Liquidity Shocks and Asset Price Boom/Bust Cycles

Ramón Adalid and Carsten Detken
European Central Bank
(usual disclaimer applies)

Centre for Central Banking Studies (CCBS)
Chief Economists’ Workshop: The Nexus between Macroeconomics and Finance – Implications for Policy Analysis
20-22 May, 2008
Results (1)

- Liquidity shocks during booms provide information on post-boom real growth (after controlling for interest rate based measures of the monetary policy stance, the length and size of booms, housing prices and accounting for endogeneity issues): *Cross-section bust analysis*

- Liquidity shocks contain information on housing price developments especially during asset price boom periods (beyond the usual determinants like income and interest rates and after accounting for endogeneity issues): *Panel boom analysis*
Results (2)

• Methodology to derive measure of liquidity shocks implies referring to concepts of
 a) accumulating imbalances and
 b) variation in velocity

• We find results are robust for M3 but not for (private or total) domestic credit

[=> Info content of net external assets important? If yes, measures of global liquidity, which net out NEA, might not be optimal for the analysis of asset price cycles]
Outline of Presentation

1. The literature on liquidity and asset prices.
3. VAR based measures of liquidity shocks for money and credit growth.
4. Cross-section bust analysis: role of liquidity shocks (during boom phase) to explain post-boom recessions; use also quantile and robust regressions and IV methods.
5. Panel boom analysis: role of liquidity shocks to explain housing prices in boom phases; compare with overall sample (also to explain CPI inflation). LSDV and GMM.
6. Conclusions
Liquidity and Asset Prices...in General

2. Agency problems: Bank lending and balance-sheet channels reinforce link between credit/money and asset prices (recently liquidity version of bank lending channel, Diamand and Rajan, AER, 2006).

4. Leverage targeting behaviour by banks (Adrian and Shin, 2006).
Liquidity and Asset Price...Booms

Liquidity even triggering asset price booms?

1. Austrian over-investment fostered by low interest rates (various BIS publications).
3. Behavioural characteristics:
 - Disaster myopia in times of loose credit conditions (Guttentag/Herring, JoF, 1984; Herring/Wachter, 2003)
 - Illiquidity seeking, tail-risk seeking, herding (Rajan, 2006).
4. Learning and risk averse agents (Marcet, Adam, Nicolini, ECB, WP 862, February 2008).
Liquidity and Asset Prices...Empirical Work (1)

- 4 dimensions seemingly important:
 a) Definition of liquidity (constant vs variable velocity; current vs imbalance measure)
 b) General versus specific time periods (single vs specific or variable regimes)
 c) Estimation methods (linear vs non-linear; country vs panel)
 d) Type of asset prices (equity vs housing)

The more yellow, the more likely to find info content of monetary liquidity for asset prices.
Liquidity and Asset Prices... Empirical Work (2)

• For example: two very recent papers:

b) “House Prices, Money, Credit and the Macroeconomy”, Goodhart and Hofmann, ECB WP, No. 888, April 2008

Both use panel VARs including asset prices finding strong effects of money shocks on real residential property prices with different interpretations for leaning against the wind policy: a) uncertainty and size do not recommend it; b) stronger effect of mon pol on housing prices during booms could make it an attractive option.
2. Asset Price Boom Identification and Classification

• An asset price boom is a period in which the aggregate real asset price index is more than 10 percent above its recursively estimated, slow moving trend (quarterly BIS data).
 – aggregate (weighted equity and private and commercial real estate);
 – asset price “gap” (accumulation of imbalances);
 – recursive estimation (HP filter, $\lambda=100000$);
Identified asset price boom episodes

Aggregate asset price booms in selected industrial countries (1970-2004)

<table>
<thead>
<tr>
<th>High cost</th>
<th>Low cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988Q3-1990Q1 (7)</td>
<td>1979Q4-1981Q4 (9)</td>
</tr>
<tr>
<td>1988Q1-1990Q1 (9)</td>
<td>1988Q2-1990Q3 (10)</td>
</tr>
<tr>
<td>1988Q2-1990Q1 (8)</td>
<td>Switzerland 1999Q1-2001Q1 (9)</td>
</tr>
<tr>
<td>1983Q4-1986Q4 (13)</td>
<td>Denmark 1998Q1-2001Q2 (14)</td>
</tr>
<tr>
<td>1986Q2-1991Q2 (21)</td>
<td>Spain 1999Q1-2001Q2 (10)</td>
</tr>
<tr>
<td>1988Q4-1990Q3 (8)</td>
<td>France 1999Q1-2000Q4 (8)</td>
</tr>
<tr>
<td>1987Q1-1990Q3 (13)</td>
<td>Ireland 1977Q4-1979Q3 (8)</td>
</tr>
<tr>
<td>1986Q3-1990Q2 (16)</td>
<td>Norway 1999Q1-2001Q2 (10)</td>
</tr>
<tr>
<td></td>
<td>New Zealand 1994Q3-1996Q4 (10)</td>
</tr>
<tr>
<td></td>
<td>Sweden 1996Q2-2000Q3 (18)</td>
</tr>
<tr>
<td></td>
<td>United States 1986Q1-1987Q3 (7)</td>
</tr>
</tbody>
</table>

Number of high-cost booms	20
Total number of quarters	253
Average number of quarters	12.7
Median number of quarters	9

Number of low-cost booms	22
Total number of quarters	262
Average number of quarters	11.9
Median number of quarters	10

*Figures in parentheses refer to the number of quarters of the particular boom.

**For Australia 2004Q4 was identified as a boom quarter.
3. VAR based measures of liquidity shocks

- Attempt to solve endogeneity problem.
- \(Y_t = A(L) Y_{t-1} + u_t \) where \(u_t \) linear combinations of independently distributed (structural) shocks to \(Y_t \).
- Identify structural shocks by constraints on contemporaneous effects of these shocks.
- We do not claim to identify monetary policy shocks! VARs simply used to define shock component in the sense of “unusual” given the economic environment.
- VAR Cholesky ordering:
 - \(CPI, GDP_r, is, property prices, equity prices, M3 \) or \(domestic credit, real effective exchange rate, exogenous: commodity prices in USD. \)
- All variables in growth rates (and first difference of ‘is’).
- Lag length Hannan-Quin: 1 or 2 quarters.
4. Cross-section Bust Analysis

Explaining post-boom real GDP growth (average of 8 quarters)

41 boom episodes = n sections; variables defined with respect to (beginning, average, peak, end of) boom

small sample problem: quantile regressions, robust regressions, excluding suspicious boom episodes.

\[y_r \text{ (post-boom)}_n = \beta_0 + \beta_1 \; y_r \text{ (boom)}_n + \beta_2 \; \text{boom length}_n + \beta_3 \; rrp^n + \beta_4 \; \Delta \text{Taylor gap}_n^j + \beta_6 \; \text{cumulated liquidity}_n^l \]

Cumulated liquidity is sum of quarterly shocks starting two years before the boom until peak quarter of boom

\(\Delta \text{Taylor gap} \) either peak to start quarter of boom (“boom”) or last quarter of 2\text{nd} post boom year to peak quarter of boom (“post”).
Explaining Post-Boom Recession (also controlling for housing prices)

- Only money contributes significantly; private credit not.
- Coefficients robust (across methods and specifications) and reveal economic significance.
- Housing price growth robust and important (slightly collinear with money)
- Money based liquidity shocks survive adding boom housing price growth and post-boom housing price decline.

Table P2: Regressions explaining the average real GDP post-boom growth

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>0.53*** (0.001)</td>
<td>-0.24** (0.031)</td>
<td>0.09* (0.070)</td>
<td>-0.10** (0.020)</td>
<td>0.00 (0.896)</td>
<td>-0.01 (0.823)</td>
<td>0.39</td>
<td>0.34</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Reg (Q)</td>
<td>0.40** (0.039)</td>
<td>-0.23* (0.060)</td>
<td>0.11** (0.031)</td>
<td>-0.10** (0.046)</td>
<td>0.00 (0.986)</td>
<td>-0.01 (0.986)</td>
<td>0.34</td>
<td>0.30</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
<td>0.51*** (0.001)</td>
<td>-0.32** (0.166)</td>
<td>-0.03* (0.043)</td>
<td>-0.12** (0.017)</td>
<td>-0.07 (0.405)</td>
<td>-0.01 (0.405)</td>
<td>0.30</td>
<td>0.30</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Reg (Q)</td>
<td>0.50*** (0.003)</td>
<td>-0.25** (0.046)</td>
<td>-0.04* (0.043)</td>
<td>-0.10** (0.027)</td>
<td>-0.07 (0.405)</td>
<td>-0.01 (0.405)</td>
<td>0.22</td>
<td>0.22</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
<td>0.51*** (0.003)</td>
<td>-0.33 (0.220)</td>
<td>-0.05** (0.032)</td>
<td>-0.08 (0.139)</td>
<td>-0.07 (0.405)</td>
<td>-0.01 (0.405)</td>
<td>0.42</td>
<td>0.42</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Reg (Q)</td>
<td>0.52*** (0.298)</td>
<td>-0.01 (0.692)</td>
<td>-0.06* (0.041)</td>
<td>-0.08 (0.139)</td>
<td>-0.07 (0.405)</td>
<td>-0.01 (0.405)</td>
<td>0.37</td>
<td>0.37</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
<td>0.53*** (0.001)</td>
<td>-0.07 (0.692)</td>
<td>-0.04** (0.041)</td>
<td>-0.10** (0.043)</td>
<td>-0.07 (0.405)</td>
<td>0.00 (0.939)</td>
<td>0.42</td>
<td>0.42</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Reg (Q)</td>
<td>0.63*** (0.003)</td>
<td>-0.07 (0.641)</td>
<td>-0.04** (0.041)</td>
<td>-0.10** (0.043)</td>
<td>-0.07 (0.405)</td>
<td>0.00 (0.939)</td>
<td>0.37</td>
<td>0.37</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
<td>0.49*** (0.001)</td>
<td>-0.10** (0.641)</td>
<td>-0.06* (0.041)</td>
<td>-0.10** (0.043)</td>
<td>-0.07 (0.405)</td>
<td>-0.06 (0.416)</td>
<td>0.22</td>
<td>0.22</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Reg (Q)</td>
<td>0.50*** (0.002)</td>
<td>-0.03 (0.871)</td>
<td>-0.06* (0.041)</td>
<td>-0.10** (0.043)</td>
<td>-0.07 (0.405)</td>
<td>0.00 (0.920)</td>
<td>0.37</td>
<td>0.37</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
<td>0.58** (0.004)</td>
<td>-0.28*** (0.719)</td>
<td>-0.05* (0.041)</td>
<td>-0.10** (0.043)</td>
<td>-0.07 (0.405)</td>
<td>-0.06 (0.416)</td>
<td>0.18</td>
<td>0.18</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Reg (Q)</td>
<td>0.55*** (0.000)</td>
<td>-0.34*** (0.719)</td>
<td>-0.05* (0.041)</td>
<td>-0.10** (0.043)</td>
<td>-0.07 (0.405)</td>
<td>0.00 (0.920)</td>
<td>0.38</td>
<td>0.38</td>
<td>5</td>
</tr>
</tbody>
</table>

Stars (***, **, *) denote the significance of the t-test at the 1%, 5% and 10% level, respectively. Stars (***, **, *) denote the significance of the t-test at the 1%, 5% and 10% level, respectively.
Table P3: OLS and TSLS Regressions explaining the average real GDP post-boom growth

<table>
<thead>
<tr>
<th>Equation</th>
<th>a3.5</th>
<th>a5.5</th>
<th>a7.5</th>
<th>a3.9</th>
<th>a5.9</th>
<th>a7.9</th>
<th>a3.14</th>
<th>a3.18</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP growth av. boom</td>
<td>0.62***</td>
<td>0.63***</td>
<td>0.45**</td>
<td>0.61***</td>
<td>0.61***</td>
<td>0.62**</td>
<td>0.56***</td>
<td>0.53***</td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.048)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.014)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
</tr>
<tr>
<td>Boom length</td>
<td>-0.22**</td>
<td>-0.21</td>
<td>-0.25</td>
<td>-0.29**</td>
<td>-0.23*</td>
<td>-0.44*</td>
<td>-0.18*</td>
<td>-0.28*</td>
</tr>
<tr>
<td>(0.017)</td>
<td>(0.073)</td>
<td>(0.102)</td>
<td>(0.017)</td>
<td>(0.032)</td>
<td>(0.057)</td>
<td>(0.079)</td>
<td>(0.065)</td>
<td></td>
</tr>
<tr>
<td>Δ Taylor gap boom</td>
<td>0.11***</td>
<td>0.12**</td>
<td>0.04</td>
<td>0.12***</td>
<td>0.13**</td>
<td>0.13</td>
<td>-0.12*</td>
<td>-0.10*</td>
</tr>
<tr>
<td>(0.005)</td>
<td>(0.027)</td>
<td>(0.559)</td>
<td>(0.007)</td>
<td>(0.023)</td>
<td>(0.136)</td>
<td>(0.060)</td>
<td>(0.082)</td>
<td></td>
</tr>
<tr>
<td>Δ Taylor gap post</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Money shock cum. F</td>
<td>-0.09**</td>
<td>-0.09*</td>
<td>-0.10*</td>
<td>-0.12***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.019)</td>
<td>(0.070)</td>
<td>(0.064)</td>
<td>(0.008)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priv. Credit shock cum. F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R-sq.</td>
<td>0.45</td>
<td>0.43</td>
<td>-</td>
<td>0.38</td>
<td>0.36</td>
<td>-</td>
<td>0.43</td>
<td>0.33</td>
</tr>
<tr>
<td>Pseudo R-sq</td>
<td>0.32</td>
<td>-</td>
<td>-</td>
<td>0.24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N. of instruments</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Stars (***, **, *) denote the significance of the t-test at the 1%, 5% and 10% level, respectively.

- Only money not credit shocks significant; robust across methods.
- Money shocks survive ΔTaylor gap-boom and ΔTaylor gap-post-boom.
- Liquidity seems to have role beyond New Keynesian paradigm.
5. Panel Boom Analysis

- Explaining real housing price growth during the boom; 16 boom episodes of minimum length of 3 years = sections; 4 quarters before the boom + boom quarters = time dimension.
- Controls: 6q movav of real GDP growth, change in nominal long term interest rate, six lags of endogenous variable.
- Variables of main interest: 6q movav of excessive liquidity growth.
- Methods: OLS (pooled), Fixed effects (CS, CS+P, CS+RT), SysGMM (annual).
- Also: overall sample regressions for comparison where n = 18 countries and time dimension 1972-2004; and same regressions for consumer price inflation as endogenous variable.

\[
rrp_{n,t} = \sum_{a=1}^{6} \beta_a rrp_{n,t-a} + \gamma x'_{n,t-1} + \eta_n + \lambda_t + \nu_{n,t}
\]

and \(n = 1, \ldots, 16; \quad t = bq_{-4}, bq_{-3}, \ldots, bq_{\text{last}} \)

or \(t = \) calendar quarters.
Panel Boom Analysis: Econometric Issues

- GMM methods (Arellano/Bond etc.) designed for micro panels with small T, large N => annual data, otherwise inconsistent.

- LSDV consistent for large T, small N, but biased.

- Bias in LSDV soon acceptable in T and depends positively on degree of unbalancedness. => 3 year minimum length
Explaining Real Housing Price Growth
Boom versus Overall Sample

Table 1: Panel regressions - Boom episodes
Dependent variable: housing price growth

<table>
<thead>
<tr>
<th>Equation</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation method</td>
<td>CS+P</td>
<td>CS+P</td>
<td>CS+RT</td>
<td>CS+RT</td>
</tr>
<tr>
<td>@ GDP growth (-1)</td>
<td>0.71</td>
<td>0.6</td>
<td>1.24**</td>
<td>1.09*</td>
</tr>
<tr>
<td>(0.133)</td>
<td>(0.204)</td>
<td>(0.035)</td>
<td>(0.061)</td>
<td></td>
</tr>
<tr>
<td>Δ long term interest rate (-1)</td>
<td>-0.43*</td>
<td>-0.49**</td>
<td>-0.25</td>
<td>-0.27</td>
</tr>
<tr>
<td>(0.067)</td>
<td>(0.034)</td>
<td>(0.310)</td>
<td>(0.263)</td>
<td></td>
</tr>
<tr>
<td>@ Money shock (-1)</td>
<td>1.16***</td>
<td>1.36***</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>(0.009)</td>
<td>(0.005)</td>
<td>(0.218)</td>
<td>(0.218)</td>
<td></td>
</tr>
<tr>
<td>@ Priv. Credit shock (-1)</td>
<td>0.65</td>
<td>0.52</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>(0.120)</td>
<td>(0.218)</td>
<td>(0.679)</td>
<td>(0.679)</td>
<td></td>
</tr>
<tr>
<td>Adj. R-squared</td>
<td>0.28</td>
<td>0.27</td>
<td>0.2</td>
<td>0.19</td>
</tr>
<tr>
<td>N. of observations</td>
<td>386</td>
<td>386</td>
<td>383</td>
<td>383</td>
</tr>
<tr>
<td>Av. N. of periods</td>
<td>24.13</td>
<td>24.13</td>
<td>23.94</td>
<td>23.94</td>
</tr>
<tr>
<td>N. of cross sections (boom episodes)</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Adj. R-squared: 0.28, N. of observations: 386, Av. N. of periods: 24.13, N. of cross sections (boom episodes): 16

6 lags of the dependent variable always included.

Table 2: Panel regressions - Overall
Dependent variable: housing price growth

<table>
<thead>
<tr>
<th>Equation</th>
<th>2.1</th>
<th>2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation method</td>
<td>CS+P</td>
<td>CS+P</td>
</tr>
<tr>
<td>@ GDP growth (-1)</td>
<td>0.91***</td>
<td>0.93***</td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
</tr>
<tr>
<td>Δ long term interest rate (-1)</td>
<td>-0.46***</td>
<td>-0.47***</td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
</tr>
<tr>
<td>@ Money shock (-1)</td>
<td>0.3*</td>
<td></td>
</tr>
<tr>
<td>(0.056)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ Priv. Credit shock (-1)</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>(0.679)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj. R-squared</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>N. of observations</td>
<td>2269</td>
<td>2285</td>
</tr>
<tr>
<td>Av. N. of periods</td>
<td>126.06</td>
<td>126.94</td>
</tr>
<tr>
<td>N. of cross sections (countries)</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Adj. R-squared: 0.34, N. of observations: 2269, Av. N. of periods: 126.06, N. of cross sections (countries): 18

8 lags of the dependent variable always included.

- Money based excessive liquidity highly significant and robust; coefficients economically significant; marginal explanatory contribution low, but…(panel, asset price, lagged endogenous).
- Private credit never significant.
- In overall sample liquidity coefficients 4-5 times smaller; fundamentals dominate; no expl. contribution of money anymore.
Explaining Consumer Price Inflation
Boom versus Overall Sample

- Excessive liquidity helps to predict consumer price inflation only for overall sample, not in boom episodes.
- During booms, only own dynamics and @GDP growth (-1) help, although the latter only marginally.

Table 3: Panel regressions - Boom episodes

<table>
<thead>
<tr>
<th>Equation</th>
<th>3.1</th>
<th>3.2</th>
<th>3.3</th>
<th>3.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation method</td>
<td>CS+P</td>
<td>CS+P</td>
<td>CS+RT</td>
<td>CS+RT</td>
</tr>
<tr>
<td>@ GDP growth (-1)</td>
<td>0.17*</td>
<td>0.17*</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(0.092)</td>
<td>(0.093)</td>
<td>(0.617)</td>
<td>(0.617)</td>
<td></td>
</tr>
<tr>
<td>@ Money shock (-1)</td>
<td>0.01</td>
<td>-0.02</td>
<td>(0.866)</td>
<td></td>
</tr>
<tr>
<td>(0.943)</td>
<td>(0.617)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ Priv. Credit shock (-1)</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.950)</td>
<td>(0.783)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adj. R-squared	0.61	0.61	0.66	0.66
N. of observations	375	375	372	372
Av. N. of periods	23.44	23.44	23.25	23.25
N. of cross sections (boom episodes)	16	16	16	16

6 lags of the dependent variable always included.

Table 4: Panel regressions - Overall

<table>
<thead>
<tr>
<th>Equation</th>
<th>4.1</th>
<th>4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation method</td>
<td>CS+P</td>
<td>CS+P</td>
</tr>
<tr>
<td>@ GDP growth (-1)</td>
<td>0.17***</td>
<td>0.19***</td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
</tr>
<tr>
<td>@ Money shock (-1)</td>
<td>0.11**</td>
<td></td>
</tr>
<tr>
<td>(0.034)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ Priv. Credit shock (-1)</td>
<td>0.08**</td>
<td></td>
</tr>
<tr>
<td>(0.028)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adj. R-squared	0.74	0.74
N. of observations	2259	2275
Av. N. of periods	125.50	126.39
N. of cross sections (countries)	18	18

8 lags of the dependent variable always included.
Explaining Real Housing Price Growth (Boom)
System GMM

Table 5: Regressions explaining the real housing price growth during boom episodes
Dependent variable: housing price growth (annual frequency)

<table>
<thead>
<tr>
<th>Equation</th>
<th>5.1</th>
<th>5.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation method</td>
<td>SysGMM</td>
<td>SysGMM</td>
</tr>
<tr>
<td>Housing price growth (-1)</td>
<td>0.43*** (0.000)</td>
<td>0.46*** (0.000)</td>
</tr>
<tr>
<td>GDP growth</td>
<td>0.85* (0.080)</td>
<td>1.10** (0.025)</td>
</tr>
<tr>
<td>Δ long term interest rate</td>
<td>-0.39 (0.640)</td>
<td>-0.02 (0.983)</td>
</tr>
<tr>
<td>Money shock</td>
<td>1.00** (0.028)</td>
<td></td>
</tr>
<tr>
<td>Priv. Credit shock</td>
<td></td>
<td>-0.48 (0.202)</td>
</tr>
<tr>
<td>N. of groups</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>N. of observations</td>
<td>154</td>
<td>155</td>
</tr>
<tr>
<td>Av. N. of periods</td>
<td>3.67</td>
<td>3.69</td>
</tr>
<tr>
<td>N. of instruments</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>Test of 1st. order serial corr. (p-value)</td>
<td>0.021</td>
<td>0.026</td>
</tr>
<tr>
<td>Test of 2nd. order serial corr. (p-value)</td>
<td>0.586</td>
<td>0.804</td>
</tr>
<tr>
<td>Test of overid. restrictions (p-value)</td>
<td>0.997</td>
<td>0.991</td>
</tr>
</tbody>
</table>

P-values in parentheses, derived from Windmeijer’s corrected two-step covariance matrix.

Annual data
Simultaneous variables
42 boom periods
But system GMM results not robust
6. Conclusions

- Pre-boom and boom excessive liquidity (money based) seems responsible for a significant part of the post-boom GDP growth performance...the more...the worse.
- Evidence is consistent with some transmission from excessive liquidity (money based) to residential real estate prices during the boom.
- However, there is additional information content for the boom derailment in excessive liquidity (beyond real estate and interest rates).
- Credit based measures of excessive liquidity do not have the same property as broad money based measures.
- Boom episodes and normal times are very different as to the relative explanatory power of liquidity shocks and other macro variables with respect to consumer and asset price inflation.
- Caveat: Association versus causality issue and econometric identification! Structural models needed (literature progressing). Real-time analysis required to evaluate policy usefulness (ongoing).
End of Presentation