-1},
\]

(18)

where

\[
\overline{B}^{(d-1)}
\]
TABLE 2. List of the irreducible AESPs of degree m for $160 < m < 201$.

<table>
<thead>
<tr>
<th>m</th>
<th>$AESP(n, p, q)$</th>
<th>m</th>
<th>$AESP(n, p, q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>(117,79,41)</td>
<td>181</td>
<td>(136,90,45)</td>
</tr>
<tr>
<td>161</td>
<td>(122,82,40)</td>
<td>182</td>
<td>(135,92,45)</td>
</tr>
<tr>
<td>162</td>
<td>(123,79,40)</td>
<td>183</td>
<td>(141,93,46)</td>
</tr>
<tr>
<td>163</td>
<td>(120,81,40)</td>
<td>184</td>
<td>(144,93,43)</td>
</tr>
<tr>
<td>164</td>
<td>(120,78,39)</td>
<td>185</td>
<td>(140,96,47)</td>
</tr>
<tr>
<td>165</td>
<td>(127,82,40)</td>
<td>186</td>
<td>(138,95,48)</td>
</tr>
<tr>
<td>166</td>
<td>(128,84,41)</td>
<td>187</td>
<td>(143,97,48)</td>
</tr>
<tr>
<td>167</td>
<td>(125,82,42)</td>
<td>188</td>
<td>(143,97,46)</td>
</tr>
<tr>
<td>168</td>
<td>(127,85,42)</td>
<td>189</td>
<td>(146,97,47)</td>
</tr>
<tr>
<td>169</td>
<td>(129,89,44)</td>
<td>190</td>
<td>(139,93,48)</td>
</tr>
<tr>
<td>170</td>
<td>(129,87,42)</td>
<td>191</td>
<td>(142,93,47)</td>
</tr>
<tr>
<td>171</td>
<td>(126,83,42)</td>
<td>192</td>
<td>(149,97,46)</td>
</tr>
<tr>
<td>172</td>
<td>(128,87,43)</td>
<td>193</td>
<td>(143,93,47)</td>
</tr>
<tr>
<td>173</td>
<td>(128,85,43)</td>
<td>194</td>
<td>(143,96,49)</td>
</tr>
<tr>
<td>174</td>
<td>(135,91,45)</td>
<td>195</td>
<td>(152,106,53)</td>
</tr>
<tr>
<td>175</td>
<td>(130,90,43)</td>
<td>196</td>
<td>(145,95,48)</td>
</tr>
<tr>
<td>176</td>
<td>(126,83,43)</td>
<td>197</td>
<td>(148,98,49)</td>
</tr>
<tr>
<td>177</td>
<td>(134,90,45)</td>
<td>198</td>
<td>(146,97,50)</td>
</tr>
<tr>
<td>178</td>
<td>(136,89,44)</td>
<td>199</td>
<td>(150,98,49)</td>
</tr>
<tr>
<td>179</td>
<td>(132,85,44)</td>
<td>200</td>
<td>(143,100,49)</td>
</tr>
<tr>
<td>180</td>
<td>(138,90,43)</td>
<td>201</td>
<td>(147,99,52)</td>
</tr>
</tbody>
</table>

Proposition 4. Assume that a field is constructed from an AESP of degree m. If an element B is represented by MPB, then computing $B^{(d)}$ requires $3d$ XOR gates and one T_{XOR} delay.

3.2 Partial Product A_iB to Form TMVP

Assume that a field is constructed from an irreducible trinomial of the form $F(x) = 1 + x^n + x^m = \beta_n + \beta_0$ with $n \leq \frac{m}{2}$. Let an element $B = b_0\beta_0 + b_1\beta_1 + \cdots + b_{m-1}\beta_{m-1}$ over $GF(2)$ be represented by double basis representation, and let an element A be represented by polynomial basis representation, such that $A = A_0 + A_1x^d + \cdots + A_{n-1}x^{(n-1)d}$, where $n = \lceil \frac{m}{2} \rceil$ and $A_i = a_{id} + a_{id+1}x + \cdots + a_{id+d-1}x^{d-1}$. Given the double basis operation presented in the previous section, the partial product $A_i B$ can be rewritten as

$$A_i B = (a_{id} + a_{id+1}x + \cdots + a_{id+d-1}x^{d-1})B$$

$$= a_{id}B + a_{id+1}xB + \cdots + a_{id+d-1}x^{d-1}B.$$ \hfill (19)

Let the selected digit-size d be satisfied by $d < m - n$. Then, we obtain

$$xB = b_{m-n-1}\beta_0 + b_0\beta_1 + \cdots + b_{m-1}\beta_m,$$

$$x^2B = b_{m-n-2}\beta_0 + b_{m-n-1}\beta_1 + b_0\beta_2 + \cdots + b_{m-1}\beta_{m+1}.$$ \hfill (20)

We note that, generally, $x^i B$ for $1 \leq i \leq d - 1$ can be represented as

$$x^i B = b_{m-n-i}\beta_0 + b_{m-n-i-1}\beta_1 + \cdots$$

Algorithm 1 Computing the partial product A_iB.

Inputs: A_i and B.

Output: $C = A_iB$.

Step 1. An element B is converted to $d \times d$ Toeplitz matrix component $T_B = (T_{B,i})$ based on (25) and (26).

Step 2. Compute component matrix and vector points using (13) and (14).

1. $P_A = CVF(A_i)$.
2. $P_B = CMF(T_B) = (P_{B,i})$.

Step 3. Compute point-wise multiplication (PWM).

1. $C = (PWM(P_A, P_{B,i}))$.
2. $PWM(P_A, P_{B,i})$.

Step 4. Final reconstruction.

1. $C = FR(PWM(C))$.

Step 5. Modular reduction.

1. $C = A_iB = C \bmod F$.

5.1. $C = A_iB = C \bmod F$.

Observe the result of (20), $x^i B$ with $(m+i)$-bit length means that i-bit digit $b_{m-n-i}\beta_0 + b_{m-n-i-1}\beta_1 + \cdots + b_{m-1}\beta_{m-1} - i$ is inserted into the least significant bit of B. Therefore, for computing a partial product A_iB, an element B should be translated into the element \overline{B} with $(m+d)$-bits:

$$\overline{B} = b_0 + b_1x + \cdots + b_{m+d-1}x^{m+d-1},$$ \hfill (21)

where

$$b_i = \begin{cases} b_{m-n-i} & \text{for } 0 \leq i \leq d - 1 \\ b_{i-d} & \text{for } d \leq i \leq m + d - 1 \end{cases}.$$ \hfill (22)

Thus, the partial product A_iB is performed by the following steps:

- **Step 1.** $T = A_i\overline{B}$.
- **Step 2.** $U = T \bmod x^d$.
- **Step 3.** $\overline{C} = (U + T)/x^d$.
- **Step 4.** $C = A_iB = \overline{C} \bmod F$.

As stated above, Step 1 is a grade-school multiplication, Step 2 is performed by a simple modular operation, Step 3 performs shift-by-d-bit operation, and Step 4 calculates the modular reduction through polynomial $F = x^m + 1$. To demonstrate the above four-step operations, we use the field $GF(2^6)$ to illustrate the partial multiplication through the following example.

Example 2. Let a field $GF(2^6)$ be constructed from $F(x) = x^6 + x^3 + 1$. The corresponding modified polynomial is represented by $F = x^6 + 1$ and $A = A_0 + A_1x^3$ is presented by polynomial basis, where $A_i = a_{3i} +$
Another element $B = b_0 \beta_0 + b_1 \beta_1 + b_2 \beta_2 + b_3 \beta_3 + b_4 \beta_4 + b_5 \beta_5$ is presented by double bases, where $\beta_i = x^i$ for $0 \leq i \leq 2$ and $\beta_i = x^i + x^{i+3}$ for $3 \leq i \leq 5$. Assume that the selected digit-size is $d = 3$, then, based on (20), the element B is transferred to $B = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4 + b_5 x^5$, where $b_i = b_i$ for $0 \leq i \leq 2$ and $b_i = b_{i-3}$ for $3 \leq i \leq 8$. In the following, we utilize the proposed four-step operation to illustrate the partial product $A_0 B$. In Step 1, we obtain the polynomial multiplication $T = A_0 \overline{B} = t_0 + t_1 x + \cdots + t_{10} x^{10}$, where $t_0 = b_0 a_0, t_1 = b_1 a_0 + \overline{b}_0 a_1, t_2 = b_2 a_0 + \overline{b}_1 a_1 + \overline{b}_{i-1} a_2$ for $2 \leq i \leq 8, t_9 = \overline{b}_8 a_1 + \overline{b}_7 a_2$, and $t_{10} = \overline{b}_8 a_2$. In Step 2, $U = T \mod x^d = t_0 + t_1 x + t_2 x^2$. Step 3 obtains $C = t_3 + t_4 x + \cdots + t_{10} x^7$ and finally, we obtain

$$C = A_i B = \overline{C} \mod (x^6 + 1)$$

$$= (t_3 + t_9) + (t_4 + t_{10})x + t_5 x^2 + t_6 x^3 + t_7 x^4 + t_8 x^5.$$

Assume that $\overline{B} = B_0 + B_1 x^d + \cdots + B_{k} x^{dp}$, where $B_i = \overline{b}_{id} + \overline{b}_{id+1} x + \cdots + \overline{b}_{id+d-1} x^{d-1}$ for $0 \leq i \leq p$, and $p = \lceil \frac{m-2}{d} \rceil$. Moreover, we define two sub-words multiplication:

$$A_i B = S_j + D_j x^d,$$ \hspace{1cm} (23)

where both degrees of S_j and D_j are less than d. Applying the four-step operation, we have

$$T = A_i \overline{B} = S_0 + (D_0 + S_1) x^d + (D_1 + S_2) x^{2d} + \cdots + (D_{p-1} + S_p) x^{dp} + D_p x^{dp(p+1)},$$

$$U = T \mod x^d = S_0,$$

$$\overline{C} = (D_0 + S_1) + \cdots + (D_{p-1} + S_p) x^{dp(p-1)} + D_p x^{dp},$$

$$= \overline{C}_0 + \overline{C}_1 x^d + \cdots + \overline{C}_{p-1} x^{dp(p-1)} + \overline{C}_p x^{dp},$$

where

$$\overline{C}_i = \begin{cases} D_i + S_{i+1} & \text{if } 0 \leq i \leq p - 1 \\ D_p & \text{if } i = p \end{cases}.$$

Finally, the partial product $A_i B$ can be obtained

$$C = A_i B = \overline{C} \mod F(x)$$

$$= \overline{C}_0 + \overline{C}_1 x^d + \cdots + \overline{C}_{p-1} x^{dp(p-1)} + \overline{C}_p x^{dp} \mod F(x).$$ \hspace{1cm} (24)
With the matrix-vector representation, \(\vec{C}_j = \vec{r}_{jd} + \tau_{jd+1}x + \cdots + \tau_{jd+d-1}x^{d-1} \) can be translated into the following matrix-vector product.

\[
\begin{bmatrix}
\tau_{dj} \\
\tau_{dj+1} \\
\vdots \\
\tau_{dj+d-1}
\end{bmatrix}
= \begin{bmatrix}
\bar{b}_{dj}a_{di} + \bar{b}_{dj-1}a_{di+1} + \cdots + \bar{b}_{d(j-1)+1}a_{di+d-1} \\
\bar{b}_{dj+1}a_{di} + \bar{b}_{dj+2}a_{di+1} + \cdots + \bar{b}_{d(j)+2}a_{di+d-1} \\
\vdots \\
\bar{b}_{dj+d-1}a_{di} + \bar{b}_{dj+d-2}a_{di+1} + \cdots + \bar{b}_{d(j)+d-2}a_{di+d-1}
\end{bmatrix}
= \begin{bmatrix}
a_{di} \\
a_{di+1} \\
\vdots \\
a_{di+d-1}
\end{bmatrix}
\]

From the above matrix-vector product, matrix \(T_{\vec{P}_j} \) is formed by a Toeplitz matrix, which is defined in the terms of the vector \((\bar{b}_{dj+d-1}, \cdots, \bar{b}_{dj}, \bar{b}_{dj-1}, \cdots, \bar{b}_{d(j-1)+1}) \). Hence, the partial product in (24) can be denoted as

\[
A_iB = (T_{\vec{P}_0}A_i) + (T_{\vec{P}_1}A_i)x^d + \cdots + (T_{\vec{P}_v}A_i)x^{pd} \mod F
\]

(26)

Therefore, a partial product can be divided into \((p+1)\) Toeplitz matrix-vector multiplications and one modular reduction polynomial \(F \). Consequently, we can use the subquadratic TMVP approach to realize a partial product \(A_iB \). According to the structure of subquadratic TMVP in (26), one can obtain Algorithm 1.

3.3 Proposed Digit-Serial Systolic Multiplier

Let \(A, B, \) and \(C \) be three elements in \(GF(2^n) \) generated by the irreducible trinomial \(F(x) = 1 + x^n + x^m \) with \(n \leq \frac{2^n}{2} \). The element \(A \) is presented by polynomial basis representation, and two elements \(B \) and \(C \) are presented by double basis representation, where \(C = AB \mod F(x) \). Assume that \(k = \left\lfloor \sqrt{n/2} \right\rfloor \) satisfies \(kd < m - n \), where \(d \) is the selected digit-size. If \(m \) is not a multiple of \(dk^2 \), then a field element must pad \((k^2d - m)\)-bit zeros to replace the most significant bit, like \(A = (a_0, a_1, \cdots, a_{m-1}, 0, \ldots, 0) \). Accordingly, an element \(A \) can be represented by \(A = \sum_{i=0}^{k^2d-m} A_i x^{i} \), where \(A_i = a_{id} + a_{id+1}x + \cdots + a_{id+d-1}x^{d-1} \). The double basis multiplication can be rewritten as

\[
C = AB \mod F(x) = B(A_0 + A_1x^d + \cdots + A_{k-1}x^{(k-1)d})
\]

Algorithm 2 Digit-serial double basis multiplication.

Inputs: \(A \) and \(B \) are represented by PB and MPB, respectively.

Output: \(C = AB \mod F(x) \), where \(C \) is represented by MPB.

1. Initial step \(\vec{C} = 0. \)

\[
A = \sum_{i=0}^{k^2d-1} A_i x^i, \quad A_i = a_{id} + a_{id+1}x + \cdots + a_{id+d-1}x^{d-1}.
\]

2. Multiplication step

\[
\begin{align*}
2.1. & \text{ for } i = 0 \text{ to } k-1 \\
2.2. & \text{ for } j = 0 \text{ to } k-1 \\
2.3. & \text{ for } j = 0 \text{ to } k-1 \\
2.4. & \text{ for } j = 0 \text{ to } k-1 \\
2.5. & \text{ for } j = 0 \text{ to } k-1
\end{align*}
\]

3. Final reconstruction step:

\[
3.1. C = FR(\vec{C}) / \text{performs Step 4 of Algorithm 1}
\]

4. Reduction modified polynomial step

\[
4.1. C = C \mod F / \text{performs Step 5 of Algorithm 1}
\]

\[
+ B x^{dk} (A_k + A_{k+1} x^d + \cdots + A_{2k-1} x^{(k-1)d})
\]

\[\ldots\]

\[
+ B x^{dk(k-1)} (A_{k(k-1)} + A_{k(k-1)+1} x^{d} + \cdots + A_{k^2-1} x^{(k-1)d}) \mod F(x)
\]

\[
= C_0 + C_1 + \cdots + C_{k-1} \mod F(x), \quad (27)
\]

where

\[
C_i = B x^{dk_i} (A_{ki} + A_{ki+1} x^{d} + \cdots + A_{ki+k-1} x^{(k-1)d}) \mod F(x)
\]

\[
= B^{dk_i} A_{ki} + B^{dk_i+d} A_{ki+1} + \cdots + B^{dk_i+d(k-1)} A_{ki+k-1} \mod F(x)
\]

\[
= C_{i,0} + C_{i,1} + \cdots + C_{i,k-1} \mod F(x),\quad (28)
\]

\[
B^{dk_i} = B x^{dk_i} \mod F(x) = x^{dk} B^{dk(i-1)} \mod F(x), \quad (29)
\]

\[
C_{i,j} = B^{dk_i+d} A_{ki+j} \mod F(x). \quad (30)
\]

We utilize the proposed partial product scheme for computing a partial product \(C_i \) in (28) and \(B^{dk_i} \) is precomputed by using the recursive computation \(B^{dk_i} = \ldots = B^{dk_2} = B^{dk_1} = B \).
The partial product C_i can be represented by

$$C_i = FR(D_{i,0}) + FR(D_{i,1}) + \cdots + FR(D_{i,k-1}) \mod F. \tag{33}$$

Since each term reconstruction in (33) is the same as the FR circuit, the partial product C_i can be recomputed by

$$C_i = FR(D_{i,0} + D_{i,1} + \cdots + D_{i,k-1}) \mod F. \tag{34}$$
Fig. 5. The proposed digit-serial systolic multiplier.

TABLE 3. Contents of the components in the proposed digit-serial systolic multiplier for GF(2^36) in each clock cycle.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Register B</th>
<th>PE₀</th>
<th>PE₁</th>
<th>PE₂</th>
<th>Register C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>B₀ = B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B₁ = x¹²B₀</td>
<td>D₁₀ = x⁴B₀₀</td>
<td>P₁₀ = CVP(A₀)</td>
<td>P₁₀ = CMP(B₀)</td>
<td>C₁₀ = PWM(P₁₀, P₁₀)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₁₁ = x⁴D₁₀</td>
<td>P₁₁ = CVP(A₁)</td>
<td>P₁₁ = CMP(D₁₀)</td>
<td>C₁₁ = PWM(P₁₁, P₁₁)</td>
</tr>
<tr>
<td>2</td>
<td>B₂ = x¹²B₁</td>
<td>D₂₀ = x⁴B₁₀</td>
<td>P₂₀ = CVP(A₂)</td>
<td>P₂₀ = CMP(B₁)</td>
<td>C₂₀ = PWM(P₂₀, P₂₀)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₂₁ = x⁴D₂₀</td>
<td>P₂₁ = CVP(A₂)</td>
<td>P₂₁ = CMP(D₂₀)</td>
<td>C₂₁ = PWM(P₂₁, P₂₁)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₂₂ = x⁴D₂₁</td>
<td>P₂₂ = CVP(A₂)</td>
<td>P₂₂ = CMP(D₂₁)</td>
<td>C₂₂ = PWM(P₂₂, P₂₂)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>D₃₀ = x⁴B₂₀</td>
<td>P₃₀ = CVP(A₃)</td>
<td>P₃₀ = CMP(B₂)</td>
<td>C₃₀ = PWM(P₃₀, P₃₀)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₃₁ = x⁴D₃₀</td>
<td>P₃₁ = CVP(A₃)</td>
<td>P₃₁ = CMP(D₃₀)</td>
<td>C₃₁ = PWM(P₃₁, P₃₁)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₃₂ = x⁴D₃₁</td>
<td>P₃₂ = CVP(A₃)</td>
<td>P₃₂ = CMP(D₃₁)</td>
<td>C₃₂ = PWM(P₃₂, P₃₂)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>D₄₀ = x⁴B₃₀</td>
<td>P₄₀ = CVP(A₄)</td>
<td>P₄₀ = CMP(B₃)</td>
<td>C₄₀ = PWM(P₄₀, P₄₀)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₄₁ = x⁴D₄₀</td>
<td>P₄₁ = CVP(A₄)</td>
<td>P₄₁ = CMP(D₃₀)</td>
<td>C₄₁ = PWM(P₄₁, P₄₁)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₄₂ = x⁴D₄₁</td>
<td>P₄₂ = CVP(A₄)</td>
<td>P₄₂ = CMP(D₄₁)</td>
<td>C₄₂ = PWM(P₄₂, P₄₂)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>D₅₀ = x⁴B₄₀</td>
<td>P₅₀ = CVP(A₅)</td>
<td>P₅₀ = CMP(B₄)</td>
<td>C₅₀ = PWM(P₅₀, P₅₀)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₅₁ = x⁴D₅₀</td>
<td>P₅₁ = CVP(A₅)</td>
<td>P₅₁ = CMP(D₄₀)</td>
<td>C₅₁ = PWM(P₅₁, P₅₁)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₅₂ = x⁴D₅₁</td>
<td>P₅₂ = CVP(A₅)</td>
<td>P₅₂ = CMP(D₄₁)</td>
<td>C₅₂ = PWM(P₅₂, P₅₂)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C₆ = C₅ + RF(C₅₂)</td>
</tr>
</tbody>
</table>

TABLE 4. Space complexity of the components of the proposed multiplier.

<table>
<thead>
<tr>
<th>Components</th>
<th>#AND</th>
<th>#XOR</th>
<th>#Latch</th>
<th>#AND</th>
<th>#XOR</th>
<th>#Latch</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>k PEs</td>
<td>kS₃</td>
<td>k(d + S₁ + S₃)</td>
<td>k(m + S₃)</td>
<td>kS₃</td>
<td>k(d + S₁ + S₃)</td>
<td>k(m + S₃)</td>
</tr>
<tr>
<td>FRRP</td>
<td>-</td>
<td>m + d + S₂</td>
<td>-</td>
<td>-</td>
<td>m + 3d + S₂</td>
<td>-</td>
</tr>
<tr>
<td>Register B</td>
<td>-</td>
<td>-</td>
<td>m</td>
<td>-</td>
<td>m</td>
<td>-</td>
</tr>
<tr>
<td>Register C</td>
<td>-</td>
<td>-</td>
<td>m</td>
<td>-</td>
<td>m</td>
<td>-</td>
</tr>
<tr>
<td>Total space complexity</td>
<td>kS₃</td>
<td>m + k(2d + S₁ + S₃) + d + S₂</td>
<td>(k + 2)m + kS₃</td>
<td>kS₃</td>
<td>m + k(6d + S₁ + S₃) + 3d + S₂</td>
<td>(k + 2)m + kS₃</td>
</tr>
</tbody>
</table>

Note: S₁ = ⌈m/n⌉(2.5d₁₁g₂³ – 3d + 0.5) + d₁₁g₂³ – d, S₂ = ⌈m/n⌉(2d₁₅g₂³ – 2d), S₃ = ⌈m/n⌉d₁₁g₂³, and k = ⌈√m/n⌉, where d is the selected digit-size.
For clarification, Fig. 2(a) is the original structure of the computation of C_i in (33), and Fig. 2(b) is the modified structure of the computation of C_i in (34). We use the cut-set retiming procedure so that Fig. 2(b) can be partitioned into k processing elements (PE) and one final reconstruction-reduction-polynomial (FRRP) F module. Therefore, according to (27) and Algorithm 1, the proposed double basis multiplication is shown as Algorithm 2.

According to Algorithm 2, Fig. 3 shows the entire double basis multiplication architecture, which includes k^2 PEs (each of which is shown in Fig. 4), k R3 modules, and k FRRP modules. Each FRRP circuit is composed of one FR module and one R2 module. R2 performs the $C \bmod (x^m + 1)$ computation and R3 realizes $Bx^d \bmod F(x)$. Each PE is composed of one R1 module, one CMP module, one CVP module, one PWM module, $\left\lceil \frac{m}{d} \right\rceil d^\log_2 3$ XOR gates, and $(m + \left\lceil \frac{m}{d} \right\rceil d^\log_2 3)$-bit latches. Moreover, the R1 module performs $Bx^d \bmod F(x)$. We note that in Fig. 3, the i^{th} row of the systolic array double basis multiplication architecture computes C_i.

According to (28), we select the cells in the first row of Fig. 3 to construct a new digit-serial systolic multiplier, as shown in Fig. 5. In the initial step, the register B is set with the element B, and the register C is set with zero. For clarity, we use the field GF(2^m) to present the proposed digit-serial multiplication. Assume that the selected digit-size is $d = 4$, then, an element A can be represented as $A = A_0 + A_1 x^4 + \cdots + A_8 x^{32}$. Based on the structure of Fig. 5, Table 3 shows each PE operation in each clock cycle. For this case, the proposed digit-serial systolic multiplier requires 6 clock cycles.

4 Time and Space Complexities

The proposed digit-serial systolic multiplier presented in Fig. 5 is composed of k PEs, two registers, one R3 module, and one FRRP module. Each PE is based on the $d \times d$ TMVP structure to construct the CMP and the CVP modules. Each CMP module is performed according to Step 2.7 of Algorithm 2 to translate $\left\lceil \frac{m}{d} \right\rceil$-term matrix components, and the CVP module constructs one vector component. Applying CMP and CVP in the PE architecture, the PWM module requires $\left\lceil \frac{m}{d} \right\rceil d^\log_2 3$-bit pointwise multiplications. In the FRRP module, FR is based on the structure of PE to build $\left\lceil \frac{m}{d} \right\rceil$-term reconstruction components. Therefore, based on the space complexity presented in Table 1, each CMP module requires $\left\lceil \frac{m}{d} \right\rceil (2.5d^\log_2 3 - 3d + 0.5)$ XOR gates, each CVP module needs $d^\log_2 3 - d$ XOR gates, each FR module requires $\left\lceil \frac{m}{d} \right\rceil (2d^\log_2 3 - 2d)$ XOR gates, and the PWM module requires $\left\lceil \frac{m}{d} \right\rceil d^\log_2 3$ AND gates. Table 4 shows the space complexity of our proposed architecture for trinomials and AESPs. As depicted in Table 4, it is shown that the hardware complexity of the AESP-based digit-serial multiplier is slightly increased (by $d(4 \left\lceil \frac{m}{d} \right\rceil + 2)$ XOR gates) as compared to the trinomial-based digit-serial multiplier.

Table 8. ASIC synthesis results for the proposed multiplier architecture (trinomials) over GF(2^{409}) for different digit-sizes d.

<table>
<thead>
<tr>
<th>Digit size</th>
<th>Area [\mu m^2]</th>
<th>Total-time [ns \times cycles]</th>
<th>Total-time \times area [ns \times cycles \times \mu m^2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>103</td>
<td>10614</td>
<td>130534</td>
</tr>
<tr>
<td>6</td>
<td>46</td>
<td>1356</td>
<td>67800</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
<td>167945</td>
<td>847510</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>153817</td>
<td>256766</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>133528</td>
<td>160233</td>
</tr>
</tbody>
</table>

Recently, various digit-serial multipliers have been proposed in [16], [18], [25]. In [16], Chen et al. have presented a scalable systolic DB multiplier with the Hankel matrix-vector approach. Talapata et al. multiplier [18] has used the TMVP scheme to develop an efficient digit-serial systolic Montgomery multiplier for trinomials and all-one polynomials. Ibrahim et al. [25] have proposed a digit-serial systolic DB multiplier. Our proposed multiplier is based on subquadratic TMVP to obtain a new digit-serial multiplier for trinomials and AESPs. Table 5 lists the comparison results of our proposed multiplier and the existing digit-serial systolic multipliers proposed in [16], [18], [25]. We note that as tabulated in this table, the proposed trinomial-based digit-serial multiplier architecture in this paper has the latency of $2\left\lceil \frac{m}{d} \right\rceil$ clock cycles, which is the same as that of the AESP-based digit-serial multiplier. Furthermore, the critical path delay of $(2 + \log_2 d)T_x$ is derived for both of these two architectures, as shown in Table 5 for the trinomial-based digit-serial multiplier architecture.

Table 6 presents a comparison for the latencies of the digit-serial multipliers over GF(2^{409}). From Table 6, it is shown that the latencies of our proposed architecture over $GF(2^{409})$ for the digit-size $d = 2, 4, 8, 16, 32$, and 64 are $30, 22, 16, 12, 8$, and 6 clock cycles, respectively. Therefore, as seen in this table, the latency of our proposed architecture is lower than other multipliers under the same digit-size. Scalable multiplier [16] has the highest latency, comparably, as seen in Table 6. Under the same latency, e.g., 30 clock cycles, our proposed architecture utilizes small digit-sizes ($d = 2$) as compared to the other digit-serial multipliers in Table 6, e.g., Talapata et al. [18] uses $d = 28, 29$.

In the next section, we present and compare the results of our ASIC synthesis to benchmark the time and hardware complexities of the architectures on this hardware platform.

5 ASIC SYNTHESIS AND COMPARISONS

In this section, we present the results of our ASIC synthesis for both the proposed multiplication scheme and the previously-presented multipliers. The synthesis through ASIC platform is a step-forward towards more accurate derivation of performance and area metrics.
TABLE 5. Comparisons of various digit-serial systolic multipliers over GF(2^m).

<table>
<thead>
<tr>
<th>Multipliers</th>
<th>Ibrahim et al. [25]</th>
<th>Chen et al. [16]</th>
<th>Talapatra et al. [18]</th>
<th>Fig. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>Digit-serial</td>
<td>Scalable</td>
<td>Digit-serial</td>
<td>Digit-serial</td>
</tr>
<tr>
<td>Basis</td>
<td>DB</td>
<td>DB</td>
<td>Montgomery</td>
<td>DB</td>
</tr>
<tr>
<td>Polynomial type</td>
<td>General</td>
<td>General</td>
<td>Trinomials</td>
<td>Trinomials</td>
</tr>
<tr>
<td>#AND</td>
<td>$2pd^2$</td>
<td>d^2</td>
<td>pd^2</td>
<td>kdS_3</td>
</tr>
<tr>
<td>#XOR</td>
<td>$2pd^2$</td>
<td>$d^2 + 2d$</td>
<td>$pd^2 + 2d$</td>
<td>$m + k(2d + S_1 + S_3) + d + S_2$</td>
</tr>
<tr>
<td>#MUX</td>
<td>d</td>
<td>$pd + d$</td>
<td>$2pd$</td>
<td>-</td>
</tr>
<tr>
<td>#Switch</td>
<td>-</td>
<td>d</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>#Latch</td>
<td>$6pd$</td>
<td>$2pd + 2d + 2d$</td>
<td>$4pd + 3d + 1$</td>
<td>$(k + 2)m + kS_3$</td>
</tr>
<tr>
<td>Latency (cycles)</td>
<td>$2p$</td>
<td>$p^2 + 2d - 2$</td>
<td>$2p$</td>
<td>$2k$</td>
</tr>
</tbody>
</table>

Critical path delay (T_{CPD}) = $T_\Delta + 2dT_X + TMUX$

Note: $S_1 = \lceil \frac{m}{2} \rceil (25d^{log_2 3} - 3d + 0.5) + d^{log_2 3} - d$, $S_2 = \lceil \frac{m}{2} \rceil (25d^{log_2 3} - 2d)$, $S_3 = \lceil \frac{m}{2} \rceil d^{log_2 3}$, $p = \lceil \frac{m}{2} \rceil$, and $k = \lceil \frac{m}{2} \rceil$, where d is the selected digit-size.

TABLE 6. Comparison of latencies for digit-serial multipliers over GF(2^{409}).

<table>
<thead>
<tr>
<th>Digit-size (d)</th>
<th>Ibrahim et al. [25]</th>
<th>Chen et al. [16]</th>
<th>Talapatra et al. [18]</th>
<th>Fig. 5 (trinomials)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency (cycles)</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

TABLE 7. ASIC synthesis results for the previously-presented multiplier architectures over GF(2^{409}) for different digit-sizes d.

<table>
<thead>
<tr>
<th>Latency (cycles)</th>
<th>Digit size</th>
<th>Area [\mu m2]</th>
<th>Total-time [ns\times cycles]</th>
<th>Total-time\times area [\mu m2\times ns\times cycles]</th>
<th>Digit size</th>
<th>Area [\mu m2]</th>
<th>Total-time [ns\times cycles]</th>
<th>Total-time\times area [\mu m2\times ns\times cycles]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>205</td>
<td>810, 129</td>
<td>149.95</td>
<td>121, 478, 843</td>
<td>205</td>
<td>536, 690</td>
<td>12.50</td>
<td>6, 708, 625</td>
</tr>
<tr>
<td>6</td>
<td>137</td>
<td>517, 389</td>
<td>169.30</td>
<td>87, 593, 957</td>
<td>137</td>
<td>346, 715</td>
<td>14.13</td>
<td>4, 899, 082</td>
</tr>
<tr>
<td>10</td>
<td>103</td>
<td>401, 542</td>
<td>174.31</td>
<td>69, 992, 786</td>
<td>103</td>
<td>278, 126</td>
<td>18.48</td>
<td>5, 139, 761</td>
</tr>
<tr>
<td>12</td>
<td>82</td>
<td>344, 711</td>
<td>183.44</td>
<td>63, 234, 385</td>
<td>82</td>
<td>229, 480</td>
<td>21.63</td>
<td>4, 963, 652</td>
</tr>
</tbody>
</table>

Note: Total-time=CPD\times latency.

5.1 ASIC Synthesis

In the previous section, we have compared our proposed architecture with various existing digit-serial multipliers. Based on Table 6, our multipliers can obtain low-latency implementations compared to the three multipliers presented in [16], [18], [25]. For reaching results closer to real implementations and to compare the performance and complexity metrics with two multipliers presented in Ibrahim et al. [25] and Talapatra et al. [18], this section utilizes a TSMC 65-nm standard-cell library and the Synopsys® Design Compiler® for obtaining the ASIC synthesis results. We note that the multiplier in [18] is based on an irreducible trinomial to implement an efficient digit-serial systolic multiplier. In the NIST standard, it is recommended that the irreducible trinomial of the form $P(x) = 1 + x^{87} + x^{109}$ is used to construct the field GF(2^{409}). Therefore, we have considered the field GF(2^{409}) for trinomials to synthesize the multipliers in [18], [25] and our multiplier architecture of Fig. 5. Then, the results of synthesis for the aforementioned multipliers have been derived and tabulated in Tables 7 and 8.

Our multiplier is based on the subquadratic TMVP structure and we have considered five different latencies, i.e., 4, 6, 8, 10, and 12, for synthesizing and both multipliers [18], [25] are also synthesized for the same latencies. Moreover, the corresponding digit-sizes of the two multipliers presented in [18], [25], i.e., 205, 137, 103, 82, and 69, respectively, are presented in Table 7. For our proposed multiplier, these latencies correspond to the digit-sizes 103, 46, 26, 17, and 12, respectively, which are listed in Table 8. We note that although a range of digit-sizes yields for the multipliers with the depicted latencies in tables, we choose the lowest digit-size for all the cases to have a consistent comparison among the cases benchmarked. The derived results of synthesis include the area in terms of \mu m2, the critical path delay (CPD)\times latency (denoted hereafter as total-time) in terms of ns\times cycles, and the total-time\times area in terms of ns\times cycles\times \mu m2, as seen in Tables 7 and 8. Given the two tables, it is shown that the digit-sizes for our presented multiplier for each latency are smaller than those for [18], [25]. For example, under the latency of 10 clock cycles, our proposed multiplier has the digit-size of 17, while both other multipliers require the digit-size of 82.

As seen in Table 7, the performance metrics of the multipliers in [18], [25] are depicted. For both of these multipliers, the area and the total-time go lower and higher, respectively, as the latency increases. As seen in this table, the performance metrics of the multiplier in [18] (both area and total-time) are better than those of the multiplier in [25]. We note that the worst total-time\times area
of the multiplier in [18] is achieved for the digit-size and latency of 103 and 8, respectively, i.e., 5,139,761 μm2. However, for [25], this metric increases up to the lowest latency, as seen in Table 7.

As seen in Table 8, the area of the proposed multiplier gets lower as the latency gets higher, i.e., from 261,124 μm2 for the latency of 4 and digit-size of 103 to 133,528 μm2 for the latency of 12 and digit-size of 12. Furthermore, the total time gets higher from 8.25 cycles to 20.11 cycles, as seen in this table. Finally, the total-time\timesarea starts from $2,154,273$ cycles$\times\mu$m2 for the latency of 4 and digit-size of 103 and reaches its maximum of $2,826,514$ cycles$\times\mu$m2 for the latency of 8 and digit-size of 26 and gets lower as the latency and the digit-size reach 12 to the total-time\timesarea of $2,685,248$ cycles$\times\mu$m2.

5.2 Comparisons

In Tables 7 and 8, we have presented the synthesis results for our and two previously-presented digit-serial multipliers. In what follows and through Table 9, we compare the total-time\timesarea of these multipliers. This performance metric is used commonly to benchmark the efficiency of a multiplication schemes as it, inherently, assesses the suitability of the scheme for combined low-area and high-speed applications. Before proceeding to Table 9, we note that compared to [18], the minimum area saving of our multiplier can be derived as 33% from Tables 7 and 8. Moreover, we can save at least 55% area compared to the work presented in [25].

To compare the total-time\timesarea complexities, Table 9 shows that our proposed multiplier can save at least 43.6% as compared to two multipliers [18], [25], although this saving is much more for the case of the work presented in [25]. Finally, we note that the total-time\timesarea savings grow as the latencies get lower, with the maximum saving achieved for the lowest latency, as seen in Table 9.

As mentioned above, it is shown that our proposed digit-serial systolic multiplier using subquadratic TMVP scheme has better performance compared to those of the two digit-serial multipliers. We note that the multiplier presented in [18] is based on the TMVP structure to develop an efficient digit-serial systolic architecture; however, its architecture is only suitable for special classes of polynomials over $GF(2^m)$.

6 Conclusions

In this work, we have developed a novel digit-serial systolic architecture for double basis multiplication over $GF(2^m)$. Through utilizing the subquadratic TMVP scheme, we have proposed the presented digit-serial systolic multiplier over $GF(2^m)$ for irreducible trinomials and AESPs. In this regard, our analytical results in this paper have shown that the area complexity of the AESP-based multiplier is slightly increased by $4(\sqrt{\frac{m}{d}} + 2)$ XOR gates as compared to the trinomial-based multiplier, where d is the selected digit-size. We note that the proposed architectures for trinomials and AESPs require $2\sqrt{\frac{m}{d}}$ clock cycles and are particularly suitable for implementing the ECC cryptography and in the resource-constrained environments. We have performed ASIC synthesis to benchmark the performance of our proposed multiplier and it is shown that it outperforms its counterparts in terms of area and total-time\timesarea performance metrics. Moreover, our proposed architecture leverages the features of regularity, modularity, and concurrency, and is suitable for efficient and high-performance applications.

Acknowledgment

The authors would like to thank the anonymous reviewers and the editor for carefully reading the paper and for their great help in improving the paper. They would also like to thank the National Science Council of the Republic of China for financially supporting this research under Contract No. NSC 100-2221-E-262-014-MY3. Furthermore, M. Mozaffari-Kermani would like to thank and acknowledge the support of Natural Sciences and Engineering Research Council (NSERC) of Canada through its postdoctoral fellowship (PDF) award. The work by R. Azarderakhsh has been supported by NSERC CRD Grant CRDPJ 405857-10.

References

Mehran Mozaffari-Kermani received the B.Sc. degree in electrical and computer engineering from the University of Tehran in 2005, and the M.Sc. and Ph.D. degrees from the Department of Electrical and Computer Engineering at The University of Western Ontario in 2007 and 2011, respectively. After the completion of his Ph.D., he worked at the Advanced Micro Devices (AMD) as a senior ASIC/layout designer, integrating sophisticated security/cryptographic capabilities into a single chip. Dr. Mozaffari-Kermani was awarded a Natural Sciences and Engineering Research Council of Canada (NSERC) postdoctoral fellowship in 2011. Currently, he is an NSERC postdoctoral research fellow at the Electrical Engineering Department of Princeton University. His research interests include developing security/privacy measures for emerging technologies, cryptographic systems, fault diagnosis and tolerance in cryptographic hardware and embedded systems, VLSI reliability, and low-power secure and efficient FPGA and ASIC designs. He is a member of the IEEE.

Jeng-Shyang Pan received the B.S. degree in Electronic Engineering from the National Taiwan University of Science and Technology in 1986, the M.S. degree in Communication Engineering from the National Chiao Tung University, Taiwan in 1988, and the Ph.D. degree in Electrical Engineering from the University of Edinburgh, U.K. in 1996. Currently, he is the Doctoral advisor in Harbin Institute of Technology and Professor in the Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Taiwan. He has published more than 400 papers in which 110 papers are indexed by SCI. He is the IET Fellow, UK and the Tainan Chapter Chair of IEEE Signal Processing Society. He was Awarded Gold Prize in the International Micro Mechanisms Contest held in Tokyo, Japan in 2010. He was also awarded Gold Medal in the Pittsburgh Invention & New Product Exposition (INPEX) in 2010, Gold Medal in the International Exhibition of Geneva Inventions in 2011 and Gold Medal of the IEIA, International “Ideas – Inventions – New products”, Nuremberg, Germany. He was offered Thousand-Elite-Project in China. He is on the editorial board of International Journal of Innovative Computing, Information and Control, LNCS Transactions on Data Hiding and Multimedia Security, and Journal of Information Hiding and Multimedia Signal Processing. His current research interests include soft computing, robot vision and cloud computing.

Reza Azarderakhsh received his B.Sc. degree in Electrical and Electronic Engineering in 2002, the M.Sc. degree in Computer Engineering from Sharif University of Technology, Iran, in 2005, and the PhD degree in Electrical and Computer Engineering from the University of Western Ontario in 2011. In September 2011, he joined the department of Electrical and Computer Engineering of the University of Western Ontario, as a Limited Duties Instructor. Currently, he is a Postdoctoral Fellow in the Center for Applied Cryptographic Research (CACR) and Department of Combinatorics and Optimization at the University of Waterloo. His current research interests include Pairing based cryptography.

Chiou-Yng Lee received the Bachelor’s degree (1986) in Medical Engineering and the M.S. degree in Electronic Engineering (1992), both from the Chung Yuan Christian University, Taiwan, and the Ph.D. degree in Electrical Engineering from Chang Gung University, Taiwan, in 2001. From 1988 to 2005, he was a research associate with Chunghwa Telecommunication Laboratory in Taiwan. He joined the department of project planning. He taught those related field courses at Ching Yun University. From 2005 to now, he is a professor in the Department of Computer Information and Network Engineering at Lunghwa University of Science and Technology. His research interests include computations in finite fields, error-control coding, signal processing, and digital transmission system. Besides, he is a senior member of the IEEE and the IEEE Computer society. He is also an honor member of Phi Tao Phi in 2001.

Wen-Yo Lee received the B.S., M.S. and Ph. D. degrees in electrical engineering at the Department of Electrical Engineering, National Taiwan University and Technology, Taiwan, in 1995, 1998, and 2004 respectively. He was employed by Industrial Technology Research Institute from 1998 to 2003. He is currently an associate professor, Department of computer information and network Engineering, Lunghwa university science and technology, since 2003. His research interests include designing, analyzing, and setting up control system for the projects of mechatronics, biomedical engineering, and semiconductor.

Che Wun Chiou received his B.S. degree in Electronic Engineering from Chung Yuan Christian University in 1982, the M.S. degree and the Ph.D. degree in Electrical Engineering from National Cheng Kung University in 1984 and 1989, respectively. From 1990 to 2000, he was with the Chung Shan Institute of Science and Technology in Taiwan. He joined the Department of Electronic Engineering, Ching Yun University in 2000. He is currently a Professor in Dept. of Computer Science and Information Engineering at Chien Hsin University of Science and Technology (formerly Ching Yun University). His current research interests include fault-tolerant computing, computer arithmetic, parallel processing, and cryptography.

Jim-Min Lin was born on March 5, 1963 in Taipei, Taiwan. He received the B.S. degree in Engineering Science and the M.S. and the Ph.D. degrees in Electrical Engineering, all from National Cheng Kung University, Tainan, Taiwan, in 1985, 1987, and 1992, respectively. From February 1993 to July 2005, he was an Associate Professor at the Department of Information Engineering and Computer Science, Feng Chia University, Taichung City, Taiwan. Since August 2005, he has been a Full Professor at the same department. Since August 2009, he serves as the Chairman of the same department. From November 2008 to October 2011, he also served as the Secretary General of the Computer Society of the Republic of China (CSROC). His research interests include Testable Design, Embedded Systems, Software Integration/Reuse, Operating Systems, and Software Agent Technology.