
Hardware, Software and Mechanical Cosimulation
for Automotive Applications

P. Le Marrec, C.A. Valderrama, F. Hessel, A.A. Jerraya
TIMA Laboratory

46 Avenue Felix Viallet 38031 Grenoble France
fPhilippe.Lemarrec, CA.Valderrama, Fabiano.Hessel, Ahmed.Jerrayag@imag.fr

M. Attia, O. Cayrol
PSA Peugeot Citroen, DRAS

route de gizy 78943 Velizy-Villacoublay France

Abstract

The design of automotive systems requires the joint de-
sign of hardware, software and micro-mechanical compo-
nents. In traditional design approaches the different parts
are designed by separate groups and the integration of the
overall system is made at the final stage. This scheme may
induce extra delays and costs because of interfacing prob-
lems. This paper presents a new automotive system design
approach that offers many advantages including efficient
design flow and shorter time to market. The key idea of
our approach is to allow for early validation of the over-
all system through co-simulation. The design starts with a
high level specification of each part. In our approach soft-
ware is described in C, hardware is described in VHDL and
mechanical parts are described in MATLAB. A C-VHDL-
MATLAB co-simulation is then used for functional valida-
tion of the initial specification. During the design process,
the hardware and software parts may be refined using spe-
cific techniques and tools. The refinement steps are also
validated through co-simulation. In this approach we use
two kind of co-simulations: untimed co-simulation is used
for functional validation and timed co-simulation for real-
time validation. This paper describe the design approach
and its successful application to an example from an auto-
motive industry.

1. Introduction

The use of electronics within cars is becoming more and
more important. It is expected that the electronic parts will
constitute more that 20% of the price of future cars [8]. The
joint design control of various mechanical parts with elec-

tronic parts and specially micro-controllers is a very impor-
tant area for automotive design. In traditional design ap-
proaches the different parts are designed by separate groups
and the integration of the overall system is made at the fi-
nal stage. This scheme may induce extra delays and costs
because of interfacing problems. The necessity for a more
efficient design approaches allowing for joint design of dif-
ferent parts is evident. Co-simulation constitutes an impor-
tant step towards this direction. It gives the designer the
ability to validate the whole system’s behavior before the
implementation of any of its parts.
This paper presents a new automotive system design ap-
proach that offers many advantages including efficient de-
sign flow and shorter time to market. The key idea of
our approach is to allow for early validation of the over-
all system through co-simulation. We developed a unified
co-simulation environment which permits the simultaneous
design of systems consisting of mechanical parts controlled
by digital circuits and software. This environment allows
for both timed and untimed co-simulations. The design
starts with a high level specification of each part. In our
approach software is described in C, hardware is described
in VHDL and mechanical parts are described in MATLAB.
A C-VHDL-MATLAB co-simulation is then used for func-
tional validation of the initial specification. During the de-
sign process, the hardware and software parts may be re-
fined using specific techniques and tools. The refinement
steps are also validated through co-simulation. In this ap-
proach we use two kind of co-simulations: untimed co-
simulation is used for functional validation and timed co-
simulation for real-time validation. For the timed simula-
tion we use a hardware microprocessor model for the soft-
ware part. The approach allow for modular design where
each part of the system may be designed by a separate group
expert in its field. It allows for the validation of the over-

all system using co-simulation. Additionally the approach
allows for the refinement and the correct design of the in-
terfaces between the different parts of the system before the
design of a real prototype. This new approach was applied
successfully for automotive design.
This paper is organized as follows: Section 2 is dedicated
to the general features of the co-simulation environment. In
section 3, the co-simulation scheme is detailed. An illustra-
tive industrial example is presented in section 4 and finally
some performance issues are discussed in section 5.

2. Co-simulation approaches

Co-simulation is an emerging technology for heteroge-
neous system design it allows for multi-language design
and validation [7]. Although the multi-language approaches
are used since long time in the area of system modeling
and simulation [2], its to the design step is quite recent.
This started with hardware software co-simulation ([4], [5],
[9], [3]) and now it is being extended to all kind of other
heterogeneous systems. In this section we will limit our
interest to co-simulation models used in automotive also
called mechatronics [8]. In this case the co-simulation in-
volves generally three kind of components: hardware, soft-
ware and mechanical. When different languages are used
for the specification of different parts, the validation step
require co-simulation techniques. There mainly two kind
of co-simulations: timed and untimed simulation. Timed
co-simulation, also called real time co-simulation, consid-
ers both functionality and timing aspects while untimed co-
simulation, also called functional co-simulation considers
only the functional aspects of a specification. The major
difficulty in timed cosimulation is the synchronization be-
tween the software , the hardware and the mechanical parts.
In the functional cosimulation the exchange of data between
simulator is controlled by events. In this case only the or-
der of operations is checked. The timing aspects are ig-
nored. This model of cosimulation schedules and verifies
the behavior of the system, and establishes the coherence
of the interconnection between the sub-systems, showing a
global flashover [7] of the system functionality. In timed
co-simulation [6] the data is exchanged within specific time
frames. For instance, when a data is not consumed in a
specific timing interval it may be lost. This kind of co-
simulation implies that simulators associates a time frame
to each operation. Since co-simulation implies the concur-
rent execution of several simulators that may have differ-
ent execution speed and timing models, a synchronization
scheme is needed. The synchronization is needed in order
to coordinate the concurrent execution of simulators. There
are several synchronization scheme. The simplest one is the
master slave model. With this scheme [4] a specific simula-
tor plays the role of the master while all the other proceed as

slaves. The master simulator is in charge of fixing the time
slots where other simulators should run. The main advan-
tage of this model is its simplicity of implementation. How-
ever it implies lots of restrictions on the organization of the
systems. The most general coordination scheme is the asyn-
chronous model. In this case the simulators exchange data
stamped with time [1]. In this case slow simulators need
to queue their data in order to respect timing. The draw-
back of this model is the complexity of the implementation.
Such a system would require a complex coherence manage-
ment strategy in order to avoid deadlocks. Another pop-
ular synchronization scheme is the lock-step model. This
scheme makes use of a global real time server that provide
a global time frames to synchronize the different simulators.
With this scheme each simulator decomposes its computa-
tion into steps according to a local time. It is allowed to
proceed to the next step only if the local time is smaller that
the global time. This model is applicable under some con-
ditions only. In some cases it may produce quite efficient
results this will be detailed later. The implementation of co-
simulation may follow one of two schemes: composition or
concurrent execution of simulators. In the composition ap-
proach, the different models are compiled into a common
languages (e.g. C or executable code) and then linked with
some simulation kernel [6]. In this case co-simulation is
made by the execution of the linked object. Depending on
the target language used, this model may produce a very ef-
ficient results. But this approach makes hard the separate
debug of the different modules. In fact the only access to
the intermediate data during simulation is provided by the
simulation kernel. This is generally restricted to the inter-
module communication. For instance it makes it difficult
to modify some internal parameters of the modules during
co-simulation. This may be very useful in automotive ap-
plications. The concurrent execution of simulators scheme
overcome all these drawback. In this model each module
is simulated using a specific simulator. The different simu-
lators communicate through a co-simulation bus. The only
drawback of this model is the overhead induced by the co-
simulation bus. The applicability of this model depends on
the ration (Computation time/communication time). This
ratio is very high for applications including analog com-
ponents (e.g. Electromechanical components) that requires
very large computation steps for small interval time (e.g.
ns). In the case of automotive applications this ration is
quite low because the time intervals are generally high. For
instance in our case we use the discrete simulation mode
of MATLAB in order to lower this ratio. The approach
described in this paper is based on a co-simulation envi-
ronment called VCI [11]. VCI allows to run concurrently
several simulators using a co-simulation bus. VCI allows
for both untimed and timed co-simulation. For timed co-
simulation several synchronization schemes are possible.

2

3. The Automotive design approach

Figure 1 shows the methodology used to produce and to
validate the initial specification for an automotive system
including hardware, software and mechanical parts. The
design starts with an analysis of the system requirements
and a high level definition of the various functions of the
system. The partitioning of the system is made manually.
Then, the modeling of the mechanical system is made using
MATLAB. The hardware is modeled using VHDL and the
software is modeled using C. Co-simulation is performed in
order to validate this initial executable model. The different
parts may be refined using specific methods. During this
design process co-simulation may be used to validate the
different parts at different abstraction levels. This strategy
allows to fully use the competence of different groups in the
same design flow.

Figure 1. : design methodology

Starting from the initial C-VHDL-MATLAB specifica-
tion the design process includes mainly two validation steps
before the implementation may proceed. The first co-
simulation is aimed at functional validation and follows the
untimed scheme. The second step is aimed at real time ver-
ification and makes use of timed co-simulation. In order
to allow for timed simulation of software (C programs) we
use a cycle accurate model of the target micro-controller in
order to emulate the execution of the software at the clock
cycle level. In this case, the accuracy of the co-simulation
is the clock cycle. The micro-controller model may be a
C program or a VHDL description. In our case we use the
Siemens C167 micro-controller. For real timed simulation
of the software we use a VHDL model of the C167. This
is provided by Siemens and includes both a microprocessor
entity and a memory entity which is associated with the C
software part compiled by a C167 compiler. Organization
of the overall VHDL model is shown in Figure 1. One

Figure 2. : Software modelization

should note that in our case the timed co-simulation is re-
duced to a VHDL MATLB co-simulation.

The co-simulation makes use of the MATLAB and the
VHDL debuggers. The VHDL debugger transparently runs
the Graphical User Interface, and adds some specific com-
mands to the micro-controller GUI. It allows the user to
placard the assembler trace, the registers, the I/O properties
of the processor, and commands to modify the memory, the
registers, and other for control in globe the microprocessor.
With this model, we can display the entire behavior of the
micro-controller as if it was implemented with the compiled
software. The overall hardware software model is cycle ac-
curate. For the MATLAB side, we fix the time step as equal
to a clock cycle in the hardware side. This time step is quite
small to allow for an acceptable accuracy on the mechanical
side.

The overall cosimulation configuration is shown in Fig-
ure 3. The interaction with the VHDL simulation is made
through CLI [10] and the interaction with MATLAB is
made using the ”Engine package” of MATLAB. The over-
all co-simulation environment is automatically generated by
VCI starting from a configuration file that gives the details
of the interconnect between different modules and the syn-
chronization scheme.

Figure 3. : Co-simulation configuration

4. Industrial application

This section describes the use of the automotive design
approach described above for the design of two applications
at PSA (Peugeot Citroen, Velizy - Paris). The first one is the
control of the parasitic variation of the acceleration pedal

3

Figure 4. : Global view of the pedal regulation
application

movement in the electric car (4) and the second is the regu-
lation of the car hydraulics suspension. These both systems
contained a MATLAB behavioral model of the vehicle and a
software control module aimed to be executed on the C167
micro-controller. In the example of Figure 4, the system
regulates a pedal watchword with the speed of a electrical
motor. The software application eliminates the parasitic vi-
bration of the user pedal control, and the motor behavior
vibration to have the best regulation between the pedal pres-
sure and the speed of the motor. Figure 5 shows the timed
co-simulation of the first example. The screen shows both
VHDL debugger executing the hardware , the C167 model
executing the software and the MATLAB/SIMULINK en-
vironment simulating the mechanical parts.

Figure 5. : Timed simulation of the pedal regulation application

5. Results

The application of the untimed co-simulation was quite
straightforward. In both applications this step allowed to
validate the overall behavior of the system including the in-
teractions between the different parts. As expected we had
more difficulties with the timed co-simulation. Although we
succeeded to co-simulate both applications using the timed
approach, the co-simulation time was quite slow. In fact
in our case the speed of co-simulation was imposed by the
VHDL model of the C167. The model we had was able
to run only few instruction per second which implies unac-
ceptable time for realistic simulation. In fact the simulation
of one millisecond of real time requires about 10 minutes
of VHDL simulation with the C167 on a SPARC station.
Of course the co-simulation speed may be boosted using a
faster model of the processor. It is expected that a C model
of the processor will be able to execute about 1 million in-
struction per second. This would induce a drastic reduction
in the timed co-simulation time.

4

6. Conclusion

This paper presented a new automotive system design
approach that offers many advantages including efficient
design flow and shorter time to market. The key idea of
our approach is to allow for early validation of the over-
all system through co-simulation. The design starts with a
high level specification of each part. In our approach soft-
ware is described in C, hardware is described in VHDL and
mechanical parts are described in MATLAB. A C-VHDL-
MATLAB co-simulation is then used for the validation of
the initial specification. The approach allows for timed and
untimed co-simulation allowing to validate both functional
and timing properties of the system under design

References

[1] W. Chang, S. Ha, and E. Lee. Heterogeneous simulation
mixing discrete event models with dataflow. Invited Paper,
Journal on VLSI Signal Processing, Vol. 13, No. 1, January
1997.

[2] W. Chang, A. Kalavade, and E. Lee. Effective heterogeneous
design and cosimulation. Chapter in Hardware/Software
Co-design, G.DeMicheli and M.Sami, eds., NATO ASI Se-
ries Vol. 310, Kluwer Academic Publishers, 1996. Also
presented at NATO Advanced Study Institute Workshop on
Hardware/Software Codesign, Lake Como, Italy, June 18-
30, 1995.

[3] M. Gasteier and M. Glesner. Bus-based communication syn-
thesis on system-level. Proceedings of the 9th International
Symposium on System Synthesis (ISSS ’96), IEEE Computer
Society Press, page p. 65, 1996.

[4] K. Hagen and H. Meyr. Timed and untimed hardware-
software co-simulation: Application and efficient imple-
mentation. International Workshop on Hardware-Software
Codesign, Cambridge, October 1993.

[5] S. Lee and J. Rabaey. A hardware-software cosimulation en-
vironment. International Workshop on Hardware-Software
Codesign, Cambridge, October 1993.

[6] W. Loucks, B. Doray, and D. Agnew. Experiences in
real time hardware-software cosimulation. Proc VHDL Int.
Users Forum (VIUF), Ottawa, Canada,, pages P. 47–57,
April 1993.

[7] N. C. Petrellis, A. N. Birbas, M. K. Birbas, E. P. Mariatos,
and G. D. Papadopoulos. Simulating hardware, software
and electromechanical parts using communicating simula-
tors. Seventh IEEE International Workshop on Rapid System
Prototyping, pages p 78–82, june 1996.

[8] A. Rault, Y. Bezard, A. Coustre, and T. Halconruy. Systems
integration in the car industry. PSA, Peugeot-Citroen, 2 route
de gizy, 78140 Velizy Villacoublay. France, 1996.

[9] J. Rowson. Hardware/software co-simulation. Proceedings
of the 31st Design Automation Conference, San Diego, CA,
USA, pages p. 439–440, June 1994.

[10] Synopsys. VHDL System Simulator Interfaces Manual:C-
Language Interface, June 1993.

[11] C. Valderrama, A. Changuel, P. Raghavan, M. Abid, T. Is-
mail, and A. Jerraya. A unified model for co-simulation
and co-synthesis of mixed hardware/software systems. The
European Design and Test Conference ED&TC95 Paris,
France, March 1995.

5

