DISTANCE-BASED WEIGHTED PREDICTION FOR ADAPTIVE INTRA MODE BIT SKIP IN H.264/AVC

Lai-Man Po, Liping Wang, Kwok-Wai Cheung, Ka-Man Wong, Ka-Ho Ng, Shenyuan Li, and Chi-Wang Ting

Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
Email: eelmopo@cityu.edu.hk

ABSTRACT
Adaptive Intra Mode Bit Skip (AIMBS) technique using boundary pixels smoothness has been shown to achieve coding efficiency improvement for H.264/AVC’s Intra_4x4 coding in relatively large QPs. However, the DC mode in the Multiple-Prediction of the AIMBS becomes much less effective. To tackle this problem and further improve the coding efficiency, distance-based weighted prediction (DWP) is proposed to replace DC mode in Multiple-Prediction for predicting blocks without directional preferences. The proposed method is named as AIMBS-DWP that can enhance the robustness of AIMBS in much larger range of QPs and achieve higher rate-distortion performance. Experimental results show that an average bitrate reduction of 3.79% with lower computational requirement can be obtained by AIMBS-DWP as compared with H.264/AVC. The improvement is especially obvious in high visual quality configurations with small QPs.

Index Terms - H.264/AVC, video coding, intra prediction, mode bit skip, weighted prediction.

1. INTRODUCTION
Joint Video Team (JVT) of ITU-T VCEG and ISO MPEG has released the latest standard for video coding, which is known as H.264 or MPEG-4 Part 10 Advanced Video Coding (AVC) [1]-[2]. By adopting several new coding techniques, H.264/AVC achieves 50% bitrate reduction comparing with the previous standards. One of the major contributions to this high coding efficiency improvement is the directional spatial prediction for intra coding. Different from the previous standards (such as H.263 [3] and MPEG-4 [4]), intra prediction in H.264/AVC is mainly applied in the spatial domain instead of the transform domain. It uses the correlation between adjacent blocks to remove the spatial pixels redundancy. In H.264/AVC, Intra_4x4 prediction provides nine directional prediction modes for each 4x4 block. Jointly usage of these nine prediction modes achieves much higher coding efficiency than just using the DC prediction in transform domain of previous video coding standards. For each 4x4 block, however, 1 or 4 bits are required to indicate the intra mode when Baseline profile is used [5]. Therefore, 16 ~ 64 bits are required to represent the Intra_4x4 modes in each of the macroblock (MB). To reduce this burden, an adaptive intra mode bit skip (AIMBS) method is proposed by Kim [6], in which Intra_4x4 prediction is split into Single-Prediction or Multiple-Prediction modes depending on the smoothness of neighbor blocks boundary pixels. The mode bit is skipped in Single-Prediction, which is used in low-detailed picture areas. Meanwhile, the computational complexity is also significantly reduced due to avoiding the mode selection process from these 9 prediction modes. However, the DC mode in the Multiple-Prediction of the AIMBS becomes much less effective and the order of the 9 modes is required to rearrange with DC mode assigned as the last mode.

Recently, a distance-based weighted prediction (DWP) method is proposed in [7] for replacing the DC mode in Intra_4x4 prediction. The DWP is suitable for predicting in the detailed areas without directional preference. It is because the DWP is designed based on the theory that the correlation between current pixel and its reference samples is inversely proportional to their distances. In this paper, to tackle the ineffectiveness of DC mode in Multiple-Predictions of AIMBS, DWP is proposed to replace DC prediction and the proposed method is called AIMBS-DWP. In this way, we can maintain rate-distortion improvement and complexity reduction in the smooth areas by AIMBS and enhancing the prediction accuracy in the complex areas by DWP. It is also proven that the AIMBS-DWP is much more robust with performance improvement over larger range of QPs especially in low QPs configurations.

This paper is organized as follows. In section II, a brief review of the AIMBS is given for providing the detail of this technique. After that the enhanced method of AIMBS-DWP is introduced in section III. Simulation results to confirm the improvement as compared with the original H.264/AVC’s intra prediction are given in section IV. Finally, conclusions are drawn in Section V.

2. ADAPTIVE INTRA MODE BIT SKIP (AIMBS)
The intra prediction in H.264/AVC is performed in a block-based manner. The current block is predicted by referring to the reconstructed pixels of neighbor blocks, which are above or to the left of it. Three types of luminance intra prediction are provided: Intra_4x4, Intra_8x8 (supported only in Fidelity Extension profiles [8], hence no consideration is given in this paper) and Intra_16x16. The Intra_4x4 prediction has 9 spatial prediction modes, which are suitable to be employed in the complex areas. While Intra_16x16 prediction has 4 modes, which are mainly used in smooth areas. The mode selection is based on the
coefficients are encoded for sending to the decoder side. For each shown in Fig. 2, in which the bits for Intra prediction modes are used in Multiple-Prediction that is seldom used. To release this problem, the DC mode is assigned to be the last mode (mode number 8) in AIMBS.

3. DISTANCE-BASED WEIGHTED PREDICTION FOR AIMBS

For Intra_4x4 prediction, the 8 directional prediction modes and DC mode are shown in Fig. 1, where the 16 pixels of the 4x4 block (labeled as \(P_{ij} \)) are predicted by the upper reconstructed pixels (labeled as \(U_j \)) and left reconstructed pixels (labeled as \(L_i \)) and \(X \). For DC mode, the predicted pixel’s values are the same as the average of the upper 4 pixels (\(U_3 \) to \(U_7 \)) and left 4 pixels (\(L_0 \) to \(L_3 \)). If the upper reconstructed pixels and the left reconstructed pixels are available, the DC predicted value is defined as

\[
P_{ij} = \frac{1}{8} \left(\sum_{i=0}^{3} U_i + \sum_{i=0}^{3} L_i \right) \quad (1)
\]

After the mode decision, the selected modes and residual coefficients are encoded for sending to the decoder side. The bitstream format for Intra_4x4 coding of H.264/AVC is shown in Fig. 2, in which the bits for Intra prediction modes (16 units) are in preceding of CBP & Coefficients. For each intra_4x4 block, 1 or 4 bits are needed to indicate the intra mode. Then, overall 16 ~ 64 bits are required for a MB, and that is a large bitrate consumption in intra frame coding. The bitstream format changing of the bitstream is adopted. In addition, the DC mode become much less effective in the Multiple-Prediction as it is seldom used. To release this problem, the DC mode is assigned to be the last mode (mode number 8) in AIMBS.

3.1 Distance-based Weighted Prediction (DWP)

Let us first introduce the DWP that mainly focuses on improving the prediction accuracy of DC mode in complex areas of a picture. In Intra_4x4 prediction, 8 directional modes are used to predict the regions with unified directions and it is hoped that the DC mode can be used to predict the areas where the textures have no unified directions. However, DC mode cannot adapt any kind of variations. DWP is proposed to replace DC mode in Multiple-Prediction. The proposed solution can take advantages of both AIMBS and DWP and improve the robustness. Meanwhile it can compensate the shortages of them. Thus it performs well in both the smooth and complex areas.

\[
\sigma_p = \left[\frac{\sum_{i=0}^{3} (\mu - U_j)^2 + \sum_{i=0}^{3} (\mu - L_i)^2 + 4}{8} \right] / 8, \quad (2)
\]

\[
Th = \left[\frac{Q \times \text{step}^2 + 8}{16} \right]. \quad (3)
\]

where \(\mu \) in eq.(2) is the mean value of the neighbor pixels (\(U_7 \) to \(L_3 \)) as shown in Fig. 1.

In AIMBS, the prediction mode bits are required only for the blocks using Multiple-Prediction. Thus, the bits for intra prediction modes contain variable units. In this case, the decoder cannot distinguish the intra prediction mode bits and CBP & Coefficients bits. In order to solve this problem, the format changing of the bitstream is adopted. In addition, the DC mode become much less effective in the Multiple-Prediction as it is seldom used. To release this problem, the DC mode is assigned to be the last mode (mode number 8) in AIMBS.

\[
P_{ij} = \frac{1}{8} \left(\sum_{i=0}^{3} U_i + \sum_{i=0}^{3} L_i \right) \quad (1)
\]

After the mode decision, the selected modes and residual coefficients are encoded for sending to the decoder side. The bitstream format for Intra_4x4 coding of H.264/AVC is shown in Fig. 2, in which the bits for Intra prediction modes (16 units) are in preceding of CBP & Coefficients. For each intra_4x4 block, 1 or 4 bits are needed to indicate the intra mode. Then, overall 16 ~ 64 bits are required for a MB, and that is a large bitrate consumption in intra frame coding.

To reduce this burden of intra_4x4 mode bits, the AIMBS was proposed in [6]. The principle of AIMBS is that if the neighbor reconstructed pixels have the same or similar values, all the 9 prediction modes result in the same or similar prediction. In this case, it is unnecessary to perform all the 9 prediction modes and go through the complicated rate-distortion optimization (RDO) process to select the best one. The simplest DC mode can be used as the only prediction. Thus, the bits for indicating prediction mode can be saved. In practice, the AIMBS only uses the variance value of 8 reconstructed pixels on left and above (\(X \) and \(U_j \) to \(U_7 \) are not considered) to classify smoothness. In this way, each 4x4 block is classified into Single-Prediction or Multiple-Prediction. In Single-Prediction only DC mode is used where intra mode bits can be skipped while 9 prediction modes are used in Multiple-Prediction that is same as Intra_4x4 of H.264/AVC. The decision of using Single-Prediction or Multiple-Prediction is based on the relationship between the variance (\(\sigma_r \)) of the left and above reconstructed pixel values and a predefined threshold value \(Th \) based on quantization parameter (QP). The \(\sigma_r \) and \(Th \) are determined by the following two equations:

\[
\sigma_r = \left[\frac{\sum_{i=0}^{3} (\mu - U_j)^2 + \sum_{i=0}^{3} (\mu - L_i)^2 + 4}{8} \right] / 8, \quad (2)
\]

\[
Th = \left[\frac{Q \times \text{step}^2 + 8}{16} \right]. \quad (3)
\]

where \(\mu \) in eq.(2) is the mean value of the neighbor pixels (\(U_7 \) to \(L_3 \)) as shown in Fig. 1.

In AIMBS, the prediction mode bits are required only for the blocks using Multiple-Prediction. Thus, the bits for intra prediction modes contain variable units. In this case, the decoder cannot distinguish the intra prediction mode bits and CBP & Coefficients bits. In order to solve this problem, the format changing of the bitstream is adopted. In addition, the DC mode become much less effective in the Multiple-Prediction as it is seldom used. To release this problem, the DC mode is assigned to be the last mode (mode number 8) in AIMBS.

3.1 Distance-based Weighted Prediction (DWP)

Let us first introduce the DWP that mainly focuses on improving the prediction accuracy of DC mode in complex areas of a picture. In Intra_4x4 prediction, 8 directional modes are used to predict the regions with unified directions and it is hoped that the DC mode can be used to predict the areas where the textures have no unified directions. However, DC mode cannot adapt any kind of variations. DWP is proposed to replace DC mode in Multiple-Prediction. The proposed solution can take advantages of both AIMBS and DWP and improve the robustness. Meanwhile it can compensate the shortages of them. Thus it performs well in both the smooth and complex areas.
3.2 AIMBS-DWP

In AIMBS method, Multiple-Prediction is used to predict the detailed areas but the DC mode cannot adapt any kind of variations and it is rarely used in Multiple-Prediction. To overcome this shortage, the DWP mode can be used to replace the DC mode in Multiple-Prediction, which is more suitable for predicting the detailed areas. Thus, the accuracy of the Multi-Prediction can be significantly improved. As the computational requirement of the DWP mode is higher, the conventional DC mode is remained in the Single-Prediction part of the proposed AIMBS-DWP method. In this design, the DWP mode is used only when it is necessary. This proposed combination method of AIMBS-DWP can reduce bitrate and encoding time in the low detailed areas by AIMBS and improve the prediction accuracy in detailed areas by DWP.

The flowchart of the proposed AIMBS-DWP method is shown in Fig. 3, in which Intra_4x4 prediction is performed as the following procedure:

Step 1: Determination of Single-Prediction or Multiple-Prediction
If \(\sigma_p < Th \), go to Step 2 (Single-Prediction)
If \(\sigma_p \geq Th \), go to Step 3 (Multiple-Prediction)

Step 2: Single-Prediction:
- Only perform DC mode without RDO mode selection;
- The bits for indicating modes can be skipped;
- Go to Step 4.

Step 3: Multiple-Prediction:
- Use eight directional modes and DWP mode with RDO mode selection;
- Go to Step 4.

Step 4: Calculation of the residual coefficients, transformation and quantization.

Step 5: Entropy coding:
- Skip the mode bits for the blocks using Single-Prediction;
- Encode the coefficients & CBP first and then the Intra_4x4 mode bits.

4. EXPERIMENTAL RESULTS

To verify the efficiency of the proposed AIMBS-DWP method, the simulation is implemented on H.264/AVC reference software JM 11.0 [10]. For the purpose of comparison, we used the same sequences as in [6]. Three CIF sequences (Mobile, Paris, and Foreman), four 720P sequences (City, Night, Crew and Shuttlestart) and one 1080P sequence (Rolling Tomato) were used in the experiments. All the sequences are compressed with intra prediction only and the QPs of 22, 27, 32, and 37 are used. The test conditions are indicated as follows.

(a) Intra 16x16 and Intra 4x4 are used;
(b) RDO is used;
(c) The entropy coding method is CAVLC;
(d) The 8x8 transform is disabled;
(e) The adaptive rounding is disabled.

The performance of DWP, AIMBS and AIMBS-DWP are compared with anchor intra prediction scheme in H.264/AVC. The average PSNR gains and bitrate reductions are listed in the Tables I and II, which are calculated based on the BD-PSNR [11]. Table I shows the average bitrate reduction of the AIMBS-DWP method is 3.79%, which is a little greater than the sum of bitrate reduction of DWP (0.67%) and AIMBS (3.08%). In addition, the average PSNR gain is 0.19 dB for all sequences. The encoding time of Foreman sequence is shown in Table III. It is seen that the AIMBS-DWP maintains the time saving rate of the AIMBS method.

The AIMBS-DWP was also tested at small QPs range: QP = 20, 24, 28, and 32. From Table II, we can find that the proposed method can achieve 2.84% bitrate reduction with 0.15 dB PSNR increase. The performance of original AIMBS in small QPs is not as good as in large QPs. In this situation, the proposed method can improve the performance significantly. Moreover, we can see that AIMBS-DWP has a greater improvement in the sequences with complicated content, such as Paris, City and Night sequences. Small QPs and complicated content imply high quality coding requirement. The proposed method performs better to meet high quality requirement, which indicating that it has higher prediction accuracy.

5. CONCLUSIONS

In this paper, a novel AIMBS-DWP method is proposed to improve the coding efficiency of Intra_4x4 prediction of H.264/AVC. Experimental results show that the performance of AIMBS-DWP is better than sum of the improvements of AIMBS and DWP. It can achieve 3.79% and 2.84% average bitrate reductions as compared with H.264/AVC in medium and small QPs respectively. It can also improve the robustness of AIMBS in much larger range of QPs especially in high visual quality applications.
Table I. Simulation results with QP=[22, 27, 32, 37].

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Resolution</th>
<th>Number of frames</th>
<th>DWP</th>
<th>AIMBS</th>
<th>AIMBS-DWP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ΔBitrate(%)</td>
<td>ΔPSNR(dB)</td>
<td>ΔBitrate(%)</td>
</tr>
<tr>
<td>Mobile</td>
<td>CIF</td>
<td>300</td>
<td>-0.47 0.05</td>
<td>-0.49 0.05</td>
<td>-1.01 0.11</td>
</tr>
<tr>
<td>Paris</td>
<td>150</td>
<td>-0.83 0.08</td>
<td>-1.01 0.09</td>
<td>-1.87 0.17</td>
<td></td>
</tr>
<tr>
<td>Foreman</td>
<td>300</td>
<td>-0.47 0.03</td>
<td>-2.95 0.18</td>
<td>-3.53 0.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average coding efficiency for CIF</td>
<td>-0.59 0.05</td>
<td>-1.48 0.11</td>
</tr>
<tr>
<td>City</td>
<td>720P</td>
<td>150</td>
<td>-1.38 0.10</td>
<td>-1.68 0.11</td>
<td>-3.08 0.21</td>
</tr>
<tr>
<td>Night</td>
<td>150</td>
<td>-1.43 0.10</td>
<td>-1.91 0.13</td>
<td>-3.28 0.23</td>
<td></td>
</tr>
<tr>
<td>Crew</td>
<td>150</td>
<td>-0.27 0.01</td>
<td>-4.41 0.18</td>
<td>-4.65 0.19</td>
<td></td>
</tr>
<tr>
<td>Shuttlestart</td>
<td>150</td>
<td>-0.69 0.03</td>
<td>-5.58 0.22</td>
<td>-6.33 0.25</td>
<td></td>
</tr>
<tr>
<td>Rolling Tomato</td>
<td>1080P</td>
<td>60</td>
<td>0.13 -0.00</td>
<td>-6.62 0.11</td>
<td>-6.57 0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average coding efficiency for HD</td>
<td>-0.73 0.05</td>
<td>-4.04 0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>-0.67 0.05</td>
<td>-3.08 0.13</td>
</tr>
</tbody>
</table>

Table II. Simulation results with QP=[20, 24, 28, 32].

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Resolution</th>
<th>Number of frames</th>
<th>DWP</th>
<th>AIMBS</th>
<th>AIMBS-DWP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ΔBitrate(%)</td>
<td>ΔPSNR(dB)</td>
<td>ΔBitrate(%)</td>
</tr>
<tr>
<td>Mobile</td>
<td>CIF</td>
<td>300</td>
<td>-0.49 0.06</td>
<td>-0.25 0.03</td>
<td>-0.75 0.10</td>
</tr>
<tr>
<td>Paris</td>
<td>150</td>
<td>-0.82 0.08</td>
<td>-0.55 0.06</td>
<td>-1.35 0.14</td>
<td></td>
</tr>
<tr>
<td>Foreman</td>
<td>300</td>
<td>-0.66 0.05</td>
<td>-1.66 0.11</td>
<td>-2.29 0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average coding efficiency for CIF</td>
<td>-0.66 0.06</td>
<td>-0.82 0.07</td>
</tr>
<tr>
<td>City</td>
<td>720P</td>
<td>150</td>
<td>-1.64 0.13</td>
<td>-0.74 0.06</td>
<td>-2.30 0.18</td>
</tr>
<tr>
<td>Night</td>
<td>150</td>
<td>-1.55 0.12</td>
<td>-1.09 0.08</td>
<td>-2.54 0.19</td>
<td></td>
</tr>
<tr>
<td>Crew</td>
<td>150</td>
<td>-0.34 0.01</td>
<td>-2.99 0.12</td>
<td>-3.47 0.14</td>
<td></td>
</tr>
<tr>
<td>Shuttlestart</td>
<td>150</td>
<td>-0.86 0.04</td>
<td>-3.98 0.16</td>
<td>-4.90 0.20</td>
<td></td>
</tr>
<tr>
<td>Rolling Tomato</td>
<td>1080P</td>
<td>60</td>
<td>0.18 -0.00</td>
<td>-5.16 0.06</td>
<td>-5.13 0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average coding efficiency for HD</td>
<td>-0.84 0.06</td>
<td>-2.79 0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>-0.77 0.06</td>
<td>-2.05 0.08</td>
</tr>
</tbody>
</table>

Table III. Encoding time of Foreman sequence.

<table>
<thead>
<tr>
<th>Foreman(CIF)</th>
<th>H.264</th>
<th>DWP</th>
<th>AIMBS</th>
<th>AIMBS-DWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>QP Time(s)</td>
<td>Time(s)</td>
<td>Time(s)</td>
<td>Time(s)</td>
<td>Time(s)</td>
</tr>
<tr>
<td>22</td>
<td>429.818</td>
<td>429.634</td>
<td>379.096</td>
<td>380.202</td>
</tr>
<tr>
<td>27</td>
<td>371.297</td>
<td>370.816</td>
<td>279.042</td>
<td>279.244</td>
</tr>
<tr>
<td>32</td>
<td>328.338</td>
<td>327.638</td>
<td>173.022</td>
<td>173.164</td>
</tr>
<tr>
<td>37</td>
<td>299.763</td>
<td>300.155</td>
<td>108.425</td>
<td>108.352</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENT

The work described in this paper was substantially supported by a grant from Hong Kong SAR Government with GRF Project number of 9041501 (CityU 119909).

REFERENCES