A characterization of P_4-comparability graphs

Celina de Figueiredoa,1, Chinh T. Hoangb,2, Frédéric Maffrayc,3

aInstituto de Matemática and COPPE, Universidade Federal do Rio de Janeiro, Brazil
bDepartment of Physics and Computing, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario, Canada N2L 3C5
cC.N.R.S., Laboratoire Leibniz-IMAG, 46 Avenue Félix Viallet, 38031 Grenoble Cedex, France

Received 14 October 2005; accepted 8 May 2006
Available online 14 July 2006

This contribution is dedicated to the memory of Claude Berge, who inspired so many of us.

Abstract

A graph is a P_4-comparability graph if it admits an acyclic orientation of its edges which is transitive on every chordless path on four vertices. We give a characterization of P_4-comparability graphs in terms of an auxiliary graph being bipartite.

Keywords: Graph orientation; P_4-comparability; Recognition; Perfect graph

1. Introduction

An orientation of a graph is a P_4-transitive orientation if every P_4 (chordless path on four vertices) $abcd$ has either $a \rightarrow b$, $b \leftarrow c$, $c \rightarrow d$ or $a \leftarrow b$, $b \rightarrow c$, $c \leftarrow d$; in other words the orientation is transitive on every P_4. A graph is a P_4-comparability graph if it admits an acyclic P_4-transitive orientation. The P_4-comparability graphs were introduced in [10] as a subclass of perfectly orderable graphs. A graph is perfectly orderable [2] if it admits a linear ordering \prec on its vertices such that, for every induced subgraph H of G, the greedy coloring algorithm applied on (H, \prec) produces an optimal coloring of the vertices of H. Chvátal [2] proved that \prec satisfies this property if and only if no P_4 $abcd$ of G has $a \prec b$ and $d \prec c$. See [8] for a survey. Since the recognition of perfectly orderable graphs is NP-complete [12], it is interesting to test the border between polynomially recognizable subclasses of perfectly orderable graphs and the whole class. It was established in [9] and later in [13–16] that P_4-comparability graphs form a polynomially recognizable class. The fastest algorithm is in [14,15] and takes $O(|V||E|)$ time to test whether a graph is P_4-comparability and, if it is, to find an acyclic P_4-transitive orientation in the same time bound.

Recall that a graph is a comparability graph if it admits an acyclic orientation \rightarrow of its edges such that whenever we have arcs $a \rightarrow b$ and $b \rightarrow c$ we also have $a \rightarrow c$. Equivalently, a graph is a comparability graph if it admits an acyclic orientation \rightarrow such that every P_3 abc has either $a \rightarrow b$ and $b \leftarrow c$ or $a \leftarrow b$ and $b \rightarrow c$. It follows that comparability graphs are P_4-comparability graphs. Comparability graphs have been extensively studied in the literature, following...
the seminal works of Ghouila-Houri [5], Gilmore and Hoffman [6] and especially Gallai [4,11]. In particular, Gallai proved that a graph \(G = (V, E) \) is a comparability graph if and only if a certain auxiliary graph \(G' \) is bipartite. This graph is constructed as follows. Given a vertex \(x \), define a relation \(\wedge_x \) on the set \(E_x \) of those edges of \(E \) that are incident to \(x \) by putting \(xy \wedge_x xz \) whenever \(xy, xz \in E \), \(yz \notin E \); let then \(R_x \) be the transitive closure of \(\wedge_x \) on \(E_x \); so \(R_x \) is an equivalence relation on \(E_x \); let \(k(x) \) be the number of equivalence classes of \(R_x \). Now let \(G' \) have \(k(x) \) copies \(x_1, x_2, \ldots, x_{k(x)} \) of \(x \), and, for every edge \(e = uv (u, v \in V) \) of \(G \), let \(i, j \) be the integers such that \(e \) is in \(i \)th class of \(R_u \) and in the \(j \)th class of \(R_v \), and let \(G' \) have an edge \(u_i v_j \). Gallai proved that:

A graph \(G \) is a comparability graph if and only if \(G' \) is bipartite.

For an example, consider the graph \(G \) shown in Fig. 1. Its auxiliary graph \(G' \) is shown in Fig. 2.

Gallai’s theorem led to a deeper understanding of the structure of comparability graphs and put several researchers on the path to fast algorithms for the recognition of comparability graphs and for their orientation. It also allowed Gallai to find a characterization of comparability graphs by minimal forbidden induced subgraphs. Our aim here is to present a result that is similar in flavor to Gallai’s.

Let \(G = (V, E) \) be an undirected graph. Given a vertex \(x \), we define a relation \(\sim_x \) on the set \(E_x \) of those edges of \(E \) that are incident to \(x \), as follows: put \(xy \sim_x xz \) whenever \(xy, xz \in E \), \(yz \notin E \), and \(yxz \) extends to a \(P_4 \) in \(G \), i.e., there exists a vertex \(u \in V \) such that either \(uyxz \) or \(yxzu \) is a \(P_4 \) in \(G \). Let then \(R_x \) be the transitive closure of \(\sim_x \) on \(E_x \); so \(R_x \) is an equivalence relation on \(E_x \). We can define a graph \(G^* \) as follows. For every vertex \(x \), let \(k(x) \) be the number of equivalence classes of \(R_x \), and let \(G^* \) have \(k(x) \) copies \(x_1, x_2, \ldots, x_{k(x)} \) of \(x \). For every edge \(e = uv (u, v \in V) \), let \(i, j \) be the integers such that \(e \) is in \(i \)th class of \(R_u \) and in the \(j \)th class of \(R_v \), and let \(G^* \) have an edge \(u_i v_j \). Note that the edges of \(G^* \) are in a one-to-one correspondence with those of \(E \). Fig. 3 shows the auxiliary graph \(G^* \) of the graph \(G \) in Fig. 1.
The main results of this paper are the two theorems below.

Theorem 1. A graph G is a P_4-comparability graph if and only if G contains no antihole on at least seven vertices and G^* is a bipartite graph.

It is easy to see that if G is the antihole on six vertices then G^* is isomorphic to G, and thus contains a triangle; and if G is the antihole on k vertices with $k \geq 7$ then G^* consists of an even hole of length $2k$ plus isolated edges. Antiholes with at least seven vertices admit P_4-transitive orientations but do not admit acyclic P_4-transitive orientations; our next theorem shows that they are the only minimal graphs with this property.

Theorem 2. Let G be a graph admitting a P_3-transitive orientation. Then G is a P_4-comparability graph if and only if G contains no antihole on at least seven vertices.

2. The proofs

We will generally follow the standard terminology from [1]. In addition and for simplicity, we say that a vertex x of a graph sees another vertex y if x, y are adjacent, and we say that x misses y if they are not adjacent. We prove Theorem 2 first.

Proof of Theorem 2. The “only if” part is trivial. We will prove the “if” part. Let G be a graph admitting a P_3-transitive orientation T and suppose G contains no antihole of length at least seven and is not a P_4-comparability graph. Thus, G contains an induced subgraph H that is minimally P_4-incomparable, that is, H is not a P_4-comparability graph but each of its proper induced subgraphs is. Without loss of generality, we may assume G is minimally P_4-incomparable.

From T, we define a partial orientation P of G in the following way: for each edge uv that belongs to a P_4, let uv have the direction it has in T; if uv does not belong to any P_4 then it has no direction in P. From now on we will only deal with the partial orientation P.

Note that if an edge uv of G is oriented (say $u \rightarrow v$), it must extend to a P_4 and, considering the orientation of uv, this can happen in three different ways: either there exists a P_4 uvw with $u \rightarrow v, x \rightarrow v, x \rightarrow y$, and we will say that the edge extends forward; or there exists a P_4 stu with $s \rightarrow t, u \rightarrow t, u \rightarrow v$, and we will say that the edge extends backward; or there exists a P_4 $xuvw$ with $u \rightarrow x, u \rightarrow v, w \rightarrow v$, and we will say that the edge extends laterally.

To simplify, we will say that a P_4 of G with this partial orientation is bad if it is not oriented transitively. Since T is P_4-transitive, our partial orientation P does not contain any bad P_4. We will prove that this partial orientation has no circuit. Clearly, this suffices to enable us to extend it to an orientation of all edges of G without any circuit. So let us suppose on the contrary that our partial orientation of P_4 contains a circuit. Thus, G contains no antihole of length at least seven and is not a P_4-comparability graph. Thus, G contains an induced subgraph H that is minimally P_4-incomparable, that is, H is not a P_4-comparability graph but each of its proper induced subgraphs is.

From T, we define a partial orientation P of G in the following way: for each edge uv that belongs to a P_4, let uv have the direction it has in T; if uv does not belong to any P_4 then it has no direction in P. From now on we will only deal with the partial orientation P.

Lemma 1. Any shortest circuit of G induces a clique.

Proof. Let k be the smallest integer that is the length of a circuit in G, and let $C = v_0v_1 \ldots v_{k-1}v_0$ be any circuit of length k, with arcs $v_0 \rightarrow v_1, \ldots, v_{k-2} \rightarrow v_{k-1}$, and $v_{k-1} \rightarrow v_0$ (subscripts are understood modulo k). If $k = 3$ the lemma holds trivially, so suppose $k \geq 4$. Observe that any chord of C is a non-oriented edge, for otherwise there would be a shorter circuit; hence any chord of C lies in no P_4 (it is an isolated edge of G^*).

Claim 1. If uvw is a P_4, and w sees u and misses v, then the edge uw forms a P_4 together with some edge of uvw. If $u \rightarrow v$ then $u \rightarrow w$; otherwise $w \rightarrow u$.

Proof. If w misses x then $uwvx$ is a P_4, and the lemma holds because there is no bad P_4. If w sees x and misses y, then $uwxy$ is a P_4 and the lemma holds similarly. If w sees x and y then $uwxy$ is a P_4 and the lemma holds again.

Claim 2. For each i modulo k, v_iv_{i+2} is an edge of G.

Proof. Suppose without loss of generality that v_0v_2 is not an edge. As v_1v_2 is oriented, it must extend to a P_4; this can be done in three different ways.

(1) The edge v_1v_2 extends forward, along a P_4 v_1v_2ab, with $a \rightarrow v_2$ and $a \rightarrow b$. Here av_0 is an edge, or else $v_0v_1v_2$ is a bad P_4. Then bv_0 is an edge, or else $baav_0$ would be a bad P_4. But then $bv_0v_1v_2$ is a bad P_4.

(2) The edge v_1v_2 extends laterally, along a P_4 av_1v_2b, with $v_1 \rightarrow a$ and $b \rightarrow v_2$. Here bv_0 must be an edge, or else $v_0v_1v_2b$ is a bad P_4; then av_0 must be an edge, or else bav_0v_1 is a bad P_4. But now, v_2bv_0a is a P_4, which implies $a \rightarrow v_0$, and so v_0v_1, a form a circuit of length three, a contradiction to $k \geq 4$.

(3) The edge v_1v_2 extends backward, along a P_4 abv_1v_2 with $a \rightarrow b$ and $v_1 \rightarrow b$. By symmetry we may assume that v_0v_1 extends forward, along a P_4 v_0v_1cd, with $c \rightarrow v_1$ and $c \rightarrow d$. We may assume that v_1v_k is an edge, for otherwise, shifting all subscripts by -1, we are as in case (1) above. Likewise we may assume that v_1v_3 is an edge. Here av_0 is not an edge, or else $av_0v_1v_2$ would be a bad P_4. Likewise dv_2 is not an edge. Then bv_0 is an edge, or else v_0v_1ba would be a bad P_4. Likewise cv_2 is an edge. Suppose that v_3c is not an edge. Then vd_3 is an edge, or else v_3v_2cd is a bad P_4. Then v_3v_0 is an edge, or else the chord v_3v_1 of the circuit lies in the P_4 $d_3v_3v_1v_0$, a contradiction. Now the P_4 $cv_2v_3v_0$ implies $v_0 \rightarrow v_3$, and we find a shorter circuit, a contradiction. Thus cv_3 is an edge. Likewise bv_{k-1} is an edge. Suppose that $v_{k-1}v_2$ is not an edge. Then $v_{k-1}d$ is not an edge, or else $dav_{k-1}v_2$ is a P_4, implying an orientation on the chord $v_{k-1}v_1$. Then $v_{k-1}e$ is an edge, or else $v_{k-1}v_1cd$ is a P_4, implying an orientation on the chord $v_{k-1}v_1$. But now $dcv_{k-1}v_0$ is a bad P_4. Therefore, $v_{k-1}v_2$ is an edge. Note that we do not have $v_{k-1} \rightarrow v_2$, for this would imply $k \geq 5$, and then $C - \{v_1, v_1\}$ would induce a shorter circuit. Now av_{k-1} is an edge, or else $abv_{k-1}v_2$ would be a P_4, implying $v_{k-1} \rightarrow v_2$. Likewise v_0v_3 and v_3d are edges. The edge $v_{k-1}v_0$ must extend to a P_4, and there are three ways to do this:

(a) $v_{k-1}v_0$ extends forward, along a P_4 $v_{k-1}v_0ef$ with $e \rightarrow v_0$ and $e \rightarrow f$. By Claim 1 applied to $v_{k-1}v_0ef$ and v_2 we have $v_{k-1} \rightarrow v_2$, a contradiction.

(b) $v_{k-1}v_0$ extends laterally, along a P_4 $fv_{k-1}v_0e$ with $e \rightarrow v_0$ and $v_{k-1} \rightarrow f$. Here ev_2 is an edge, for otherwise $v_{k-1}v_0ef$ is a P_4 implying $v_{k-1} \rightarrow v_2$, a contradiction. Then fv_2 is an edge, or else $fsv_{k-1}v_2$ is a P_4, implying $v_{k-1} \rightarrow v_2$ again. Then v_0ev_2f is a P_4, implying $f \rightarrow v_2$. But we find a circuit $fv_2v_3 \cdots v_{k-1}f$ shorter than C, a contradiction.

(c) $v_{k-1}v_0$ extends backward, along a P_4 $fsv_{k-1}v_0$ with $f \rightarrow e$ and $v_{k-1} \rightarrow e$. Here fv_2 is not an edge, or else $v_{k-1}v_0ve$ is a P_4, implying $v_{k-1} \rightarrow v_2$. Then ev_2 is an edge, or else $fsv_{k-1}v_2$ is a P_4, implying $v_{k-1} \rightarrow v_2$. If ev_1, eb are not edges then bav_2ve is a P_4, implying $e \rightarrow v_2$, and then $ev_2v_3 \cdots v_{k-1}e$ would be a circuit shorter than C. If ev_1 is not an edge and eb is an edge then either (if ae is not an edge) $abev_2$ is a P_4 implying again $e \rightarrow v_2$, or (if ae is an edge) aev_2v_1 is a P_4 implying again $e \rightarrow v_2$. Hence ev_1 is an edge. Then fv_1 is an edge, or else fev_1v_0 is a bad P_4. Then fa is an edge, or else $fsv_{k-1}v_0a$ is a P_4, implying an orientation on the chord v_1v_{k-1}. Now $fsv_{k-1}v_0$ is a P_4, implying $f \rightarrow a$, and afv_1v_2 is a bad P_4. This ends the proof of Claim 2. □

Claim 3. Any two vertices v_i, v_j of the circuit are adjacent in G.

Proof. We prove this claim by induction on the value of $|j - i| \mod k$. If this value is 1, this is Claim 2. Now suppose without loss of generality that v_0v_i is not an edge and that v_iv_j is an edge whenever $|r - s| < i$, with $3 \leq i \leq k - 3$. The edge v_0v_1 must extend to a P_4, and there are three ways to do this:

(1) v_0v_1 extends backward, along a P_4 abv_0v_1 with $a \rightarrow b$ and $v_0 \rightarrow b$. By Claim 1 applied to v_0v_0ba and v_1, we obtain that the chord v_1v_1 is in a P_4, a contradiction.

(2) v_0v_1 extends laterally, along a P_4 av_0v_1b with $v_0 \rightarrow a$ and $b \rightarrow v_1$. If v_1 misses one of a, b, it is easy to check that v_1v_1 lies in a P_4 together with two vertices from a, b, v_0, a contradiction. Thus av_1 and bv_1 are edges. Then $v_0av_1v_2$ is a P_4, implying $v_1 \rightarrow b$. But now $bv_1v_2 \cdots v_2b$ is a shorter circuit.

(3) v_0v_1 extends forward, along a P_4 v_0v_1ab with $a \rightarrow v_1$ and $a \rightarrow b$. Then bv_1 is not an edge, or else $v_0v_1v_2b$ is a P_4 implying an orientation on the chord v_1v_1. Then bv_1 is an edge, or else $baav_1v_2$ is a P_4 implying again an orientation on v_1v_1. By symmetry, we may assume that the edge v_1v_1 extends backward, along a P_4 cdv_1v_1 with $c \rightarrow d$ and $v_1v_1 \rightarrow d$. By symmetry v_0 misses c and sees d. Here av_1 is an edge, or else $av_1v_1v_2$ would be a P_4, implying an orientation on the chord v_1v_1. Likewise dv_1 is an edge. Then bv_1v_1 is an edge, or else $v_0v_1v_1ab$ would be a P_4, implying an orientation on $v_0v_1v_1$. Likewise cv_1 is an edge. Then bc is an edge, or else $v_1v_1v_1c$ would be a P_4, implying an orientation on the chord v_1v_1 (recall $i \geq 3$). Now cbv_1v_0 is a P_4, implying an orientation on the chord v_0v_1, a contradiction. This ends the proof of Claim 3. □
By Claim 3, Lemma 1 is proved. □

Recall that k is the length of a shortest circuit $v_0, v_1 \ldots v_{k-1}$ in the graph.

Lemma 2. Suppose $k \geq 4$. Then every edge $v_i v_{i+1}$ of the circuit satisfies either:

- There exists a $P_4 v_i v_{i+1} b_i a_i$ such that a_i sees every vertex of the circuit except v_i and v_{i+1}.
- There exists a $P_4 c_i d_i v_i v_{i+1}$ such that c_i sees every vertex of the circuit except v_i and v_i+1.
- There exists a $P_4 e_i v_i v_{i+1} f_i$ such that e_i sees every vertex of the circuit except v_{i+1}, and f_i sees every vertex of the circuit except v_i.

Proof. If $v_i v_{i+1}$ extends forward, there exists a $P_4 v_i v_{i+1} b_i a_i$, with $b_i \rightarrow a_i$ and $b_i \rightarrow v_{i+1}$. Suppose that a_i misses some vertex v_j of the circuit, with $j \neq i, i + 1$. Then $v_j b_i$ is an edge, or else $v_j v_{i+1} b_i$ is a P_4 implying $v_j \rightarrow v_{i+1}$, a contradiction. Then $v_i v_j b_i a_i$ is a P_4 implying $v_i \rightarrow v_j$, a contradiction. So we obtain the desired property.

If $v_i v_{i+1}$ extends backward, the proof is similar.

Assume now that $v_i v_{i+1}$ extends laterally, along a $P_4 e_i v_i v_{i+1} f_i$ with $v_i \rightarrow e_i$ and $f_i \rightarrow v_{i+1}$. Remark that every vertex v_j of the circuit, with $j \neq i, i + 1$, either sees both e_i, f_i or misses both e_i, f_i; indeed, in the opposite case, either $e_i v_j v_{i+1} f_i$ is a P_4 implying $v_j \rightarrow v_{i+1}$, which is impossible since $j \neq i$, or $f_i v_j v_i e_i$ is a P_4 implying $v_i \rightarrow v_j$, which is impossible since $j \neq i + 1$. Suppose that some vertex v_j, with $j \neq i, i + 1$, is not adjacent to e_i (and hence also not to f_i). To simplify notation we fix $i = 1$. First suppose $j = 3$. We distinguish between the three cases corresponding to how the edge $v_2 v_3$ extends.

(a) $v_2 v_3$ extends forward, along a $P_4 v_2 v_3 b_2 a_2$ with $b_2 \rightarrow a_2$ and $b_2 \rightarrow v_3$. Vertex f_1 misses a_2, or else $a_2 f_1 v_2 v_3$ is a bad P_4. Then f_1 sees b_2, or else $a_2 b_1 f_1 v_2$ is a bad P_4. But then $f_1 v_2 v_3 b_2$ is a bad P_4.

(b) $v_2 v_3$ extends backward, along a $P_4 c_2 d_2 v_2 v_3$, with $c_2 \rightarrow d_2$ and $v_2 \rightarrow d_2$. Vertex f_1 misses c_2, or else $c_2 f_1 v_2 v_3$ is a bad P_4. Then f_1 sees d_2, or else $f_1 v_2 d_2 c_2$ is a bad P_4. Then $v_1 d_2$ is not an edge, or else $f_1 d_2 v_1 v_3$ would be a P_4 implying an orientation on the chord $v_1 v_3$. Then $e_1 d_2$ is an edge, or else $e_1 v_1 v_2 d_2$ would be a bad P_4. But now one of $e_1 d_2 f_1$ and $e_1 d_2 v_3$ is a bad P_4.

(c) $v_2 v_3$ extends laterally, along a $P_4 e_2 v_2 v_3 f_2$ with $v_2 \rightarrow e_2$ and $f_2 \rightarrow v_3$. Here $f_1 f_2$ is an edge, or else $f_1 v_2 v_3 f_2$ is a bad P_4. Then $e_2 f_1$ is an edge, or else $e_2 v_2 f_1 f_2$ is a bad P_4. Now $e_2 f_1 v_2 v_3$ is a P_4 implying $e_2 \rightarrow f_1$, and so e_2, f_1, v_2 induce a circuit of length three, a contradiction.

Now we may assume that $j \neq 3$, and, by symmetry, $j \neq 0$. Choose j to be the smallest subscript such that v_j misses f_1 ($4 \leq j \leq k - 1$). Suppose that $v_{j-1} v_j$ extends forward into a $P_4 v_{j-1} v_j b_{j-1} a_{j-1}$. Note that a_{j-1} sees all vertices of C except v_{j-1}, v_j as shown in the first paragraph of this proof. Then vertex f_1 misses a_{j-1} for otherwise the chord $v_1 v_j$ of the circuit belongs to the $P_4 f_1 a_{j-1} v_j v_{j-1}$, a contradiction. But now the chord $v_1 v_{j-1}$ belongs to the $P_4 f_1 v_{j-1} v_j a_{j-1}$, a contradiction. Similarly, $v_{j-1} v_j$ cannot extend backward. So we know that $v_{j-1} v_j$ extends laterally into a $P_4 e_{j-1} v_{j-1} v_j f_j$. Then $f_1 f_j$ must be an edge, for otherwise the $P_4 f_j v_j v_{j-1} f_1$ implies $v_{j-1} \rightarrow f_1$, and thus there is a circuit $v_2 v_3 \ldots v_{j-1} f_1 v_2$, of length $j - 1 < k$, a contradiction. Then $f_1 e_{j-1}$ must be an edge, for otherwise the $P_4 e_{j-1} v_{j-1} f_1 f_j$ implies $v_{j-1} \rightarrow f_1$ again. But then the $P_4 v_j f_j f_1 e_{j-1}$ implies $e_{j-1} \rightarrow f_1$, and so there is a circuit $v_2 v_3 \ldots v_{j-1} e_{j-1} f_1 f_2$, of length $j < k$, a contradiction. □

Among all circuits of length k in G, we choose a circuit C that has as many edges extending forward or backward as possible. (If an edge of the circuit can extend laterally and also forward or backward, it is understood that we count it as extending forward or backward.)

Lemma 3. Suppose $k \geq 4$. Then G contains an antihole.

Proof of Lemma 3. For each edge $v_i v_{i+1}$ of the circuit C, select either one vertex x_i ($x_i = a_i$ if the edge extends forward; $x_i = e_i$ if the edge extends backward) or the two vertices e_i, f_i (if the edge extends laterally) given by Lemma 2, whichever applies. For simplicity we call these the “selected vertices”. Recall that x_i sees all vertices of the circuit except v_i and v_{i+1}, while e_i sees all vertices of the circuit except v_{j+1}, and f_i sees all vertices of the circuit except v_j. Let H be the subgraph of G induced by all the vertices of the circuit and all the selected vertices. Consider the vertices $v_0, \ldots, v_{k-1}, v_0$ of the circuit listed in this order and, between v_i and v_{i+1}, insert the corresponding selected vertices: either x_i or the two vertices f_i, e_i (whichever applies). Doing this for every i, we obtain a (cyclic) ordering of
the vertices of H such that any two consecutive vertices in that ordering are non-adjacent in G, i.e., we obtain a cycle in the complement \overline{G} of G. This cycle of \overline{G} has length at least $2k$. Our aim now is to show that this is actually an antihole of G. To prove this, since the vertices of the circuit induce a clique, and because of the properties stated in Lemma 2, we need only show that distinct selected vertices are pairwise adjacent (except, of course, for the non-adjacent pairs of type $e_i f_j$). We have not assumed that all the selected vertices are pairwise different. However, because of the adjacencies between the vertices of C and the selected vertices, as stated in Lemma 2, we know that the only equalities that could possibly occur between the selected vertices are $e_i = f_{i+1}$ if these vertices are defined (i.e., if both $v_i v_{i+1}$ and $v_{i+1} v_{i+2}$ extend only laterally). But that is also not possible:

Claim 4. We never have $e_i = f_{i+1}$ (whenever these vertices are selected).

Proof. Suppose $e_i = f_{i+1}$. Then replacing v_{i+1} by e_i in C we get a circuit C' of length k. In C', the edge $v_i e_i$ extends backward (because of $f_{i+1} v_{i+1} v_i e_i$). So C' has more edges extending forward or backward than C, a contradiction to the choice of C.

Claim 5. If x_i and x_j are selected vertices ($i \neq j$), then $x_i x_j$ is an edge.

Proof. If $x_i x_j$ is not an edge, then at least one of the three sets $\{x_i, v_i, v_j, x_j\}$, $\{x_i, v_{i+1}, v_j, x_j\}$, $\{x_i, v_{i+1}, v_j, x_j\}$ induces a P_4 that contains an orientation on the chord of the circuit. This proves the claim.

Claim 6. If x_i and e_j, f_j are selected vertices, with $i \neq j$, then x_i sees e_j and f_j.

Proof. Vertex x_i sees e_j when $j \neq i - 1$ and $j \neq i - 2$, for otherwise $x_i v_{j+1} v_i e_j$ is a P_4 implying an orientation on the chord $v_{j+1} v_i$. Vertex x_i also sees e_{i-2}, for otherwise the $P_4 x_i v_{i-1} v_{i+1} e_{i-2}$ implies an orientation on the chord $v_{i-1} v_{i+1}$, a contradiction. By symmetry x_i sees f_j when $j \neq i + 1$. Now we show that x_i also sees f_{i+1}. If not, then $x_i e_{i+1} v_i f_{i+1}$ is a P_4. We cannot have $e_{i+1} \rightarrow v_i$, for then e_{i+1}, v_i, v_{i+1} would induce a circuit of length three. Thus on the $P_4 x_i e_{i+1} v_i f_{i+1} v_i$ we must have $v_i \rightarrow f_{i+1}$. Now replacing in C the vertex v_{i+1} by f_{i+1} we obtain a new circuit C' of length k. Along C' the edge $v_i f_{i+1}$ extends backward (because of $x_i e_{i+1} v_i f_{i+1}$), and the edge $f_{i+1} v_{i+2}$ extends forward (because of $f_{i+1} v_{i+2} v_{i+1} e_{i+1}$); this contradicts the choice of C. So x_i sees f_{i+1}. Likewise, x_i sees e_{i-1}. This proves the claim.

Claim 7. If e_i, f_i and e_j, f_j are two pairs of selected vertices, with $i \neq j$, then each of e_i, f_i sees each of e_j, f_j.

Proof. First suppose $j = i + 1$. If $e_i e_{i+1}$ is not an edge, then $e_i v_{i+2} v_{i+1} e_{i+1}$ is a P_4 implying $e_i \rightarrow v_{i+2}$. But then, replacing v_{i+1} by e_i in C, we obtain a circuit C' of length k, in which the edge $v_i e_i$ extends backward (because of $f_{i+1} v_{i+1} v_i e_i$), contradicting the choice of C (as the two edges $v_i v_{i+1}, v_{i+1} v_{i+2}$ of C, which extend laterally only, have been replaced by $v_i e_i, e_i v_{i+2}$, of which at least one extends forward or backward). Thus $e_i e_{i+1}$ is an edge. Likewise $f_i f_{i+1}$ is an edge. If $e_i f_{i+1}$ is not an edge, then $e_{i+1} e_i v_{i+2} f_{i+1}$ is a P_4 implying $e_{i+1} \rightarrow v_{i+2}$, which is a contradiction exactly as above. So $e_i f_{i+1}$ is an edge. Finally, $f_i e_{i+1}$ is an edge, or else $f_{i+1} v_{i+2} v_{i+1} e_i$ would be a P_4 implying an orientation on the chord $v_i v_{i+2}$. The proof is similar if $j = i - 1$. Now suppose $j \neq i - 1, i + 1$. Assume $e_i f_j$ is not an edge. Then $e_i v_{j+1} v_i f_j$ is a P_4 implying an orientation of $v_{j+1} v_i$. So it must be that $j = i + 2$, and the orientation is such that $e_i \rightarrow v_j$. Now, replacing v_{i+1} by e_i in C, we obtain a circuit C' of length k. In C', the two edges $v_i e_i$ and $e_i v_j$ extend, respectively, backward (along $f_{i+1} v_{i+1} e_i$) and forward (along $e_i v_{j+1} v_{i+1} f_j$), contradicting the choice of C. So $e_i f_j$ is an edge. Then $e_i e_j$ too must be an edge, for otherwise the $P_4 e_i v_{j+1} v_{i+1} e_j$ implies a direction on the chord $v_{i+1} v_{i+1}$ (recall that $j \neq i + 1, j \neq i - 1$.) We have shown e_i sees f_j, e_j. By symmetry, f_j sees e_i, f_i. So the claim is proved. Now the four preceding claims imply that H induces an antihole.

We call directed pyramid the graph featured in Fig. 4.

Lemma 4. Suppose that G has a circuit of length three. Then G contains an antihole or a directed pyramid as in Fig. 4.
Proof of Lemma 4. We assume that none of the conclusions of the lemma hold. We choose a directed triangle T that has the most edges extending forward or backward. Let T be on vertices v_0, v_1, v_2 with $v_i \rightarrow v_{i+1}$ ($i = 0, 1, 2$, all subscripts being modulo 3). We will always use the notation given in Lemma 2. We first establish some technical facts.

Claim 8. If $v_i v_{i+1}$ extends forward, then $a_i v_{i+2}$ is an edge. If $v_i v_{i+1}$ extends backward, then $c_i v_{i+2}$ is an edge.

Proof. To prove the first part of the claim, suppose $a_i v_{i+2}$ is not an edge. Then either $a_i b_i v_{i+1} v_{i+2}$ is a bad P_4 (if b_i misses v_{i+2}^+), or $a_i b_i v_{i+2} v_i$ is a bad P_4 (if b_i sees v_{i+2}), a contradiction. The second part of the claim also holds true, by symmetry.

Claim 9. If $v_i v_{i+1}$ extends laterally, then v_{i+2} either sees both or misses both e_i, f_i.

Proof. In the opposite case, one of $e_i v_{i+2} v_{i+1} f_i$ or $e_i v_i v_{i+2} f_i$ is a bad P_4.

Claim 10. If $v_i v_{i+1}$ extends laterally, and $v_{i+1} v_{i+2}$ extends forward, then $e_i \neq a_{i+1}$, and v_{i+2} sees both e_i, f_i.

Proof. First suppose that $e_i = a_{i+1}$. By Claim 9, $v_{i+2} f_i$ is not an edge. Then $f_i b_{i+1}$ is an edge, or else $f_i v_{i+1} v_{i+2} b_{i+1}$ would be a bad P_4. But then $v_{i+1} f_i b_{i+1} a_{i+1}$ is a bad P_4, a contradiction. So $e_i \neq a_{i+1}$. Now suppose that v_{i+2} misses f_i (for otherwise we are done by Claim 9). Then $f_i b_{i+1}$ is an edge, or else $f_i v_{i+1} v_{i+2} b_{i+1}$ would be a bad P_4. Then $f_i a_{i+1}$ is an edge, or else $a_{i+1} b_{i+1} f_i v_{i+1}$ would be a bad P_4. But then $a_{i+1} f_i v_{i+1} v_{i+2}$ is a bad P_4.

Claim 11. If $v_i v_{i+1}$ extends laterally, and $v_{i+1} v_{i+2}$ extends backward, then $e_i \neq c_{i+1}$.

Proof. Suppose on the contrary that $e_i = c_{i+1}$. By Claim 9, $v_{i+2} f_i$ is not an edge. Then $f_i d_{i+1}$ is an edge, or else $f_i v_{i+1} d_{i+1} e_i$ would be a bad P_4. Then $v_{i+1} d_{i+1}$ is an edge, or else $f_i d_{i+1} e_i v_i$ would be a bad P_4. But now the six vertices induce a directed pyramid.

Claim 12. If $v_0 v_1$ and $v_1 v_2$ extend laterally, then v_2 sees e_0 and f_0, and v_0 sees e_1 and f_1.

Suppose that this claim is false: by symmetry and by Claim 9 we may assume that v_2 misses e_0 and f_0 (thus $e_0 \neq f_1$). Then $f_0 f_1$ is an edge, or else $f_0 v_1 v_2 f_1$ is a bad P_4. Then $f_0 e_1$ is an edge, or else $f_1 v_0 v_1 e_1$ is a bad P_4. But now the $P_4 e_1 f_0 f_1 v_2$ implies $e_1 \rightarrow f_0$, and f_0, e_1, v_1 form a circuit T'. However, all edges of T' extend forward or backward (along $f_0 v_1 v_0 e_0, e_1 v_1 v_2 f_1$ and $e_1 f_0 f_1 v_2$), a contradiction to the choice of T.

Claim 13. If $v_0 v_1$ and $v_1 v_2$ extend laterally, then $e_0 \neq f_1$, and each of e_0, f_0 sees each of e_1, f_1.

Proof. Note that we have the conclusion of the preceding claim. If $e_0 = f_1$, then e_0, v_2, v_0 induce a circuit of length three, of which at least two edges extend forward or backward (along $e_0 v_0 v_1 f_0$ and $e_0 v_2 v_1 e_1$), a contradiction to the choice of T. If $f_0 e_1$ is not an edge, then $f_0 v_2 v_0 e_1$ is a P_4, implying $e_1 \rightarrow v_0$, and then e_1, v_0, v_1 form a circuit with two edges extending forward or backward (along $f_0 v_2 v_1 e_1$ and $e_1 v_1 v_2 f_1$), a contradiction. So $f_0 e_1$ is an edge. If $e_0 e_1$ is not an edge, then $e_0 v_0 e_1 f_0$ is a P_4, which implies $f_0 \rightarrow v_1$; then $e_1 f_0 v_2 e_0$ is a P_4, which implies $e_0 \rightarrow v_2$. Now e_0, v_2, v_0 form a circuit, with at least two edges extending forward or backward (along $e_0 v_0 v_1 f_0$ and $e_1 f_0 v_2 e_0$), a contradiction.
to the choice of T. So e_0e_1 is an edge. Likewise f_0f_1 is an edge. If e_0f_1 is not an edge, then $e_1e_0v_2f_1$ is a P_4, implying again $e_0 \rightarrow v_2$, a contradiction as above. This completes the proof of the claim. Finally, suppose e_0, f_1 is not an edge. The $P_4 f_1v_2e_0e_1$ implies $e_0 \rightarrow v_2, e_0 \rightarrow e_1$. The circuit $e_0v_2v_0$ has one edge (e_0v_0) extending backward. Therefore, the circuit $v_0v_1v_2$ must have one edge extending forward or backward, and this edge can only be v_0v_2. But then the circuit $e_0v_2v_0$ has two edges extending forward or backward, a contradiction. □

Now we go on with the proof of Lemma 4, distinguishing between cases.

Case 1. All three edges of T extend forward or backward. For $i = 0, 1, 2$, if $v_i v_{i+1}$ extends forward, set $x_i = a_i$; if it extends backward, set $x_i = c_i$; in either case we know that x_i sees v_{i+2}. Call H the subgraph of G induced by the six vertices $v_0, v_1, v_2, x_0, x_1, x_2$, and call X the subgraph of G induced by x_0, x_1, x_2. Now it is easy to check that: if X has zero edge then G^* contains a triangle; if X has exactly one edge then G^* contains a 5-cycle; if X has two or three edges then G contains an antihole of length five or six. In either case we have a contradiction.

Case 2. Exactly one edge of T extends laterally. Assume that v_2v_0 extends laterally, with the usual notation. Each of the edges v_0v_1 and v_1v_2 must extend forward or backward, which, by symmetry, leads to three subcases.

Subcase 2.1. v_0v_1 extends forward and v_1v_2 backward. As usual we have P_4’s $v_0v_1b_0a_0$ and $c_1d_1v_1v_2$. By Claim 8, a_0v_2 and c_1v_0 are edges. By Claim 10, v_1e_2 and v_1f_2 are edges. Suppose a_0f_2 is not an edge. Then $f_2v_1v_2a_0$ is a P_4, implying $v_1 \rightarrow f_2$. Then f_2, v_0, v_1 induce a circuit whose three edges extend forward or backward (along $f_2v_0v_2e_2, v_0v_1b_0$ and $f_2v_1v_2a_0$), a contradiction. Thus a_0f_2 is an edge. Likewise c_1v_2 is an edge.

Suppose a_0e_2 is not an edge. Then $a_0f_2v_1e_2$ is a P_4. If this P_4 is oriented in such a way that $e_2 \rightarrow v_1$, then e_2, v_1, v_2 would be a circuit whose three edges extend forward or backward (along $c_1d_1v_1v_2, e_2v_0v_2f_2$ and $a_0f_2v_1e_2$), a contradiction. Thus the $P_4 a_0f_2v_1e_2$ is oriented in such a way that $a_0 \rightarrow f_2$. But then $f_2a_0v_2e_2$ is a bad P_4. It follows that a_0e_2 is an edge. Likewise, c_1f_2 is an edge. Now a_0f_1 is an edge, or else the six vertices v_0, v_1, e_2, v_2, c_1 would induce an antihole, a contradiction. But then, the seven vertices $a_0, v_0, e_2, v_2, c_1, v_1$ induce an antihole, a contradiction.

Subcase 2.2. v_0v_1 extends backward and v_1v_2 forward. We have P_4’s $c_0d_0v_0v_1$ and $v_1v_2b_1a_1$. By Claim 11 we have $e_2 \neq c_0$, and similarly $f_2 \neq a_1$. By Claim 8, c_0v_2 and a_1v_0 are edges. Suppose that v_1 sees both e_2, f_2. Then f_2b_2 is an edge, for otherwise $f_2v_1v_2b_1$ would be a P_4 implying $v_1 \rightarrow f_2$, and thus v_0, v_1, f_2 would induce a circuit whose three edges extend forward or backward (along $c_0d_0v_0v_1, f_2v_0v_2e_2$ and $f_2v_1v_2b_1$), a contradiction. Likewise e_2d_0 is an edge. Then f_2a_1 is an edge, or else $v_1f_2b_1a_1$ is a P_4 implying $v_1 \rightarrow f_2$, and thus v_0, v_1, f_2 would be a circuit whose three edges extend forward or backward (along $c_0d_0v_0v_1, f_2v_0v_2e_2$ and $v_1f_2b_1a_1$), a contradiction. Likewise e_2d_0 is an edge. Then f_2e_0 is an edge, or else $f_2v_1v_2c_0$ would be a P_4 implying again that v_0, v_1, f_2 form a circuit contradicting the choice of T. Likewise e_2a_1 is an edge. But now the vertices $c_0, v_0, e_2, v_2, a_1, v_1$ induce a subgraph that contains an antihole of length six (if a_1c_0 is not an edge) or seven (if a_1c_0 is an edge), a contradiction. The conclusion of this paragraph (with Claim 9) is that v_1 misses both e_2, f_2. Now b_1v_0 must be an edge, or else either $b_1v_2v_0f_2$ is a bad P_4 (if b_1 misses e_2), or $b_1f_2v_0v_1$ is a bad P_4 (if b_1 sees f_2). Likewise d_0v_2 is an edge. Then c_0f_2 is not an edge, or else $c_0f_2v_0v_1$ would be a bad P_4. Likewise a_1e_2 is not an edge. Then d_0f_2 is an edge, or else $d_0v_2d_0c_0$ is a bad P_4. Likewise b_1e_2 is an edge. Since $v_1v_2d_0f_2$ is a P_4, we have $d_0 \rightarrow v_2$. Then d_0e_2 is an edge, or else $d_2v_0d_0v_2e_2$ would be a bad P_4. But now the vertices v_0, v_1, d_0, e_2, f_2 induce a directed pyramid.

Subcase 2.3. Both v_0v_1 and v_1v_2 extend forward. Thus we have P_4’s $v_0v_1b_0a_0$ and $v_1v_2b_1a_1$. By Claim 8, a_0v_2 and a_1v_0 are edges. By Claim 10, v_1 sees e_2 and f_2. Suppose a_1e_2 is not an edge. Then $a_1v_0v_1e_2$ is a P_4, implying $e_2 \rightarrow v_1$; therefore e_2, v_1, v_2 form a circuit, whose three edges extend forward or backward (along $a_1v_0v_1e_2, e_2v_2v_0f_2$ and $v_1v_2b_1a_1$), a contradiction. Thus a_1e_2 is an edge. Suppose a_0a_1 is not an edge. Then $a_0v_2v_0d_0$ is a P_4 implying $v_2 \rightarrow a_0$. Then a_0f_2 is an edge, or else $a_0v_2v_1f_2$ is a bad P_4. If a_0e_2 is not an edge, then $e_2v_0v_2f_2$ and $a_0f_2v_1e_2$ are P_4’s implying $f_2 \rightarrow e_0$ and $e_0 \rightarrow v_1$; but then e_2, v_1, v_2 form a circuit whose three edges extend forward or backward (along $a_0f_2v_1e_2, e_2v_0v_2f_2$ and $v_1b_1a_1$), a contradiction. Thus a_0e_2 is an edge. But now the subgraph induced by a_0, a_1, v_1, f_2 contains an antihole of length five or six, a contradiction. Therefore a_0d_1 is an edge. It follows that $a_1d_0v_2v_1$ is a P_4, implying $a_0 \rightarrow v_2$. Then a_0f_2 is an edge, or else $a_0v_2v_0f_2$ would be a bad P_4. Consider the subgraph H induced by the seven vertices $a_0, v_1, a_1, v_2, e_2, v_0$; its complement H is a cycle, whose only possible chords (in G) are a_0e_2 and a_1f_2; but, whichever are chords or not, H contains an antihole of length five, six or seven, a contradiction.

Subcase 2.4. Both v_0v_1 and v_1v_2 extend backward. This case is similar to Subcase 2.3, by symmetry, and we omit its proof.
Case 3. Exactly two edges of T extend laterally. Let us assume that v_0v_1 and v_1v_2 extend laterally, with the usual notation. By Claims 12 and 13, vertex v_0 sees e_1 and f_1, vertex v_2 sees e_0 and f_0, we have $e_0 \neq f_1$, and f_0e_1, e_0e_1, f_0f_1, and e_0f_1 are edges. By symmetry we may assume that v_2v_0 extends forward, along a P_4-$v_2v_0b_2a_2$. Here v_1a_2 is an edge, for otherwise either $a_2b_2v_0v_1$ or $a_2b_2v_1v_2$ is a bad P_4. Then a_2f_1 is an edge, or else either $a_2v_1v_2f_1$ or $a_2v_1v_0f_1$ is a bad P_4. Likewise a_2e_0 is an edge, or else either $a_2v_1v_2e_0$ or $a_2v_1v_0e_0$ is a bad P_4. Now, the eight vertices v_0, v_1, v_2, e_0, f_0, e_1, f_1, a_2 form a subgraph that contains (depending on the existence of the edges a_2f_0 and a_2e_1) an induced antihole of length six, seven or eight, a contradiction.

Case 4: All edges of T extend laterally. Thus, each edge v_iv_{i+1} lies in a P_4 $e_iv_iv_{i+1}f_i$, with $v_i \rightarrow e_i$ and $f_i \rightarrow v_{i+1}$. By Claims 12 and 13, each v_i sees e_{i+1} and f_{i+1}, we have $e_0 \neq f_1$, $e_1 \neq f_2$, $e_2 \neq f_0$, and the six vertices e_0, f_0, e_1, f_1, e_2, f_2 are pairwise adjacent except, of course, for the three non-adjacent pairs $e_i f_i$ ($i = 0, 1, 2$). Now, the nine vertices v_i, e_i, f_i ($i = 0, 1, 2$) form an antihole, a contradiction. This completes the proof of Lemma 4.

Now, we need to introduce two definitions. A homogeneous set of G is a set S of vertices that contains at least two vertices but not all vertices of G such that each vertex outside S sees either all or none of the vertices in S. A good partition is a partition of the vertex set of G into sets C, S, P, Q, R such that

- C is a clique with at least two vertices, and S is a stable set,
- every vertex in P sees every vertex in $C \cup S$,
- every vertex in R sees all of C and none of S,
- every vertex in Q sees none of $C \cup S \cup R$,
- $P \cup Q \cup R$ is non-empty.

The following results were proved by Hoàng and Reed [9].

Lemma 5 (Hoàng and Reed [9]). Let G be a graph admitting an orientation that contains no bad P_4, and contains a directed pyramid. Then G contains a homogeneous set or a good partition. \[\square\]

Lemma 6 (Hoàng and Reed [9]). No minimally P_4-incomparable graph contains a homogeneous set. \[\square\]

Lemma 7 (Hoàng and Reed [9]). No minimally P_4-incomparable graph contains a good partition. \[\square\]

We continue the proof of the theorem. Lemmas 3 and 4 show that G must contain a directed pyramid (with the P_4-transitive orientation T.) By Lemma 5, G has a homogeneous set or a good partition. But then Lemmas 6 and 7 show that G cannot be minimally P_4-incomparable, a contradiction. This completes the proof of Theorem 2. \[\square\]

Remark 1. Two edges are P_4-adjacent if they belong to the same P_4. The equivalence classes of the transitive closure of this P_4-adjacency relation are called P_4-components. A P_4-component C of G corresponds to a component C^* of the auxiliary graph G^* (there is a one-to-one correspondence between the edges of C and those of C^*). Hoàng and Reed did not state their result as in Lemma 5. Lemma 3.6 in [9] states that if a graph G admits an orientation such that (i) there is no bad P_4, (ii) no P_4-components contain a circuit, and (iii) there is a directed pyramid, then G contains a homogeneous set or a good partition. But a close examination of the proof in [9] reveals that condition (ii) is not used to prove the lemma. Thus, it can be restated as Lemma 5.

Remark 2. In [13], Nikolopoulos and Palios give a construction of an infinite family of graphs that admit P_4-transitive orientations but no acyclic P_4-transitive orientations, and are minimal with respect to this property. Theorem 2 shows that these graphs must be antiholes. Indeed, an examination of Nikolopoulos and Palios’s definition shows that their examples are antiholes.

Now, we prove Theorem 1.

Proof of Theorem 1. First assume that G is a P_4-comparability graph, and consider an acyclic P_4-transitive orientation of the edges of G. Consider the corresponding orientation of the edges of G^*. It follows from the construction of G^*,
and from the fact that every P_4 of G is transitive, that in G^* every vertex v is either a source (i.e., all edges incident to v are directed away from v) or a sink (i.e., all edges incident to v are directed toward v). Thus G^* is a bipartite graph. Now we prove the converse. Assume that G contains no antihole on at least seven vertices and that G^* is bipartite. Note that G also contains no antihole on five or six vertices, for this would imply that G^* contains a cycle on, respectively, five or three vertices. Observe that any edge of G that is not in a P_4 of G is isolated in G^*. Since G^* is bipartite, we can label its vertices either “left” or “right” in such a way that every edge is between a left vertex and a right vertex. Let us orient from left to right every non-isolated edge of G^*. If we keep the same orientation on the corresponding edges of G, we obtain a (partial) orientation of G; it is partial in the sense that only the edges that do not lie in a P_4 (if any) are not oriented. It is clear that this is an orientation in which every P_4 is oriented as desired, because every P_4 of G is also a P_4 of G^*. Thus, G admits a P_4-transitive orientation. Since G contains no antihole, by Theorem 2, G must be a P_4-comparability graph.

3. Some consequences

Hoàng and Reed established the following result.

Lemma 8 (Hoàng and Reed [9, Theorem 3.1]). A graph G is a P_4-comparability graph if and only if each of its P_4-components admits an acyclic P_4-transitive orientation.

Lemma 8 suggests a natural procedure to recognize a P_4-comparability graph. Given a graph G, the procedure

(i) computes its P_4-components (or, the components of G^*), and
(ii) verifies that each P_4-component admits an acyclic P_4-transitive orientation.

The P_4-comparability graph recognition algorithms in [9,13,16] are implementations of this procedure. It is customary to write $n = |V|$ and $m = |E|$. Two edges ab, cd uniquely determine the P_4 on vertices a, b, c, d. Thus, a graph has at most $O(m^2)$ P_4s. This implies steps (i) and (ii) can be executed in $O(m^2)$ time. The contribution of [13] is an $O(nm)$ algorithm to compute all P_4-components of a graph. This algorithm does not enumerate explicitly all P_4s of the graph. We have to do more work to find an acyclic P_4-transitive orientation of a P_4-comparability graph. Again, Lemma 8 suggests a natural way to do this: given a graph G,

(i) compute its P_4-components,
(ii) to each P_4-component assign an acyclic P_4-transitive orientation, and
(iii) put the orientations of the P_4-components together to obtain an acyclic P_4-transitive orientation of G.

The directed pyramid shows that in step (iii) we may have to reverse the directions of the edges in some P_4-components. We show here how the results from the preceding section can be used to devise an algorithm to find an acyclic P_4-transitive orientation in a graph $G = (V, E)$ (or decide that it admits none). However, the complexity of our algorithm is $O(m^2)$, which is not as good as the current best from [14,15], so we only give a brief description of the algorithm; details can be found in the research report version [3]. We note that the algorithm of [14,15] constructs the orientation of G in a way different from ours. Our algorithm goes as follows. Let $G = (V, E)$ be the input graph. If G is a P_4-comparability graph then the algorithm returns the answer “yes” and an acyclic P_4-transitive orientation, otherwise it returns “no”.

1. Construct the auxiliary graph G^* and check if it is bipartite; if it is not then G is not a P_4-comparability graph; return “no” and stop.
2. Compute the connected components G_1^*, \ldots, G_p^* of G^*, and let E_1^*, \ldots, E_p^* be their edge-sets; orient the edges of each E_i^* from left to right (with respect to the bipartition of G^*); call E_i the set of edges of G that correspond naturally with the edges of G^* in E_i^*.
3. For $i = 1, \ldots, p$, compute the set V_i of those vertices of V that are incident to an edge in E_i; the graph $G_i = (V_i, E_i)$ is connected; we may assume $|V_1| \geq |V_2| \geq \cdots \geq |V_p|$; call D_i the orientation of G_i that results from the orienting part of step 2.
4. Check each D_t for acyclicity; if some D_t has a circuit, then G is not a P_4-comparability graph, and return “no” and stop.

5. Set $i = 2$. Say that an edge xy of $E_i \cup \cdots \cup E_p$ is forced, with $x \rightarrow y$, if there exists a directed path from x to y whose arcs all belong to $E_1 \cup \cdots \cup E_{i-1}$.

There are two cases:

- **Some edge e of E_i is forced.** Assume $e = xy$ and e is forced with $x \rightarrow y$. If this orientation of e is in D_i then keep D_i as the orientation of E_i; else reverse every arc of D_i.

- **No edge e of E_i is forced.** Then keep D_i as the orientation of E_i.

In either case: If $i = p$ we stop, else we repeat Step 5 with $i = i + 1$.

At any step of the algorithm, many different edges may be forced, but we can show that the forcings are “coherent”. The correctness of this algorithm is stated in some details in Lemma 9 below, whose proof can be found in the research report version [3]. A result of Raschle and Simon [16], which we reformulate as follows, is used in the proof of Lemma 9.

Theorem 3. For any $h < j$, no edge of E_h has its two endpoints in V_j.

Lemma 9 (de Figueiredo et al. [3]). Consider the situation at step $i \geq 2$, where the edges of $E_1 \cup \cdots \cup E_{i-1}$ are oriented without creating a circuit, and the other edges are not directed.

- Let $abcd$ be a P_4 whose edges are in a class E_j with $j \geq i$. If the edge ab is forced, with $a \rightarrow b$, then the edge bc is forced, with $c \rightarrow b$.

- Let $abcd$ be a P_4 whose edges are in a class E_j with $j \geq i$. If the edge bc is forced with $b \rightarrow c$, then the edge ab is forced, with $a \rightarrow b$ and the edge cd is forced, with $d \rightarrow c$.

- For $j \geq i$, suppose that any edge of E_j is forced from “left” to “right” with respect to the bipartition of G^*. Then every edge of E_j is forced from left to right.

- The algorithm correctly returns an acyclic P_4-transitive orientation of G.

Finally, let us analyze the complexity of our algorithm. In step 1, the auxiliary graph G^* can be built in time $O(m^2)$ by listing all P_4s. Furthermore, [14,15] describes an algorithm to construct all P_4-components (hence the graph G^*) in $O(nm)$ time. It is easy to see that each graph $G_i = (V_i, E_i)$ can be checked for acyclicity in time $O(|V_i| + |E_i|)$. Since $\sum |E_i| = O(m)$, steps 2–4 can be implemented in time $O(n + m)$. Step 5 is the bottleneck of our algorithm. To check whether an edge ab of E_j is forced, we have to find a directed path, in $E_1 \cup \cdots \cup E_{i-1}$, from a to b, or from b to a. This can be done in time $O(n + m)$. However, a graph may have $O(m)$ P_4-components, i.e. $p = O(m)$. Thus, step 5 may go through $O(m)$ iterations. This gives an $O(m^2)$ time bound for step 5. If we could implement step 5 in time $O(nm)$ then our algorithm would run in $O(nm)$, matching the current fastest algorithm of [14,15]. We pose this as an open problem.

Acknowledgement

We are very grateful to a referee who found a mistake in an earlier version of our algorithm and pointed out references [13,14] to us.

References

Further reading