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Abstract
Objective: To investigate the optimal control strategy for Plasmodium vivax
malaria transmission in Korea.
Methods: A Plasmodium vivax malaria transmission model with optimal control
terms using a deterministic system of differential equations is presented, and
analyzed mathematically and numerically.
Results: If the cost of reducing the reproduction rate of the mosquito population
is more than that of prevention measures to minimize mosquito-human contacts,
the control of mosquito-human contacts needs to be taken for a longer time,
comparing the other situations. More knowledge about the actual effectiveness
and costs of control intervention measures would give more realistic control
strategies.
Conclusion: Mathematical model and numerical simulations suggest that the use
of mosquito-reduction strategies is more effective than personal protection in
some cases but not always.
1. Introduction

Malaria is a mosquito-borne infectious disease

caused by a eukaryotic protist of the genus Plasmodium.

Malaria is naturally transmitted by the bite of a female

Anopheles mosquito. The primary vector in Korea is

reported to be A sinensis. Since the re-emergence of

Plasmodium vivax malaria in 1993[1,2], it has been
ibuted under the terms o
y-nc/3.0) which permits un
is properly cited.

ase Control and Prevention
endemic and continues to cause extensive morbidity in

Korea, despite the huge efforts invested to control it.

The first mathematical malaria model proposed by

Ross [3], was subsequently modified by MacDonald,

which has influenced both the modeling and the appli-

cation of control strategies to malaria [4]. Recently, the

optimal control theory has been applied to malaria

Okosun et al [5], and to vector-borne disease Lashari
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Table 1. The description of parameters for the model

Parameter Description

bm Per capita rate of newly emerging adult mosquitoes

bmh Infected mosquito to human transmission efficiency

bhm Infected human to mosquito transmission efficiency

s Average number of contact made to host by a single mosquito

r Per capita rate of progression of humans from the infectious state to the susceptible state

p Probability of exposed humans going through short-term incubation periods

Ts
h Per capita rate of progression of humans from the short term of exposed state to the infectious state

T l
h Per capita rate of progression of humans from the long term of exposed state to the infectious state
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et al [6], who modified the model of Blayneh et al [7],

but introduced some awkward terms.

Models for Plasmodium flaciparum malaria or

vector-borne diseases have been studied by many

researchers [8e10]. In contrast, models for P vivax

malaria are rare. Recently, Nah et al [11] proposed

a model of P vivax malaria transmission. In this paper,

by combining the ideas of Blayneh et al [7] and Nah

et al [11], we propose the deterministic model of P vivax

malaria transmission with optimal control terms. Using

the optimal control theory, we sought optimal control

strategies of P vivax malaria transmission in Korea.

2. Materials and Methods

2.1. Model description: optimal control
To construct a deterministic model for P vivax

malaria transmission with control terms, the model of

Nah et al [11] was modified and optimal control terms

inspired by the model of Blayneh et al [7] were added as

follows:
8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

dSH

dt
Z� bmhsð1� u2ðtÞÞSHðtÞ

H
IMðtÞ þ rIHðtÞ

dEs
H

dt
Zpbmhsð1� u2ðtÞÞSHðtÞ

H
IMðtÞ � Ts

hE
s
HðtÞ

dEl
H

dt
Zð1� pÞbmhsð1� u2ðtÞÞSHðtÞ

H
IMðtÞ � Tl

hE
l
HðtÞ

dIH

dt
ZTs

hE
s
HðtÞ þ Tl

hE
l
HðtÞ � rIHðtÞ

dSM

dt
Zbmð1� u1ðtÞÞðSMðtÞ þ IMðtÞÞ � bhmsð1� u2ðtÞÞIHðtÞ

H
SMðtÞ � bmSMðtÞ � ru1ðtÞSMðtÞ

dIM

dt
Zbhmsð1� u2ðtÞÞIHðtÞ

H
SMðtÞ � bmIMðtÞ � ru1ðtÞIMðtÞ

(1)
In the model, human population HðtÞ is divided into

four classes: susceptible (SH ), short term exposed (Es
H ),
long term exposed (El
H ), and infectious (IH ). Mosquito

population MðtÞ is also divided into two classes:

susceptible (SM ), and infectious (IM ). Note that the

mosquito population MðtÞ is not constant while human

population HðtÞ is constant.
The factor of 1� u1ðtÞ reduces the reproduction rate

of the mosquito population. It is assumed that the

mortality rate of mosquitoes (susceptible and infected)

increases at a rate proportional to u1ðtÞ, where r > 0 is

a rate constant. In the human population, the associated

force of infection is reduced by a factor of 1� u2ðtÞ,
where u2ðtÞ measures the level of successful prevention

efforts. In fact, the control u2ðtÞ represents the use of

prevention measures to minimize mosquito-human

contacts. Table 1 lists detailed descriptions of the

parameters. The system (1) has a unique solution set.

(See Appendix A for detail.)

An optimal control problem can now be formulated

for the transmission dynamics of P vivax malaria

transmission in Korea. The goal is to show that it is

possible to implement time dependent anti-malaria
control techniques while minimizing the cost of imple-

mentation of such control measures.



Table 2. The parameter values for the model

Parameter Value

bm 0.7949 [0.1,1.5]

bmh 0.5

bhm 0.5

s 0.3 [0.25,0.5]

r 0.07 [0.01,0.5]

p 0.25

Ts
h 1/25.9

T l
h 1/360.3
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An optimal control problem with the objective cost

functional can be given by

Jðu1; u2ÞZ
ZT

0

ðAIHðtÞ þB1

2
u21ðtÞ þ

B2

2
u22ðtÞÞdt; (2)

subject to the state system given by (1).

The goal is to minimize the infected human pop-

ulations and the cost of implementing the control. In the

objective cost functional, the quantities A; B1 and B2

represent the weight constants of infected human, for

mosquito control and prevention of mosquito-human

contacts, respectively. The costs associated with

mosquito control and prevention of mosquito-human

contacts are described in the terms B1u
2
1 and B2u

2
2,

respectively.

Optimal control functions ðu�1; u)2 Þ need to be found

such that

J
�
u)1 ;u

)
2

�
ZminfJðu1;u2Þjðu1;u2Þ˛Ug;

subject to the system of equations given by (1), where

UZfðu1;u2ÞjuiðtÞ is piecewise continuous on ½0;T �;0
� uiðtÞ � 1; iZ1;2g is the control set:
Such optimal control functions ðu)1 ; u)2 Þ exist, and the

optimality system can be derived. (See Appendix B for

detail.)
Figure 1. Optimal controls when B1ZB2
2.2. Numerical simulation
Using the forward-backward sweep method, the

optimality system was solved numerically. This consists

of 12 ordinary differential equations from the state and

adjoint equations, coupled with the two controls. In

choosing upper bounds for the controls, it was supposed

that the two controls would not be 100% effective, so

the upper bounds of u1 and u2 were chosen to be 0.8.

The weight in the objective functional is A1Z1000. The

parameters in Table 2 were adopted from other articles

[11] and used for our simulation.

We simulate the model in different scenarios. Figure 1

depicts scenarios for the state variables of the model for

the case when the cost is the same for the two controls.

Figure 2 depicts scenarios for the state variables of the

model for the case when the cost of prevention measures

to minimize mosquito-human contact is more expensive

than the cost of reducing the reproduction rate of the

mosquito population. Figure 3 depicts scenarios for the

state variables of the model for the case when the cost of

reducing the reproduction rate of the mosquito population

are more expensive than the cost of prevention measures

to minimize mosquito-human contacts.

It is also worth noting that different initial mosqui-

toes populations do not have effect on the optimal

strategies (Figures 4 e 6).

2.3. Results
If the cost of reducing the reproduction rate of the

mosquito population is more than that of prevention

measures to minimize mosquito-human contacts, the u2
control needs to be taken for a longer time, comparing

the other situations (Figures 1 to 3). In that situation, full

effort for u2 is needed after the high peak of infected

human population.

On the other hand, Figures 4 to 6 suggest that even

though the mosquito population is not so high in initial

point, full efforts for u1 and u2 are needed for at least

some of the time.
Z1000 with high mosquito population.



Figure 3. Optimal controls when B1Z1000; B2Z10 with high mosquito population.

Figure 4. Optimal controls when B1ZB2Z1000 with low mosquito population.

Figure 2. Optimal controls when B1Z10; B2Z1000 with high mosquito population.
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Figure 6. Optimal controls when B1Z1000; B2Z10 with low mosquito population.

Figure 5. Optimal controls when B1Z10; B2Z1000 with low mosquito population.
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3. Discussion and Conclusions

After 1993’s reemergence of malaria, the endemicity

of P vivax malaria is becoming a growing concern in

South Korea. Public health advisories were subsequently

issued to apply community mosquito control and

personal protection.

The purpose of this work is to suggest optimal control

strategies of P vivax malaria in different scenarios. In all

cases, optimal control programs lead effectively reduce

the number of infectious individuals. We have used

a deterministic model with time-dependent parameters to

develop the transmission dynamics of P vivax malaria in

Korea. For numerical simulations, most parameters were

adopted from other articles [11].

Mathematical model and numerical simulations

suggest that the use of mosquito-reduction strategies is

more effective than personal protection in some cases
but not always. Public health authorities should choose

the proper control strategy where their situation lies in

the scenarios discussed in the Results section.
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Appendix A. The existence and uniqueness
of solution

We consider system (1). We obtain the existence and

uniqueness of solution. In here we are given a suitable

control set.



Optimal control strategy of Plasmodium vivax
Theorem 1. The system (1) with any initial condition

has a unique solution.

Proof. We can rewrite (1) as :

dX

dt
ZAX þFðX ;UÞ;

where XZ
�
SH ;E

s
H ;E

l
H ; IH ;SM ; IM

�T
;

AZ

0
BBBBBB@

0 0 0 r 0 0

0 �Ts
h 0 0 0 0

0 0 �Ts
h 0 0 0

0 Ts
h T l

h �r 0 0

0 0 0 0 �bm 0

0 0 0 0 0 �bm

1
CCCCCCA

UZ½u1;u2�T and FðX ;UÞZ
�
�bmhsð1�u2ðtÞÞ

SH ðtÞ
H

IM ðtÞ;

pbmhsð1�u2ðtÞÞ
SH ðtÞ
H

IM ðtÞ;ð1�pÞbmhs ð1�u2ðtÞÞSH ðtÞ
H

IM ðtÞ;0;bmð1�u1ðtÞÞðSM ðtÞþIM ðtÞÞ�bhmsð1�u2ðtÞÞ
SM

IH ðtÞ
H

�ru1ðtÞSMðtÞ;bhmsð1�u2ðtÞÞSM
IH ðtÞ
H

�ru1ðtÞ

IM ðtÞ
�T

. So let GðX ;UÞZAXþFðX ;UÞ. Defined matrix

A is a linear. So A is a bounded operator. Define

a matrix norm and a vector norm as follows

kAkZSi;jjaijj;kXkZkðxiÞkZSijxij, respectively. To

show the existence of solution of the system (1), we

have to prove that FðX ;UÞ satisfy a Lipschitz condition.

Let

HðtÞ :ZSHðtÞ þEs
HðtÞ þEl

HðtÞ þ IHðtÞ:

and

MðtÞ :ZSMðtÞ þ IMðtÞ:

But

d

dt
H 0ðtÞZ0: So; HðtÞhH

�
a constant

	
<N;

d

dt
MðtÞZ� u1ðtÞðbm þ rÞMðtÞ � 0: Hence;

MðtÞ � Mð0Þ<N:

For any given pairs ðX1;UÞ; ðX2;VÞ;

XjZ
h
SHj;E

s
Hj;E

l
Hj; IHj;SMj; IMj

iT
; jZ1;2;

UZðu1;u2ÞT ;VZðy1; y2ÞT ;
we obtain,
kFðX1;UÞ �FðX2;VÞk
� bmhs=H jð1� u2ÞSH1IM1 � ð1� y2ÞSH2IM2j
þpbmhs=H jð1� u2ÞSH1IM1 � ð1� y2ÞSH2IM2j
þð1� pÞbmhs=H jð1� u2ÞSH1IM1 � ð1� y2ÞSH2IM2j
þbmjð1� u1ÞðSM1 þ IM1Þ � ð1� y1ÞðSM2 þ IM2Þj
þbhms=H jð1� u2ÞSM1IH1 � ð1� y2ÞSM2IH2j
þrju1SM1 � y1SM2j þ bhms=H jð1� u2ÞSM1IH1

�ð1� y2ÞSM2IH2j þ rju1IM1 � y1IM2j
Z2bmhs=H jð1� u2ÞSH1IM1 � ð1� y2ÞSH2IM2j
þbmjð1� u1ÞðSM1 þ IM1Þ � ð1� y1ÞðSM2 þ IM2Þj
þ2bhms=H jð1� u2ÞSM1IH1 � ð1� y2ÞSM2IM2j
þrju1SM1 � y1SM2j þ rju1IM1 � y1IM2j

(i)

We estimate the 4 terms in the right side of (i):

2bmhs=H jð1� u2ÞSH1IM1 � ð1� y2ÞSH2IM2j
� 2bmhs=H ½2Mð0ÞjSH1 � SH2j þ 2H jIM1 � IM2j
þHMð0Þju2 � y2j�;

(ii)

bmjð1� u1ÞðSM1 þ IM1Þ � ð1� y1ÞðSM2 þ IM2Þj
� 2bm½jSM1 � SM2j þ jIM1 � IM2j þMð0Þju1 � y1j�; (iii)

2bhms=H jð1� u2ÞSH1IM1 � ð1� y2ÞSH2IM2j
� 2bhms=H ½2Mð0ÞjIH1 � IH2j þ 2H jSM1 � SM2j
þMð0ÞH ju2 � y2j�;

(iv)

rju1SM1 � y1SM2j � r½Mð0Þju1 � y1j þ jSM1 � SM2j�
(v)

and

rju1IM1 � y1IM2j � r½Mð0Þju1 � y1j þ jIM1 � IM2j�: (vi)

Since 0 � ui; yi � 1;0 � SHi; IHi � H and 0 � SMi; IMi �
Mð0Þ; iZ1;2; by (i)-(vi), we have

kFðX1;UÞ�FðX2;VÞk
�ð4bmhsMð0Þ=HÞjSH1�SH2jþð4bhmsMð0Þ=HÞjIH1�IH2j
þð2bmþ4bhmsMð0ÞþrÞjSM1�SM2j
þð2bmþ4bmhsMð0ÞþrÞjIM1�IM2j
þð2bmMð0Þþ2rMð0ÞÞju1�y1j
þ ð2bmhþ2bhmsMð0ÞÞju2�y2j
�KðjSH1�SH2jþjSM1�SM2jþjIH1�IH2jþjIM1�IM2j
þju1�y1jþju2�y2jÞ
�KðkX1�X2kþkU�VkÞ;

where KZmaxf4bmhsMð0Þ=H ;4bhmsMð0Þ=H ;2bm
þ4bhmsMð0Þþr;4bmhsþ2bmþ
r;2Mð0ÞðbmþrÞ;2bmhþ2bhm sMð0Þg Thus, we obtain

FðX ;UÞ is uniformly Lipschitz continuous. Let

LZkAk<N: Then,

kGðX1;UÞ �GðX2;VÞk � ðK þ LÞðkX1 �X2k
þ kU �VkÞ:
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Hence, the system (1) satisfy all conditions of the

Picard-Lindelof Theorem ([12,13]) and also the function

FðX ;UÞ is continuously differentiable. Therefore, the

system (1) have a unique solution.
Appendix B. Analysis of optimal control
control problem

We are to prove the existence of optimal control pairs

for the system (1). Firstly, We set control space

UZfðu1;u2Þjui is piecewise continuous on ½0;T �;0
� uiðtÞ � 1; iZ1;2g:
We consider an optimal control problem to minimize

the objective functional:

Jðu1;u2ÞZ
ZT

0

�
AIHðtÞ þB1

2
u21ðtÞ þ

B2

2
u22ðtÞ

	
dt:
Theorem 2. There exist an optimal control u�1 and u�2
such that

J
�
u�1;u

�
2

�
Z min

u1;u2˛U
Jðu1;u2Þ (3)

subject to the control system (1) with initial conditions.-

Proof. To prove the existence of an optimal control pairs

we use the result in [14]. The set of control and corre-

sponding state variables is a nonempty. Because for

each control pairs we have proved in the Theorem 1 that

there exists corresponding state solutions. And also it is

ok when the control u1Zu2Z0. Note that the control

and the state variables are nonnegative values. The

control space U is close and convex by definition. In the

minimization problem, the convexity of the objective

functional in u1 and u2 have to satisfy. The integrand in

the functional, AIH ðtÞ þB1

2
u21ðtÞ þ

B2

2
u22ðtÞ is convex

function on the control u1 and u2. Also we can easily

check that there exist a constant r> 1, a numbers u1 �
0 and u2 > 0 such that

Jðu1;u2Þ � u1 þu2

�ju1j2þju2j2
�r=2

which completes the existence of an optimal control.To

find the optimal solution we apply Pontryagin’s

Maximum Principle ([15e17]) to the constrained

control problem, then the principle converts (1), (2) and

(3) in to a problem of minimizing pointwise a Hamilto-

nian, H, with respect to u1 and u2. The Hamiltonian for

our problem is the integrand of the objective functional

coupled with the six right hand sides of the state

equations:

HðxðtÞ;uðtÞ;lðtÞÞ ZAIHðtÞ þB1

2
u21ðtÞ þ

B2

2
u22ðtÞ

þS6
iZ1liðtÞgi ð4Þ

where gi is the right hand side of the differential equa-

tion of the ith state variable and also
xðtÞZðSH ;Es
H ;E

l
H ; IH ;SM ; IM Þ;uðtÞZðu1ðtÞ;u2ðtÞÞ and

lðtÞZðl1ðtÞ;l2ðtÞ;l3ðtÞ;l4ðtÞ;l5ðtÞ;l6ðtÞÞ:
By applying Pontryagin’s Maximum Principle([18]) if

ðx�ðtÞ;u�ðtÞÞ is an optimal control, then there exists

a non-trivial vector function lðtÞ satisfying the

following equalities:

dx

dt
Z

vHðxðtÞ;uðtÞ;lðtÞÞ
vl

;

0Z
vHðx�ðtÞ;u�ðtÞ;lðtÞÞ

vu
;

l0ðtÞZ� vHðx�ðtÞ;u�ðtÞ;lðtÞÞ
vx

:

If follows from the derivation above

8>>>>>>><
>>>>>>>:

u�iZ0; if
vH

vui
< 0

0� u�i � 1; if
vH

vui
Z0

u�iZ1; if
vH

vui
> 0:

Now, we apply the necessary conditions to the Hamil-

tonian H.

Theorem 3. Let S�H ðtÞ;Es�
H ðtÞ;El�

H ðtÞ; I�H ðtÞ; S�M ðtÞ and

I�M ðtÞ be optimal state solutions with associated optimal

control variables u�1 and u�2 for the optimal control

problem (1) and (2). Then, there exist adjoint variables

l1ðtÞ; l2ðtÞ; l3ðtÞ; l4ðtÞ; l5ðtÞ and l6ðtÞ that satisfy

l01ðtÞZl1ðtÞbmhs
�
1� u�2ðtÞ

�
I�M

1

H

�l2ðtÞpbmhs
�
1� u�2ðtÞ

�
I�M

1

H

�l3ðtÞð1� pÞbmhs
�
1� u�2ðtÞ

�
IM

1

H

l02ðtÞZl2ðtÞTs
h � l4ðtÞTs

h

l03ðtÞZl3ðtÞTl
h � l4ðtÞTl

h

l04ðtÞZ�A�l1ðtÞrþl4ðtÞrþl5ðtÞbhms
�
1�u�2ðtÞ

�
S�
M

1

H

�l6ðtÞbhms
�
1�u�2ðtÞ

�
S�
M

1

H

l05ðtÞZ� l5ðtÞ
�
bm

�
1� u�1ðtÞ

� � bhms
�
1� u�2ðtÞ

�
I�H

1

H

�bm � ru�1ðtÞ
�

�l6ðtÞbhms
�
1� u�2ðtÞ

�
I�H

1

H
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l06ðtÞZl1ðtÞbmhs
�
1� u�2ðtÞ

�
S�
H

1

H

�l2ðtÞpbmhs
�
1� u�2ðtÞ

�
S�
H

1

H

�l3ðtÞð1� pÞbmhs
�
1� u�2ðtÞ

�
S�
H

1

H

�l5ðtÞbm
�
1� u�1ðtÞ

�þ l6
�
bm þ ru�1

�
with transversality conditions(or boundary conditions)

ljðTÞZ0; jZ1;2;.;6: (5)

Furthermore, the optimal control u�1 and u�2 are given by

Optimal control strategy of Plasmodium vivax
8>>>>>>><
>>>>>>>:

u�1ðtÞZmin



max



0;

1

B1

�ðrþ bmÞl5ðtÞS�
M þ ðrl6ðtÞ þ bml5ðtÞÞI�MðtÞ

��
;1

�

u�2ðtÞZmin



max



0;

1

B2

�
ð � l1ðtÞ þ pl2ðtÞ þ ð1� pÞl3ðtÞÞbmhsS

�
HðtÞI�MðtÞ

1

H

þðl6ðtÞ � l5ðtÞÞ bhmsS
�
MðtÞI�HðtÞ

1

H

	�
;1

� (6)
Proof. To determine the adjoint equations and the

transversality conditions, we use the Hamiltonian (4).

From setting SH ðtÞZS�H ðtÞ;Es
H ðtÞZEs�

H ðtÞ;El
H ðtÞZ

El�
H ðtÞ; IH ðtÞZI�H ðtÞ;SM ðtÞZS�MðtÞ and IM ðtÞZI�M ðtÞ,

and also differentiating the Hamiltonian (4) with

respect to SH ;E
s
H ;E

l
H ; IH ;SM and IM ,we obtain
l01Z� vH

vSH
Zl1bmhs

�
1� u�2

�
I�M

1

H
� l2pbmhs

�
1� u�2

�
I�M

1

H
�

l02Z� vH

vEs
H

Zl2T
s
h � l4T

s
h

l03Z� vH

vEl
H

Zl3T
l
h � l4T

l
h

l04Z� vH

vIH
Z�A� l1rþ l4rþ l5bhms

�
1� u�2

�
S�
M

1
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�
bm þ ru�1

�
:

By the optimality conditions, we have

0Z
vH

vu1
ZB1u

�
1ðtÞ � l5ðtÞ

�
bm

�
S�
M þ I�M

�þ rS�
M

�� l6ðtÞrI�MðtÞ

0Z
vH

vu2
ZB2u

�
2ðtÞ þ l1ðtÞbmhsS

�
HðtÞI�MðtÞ

1

H
� l2ðtÞpbmhsS

�
Hðt

�l3ðtÞð1� pÞbmhsS
�
HðtÞI�MðtÞ

1

H
þ l5ðtÞbhmsI

�
HðtÞS
Using the property of the control space, we obtain the

characterizations of u�1ðtÞ and u�2ðtÞ in (6). From

the fixed of start time, we have transvesality

conditions (5).
l3ð1� pÞbmhs
�
1� u�2

�
I�M

1

H

s
�
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�
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�
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1

H
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�
1� u�2

�
SH

1

H

ÞI�MðtÞ
1

H

�
MðtÞ

1

H
� l6ðtÞbhmsS

�
MðtÞI�HðtÞ

1

H
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