Design and Dimensioning of a Novel Composite-Star WDM Network with TDM Channel Partitioning

Stefano Secci†, Brunilde Sansò*

† INFRES Dept.
Télécom Paris - ENST
stefano.secci@enst.fr

* Dept. of Electrical Engineering
Ecole Polytechnique de Montréal
brunilde.sanso@polymtl.ca

Workshop GOSP - BROADNETS 2006

1-5 October 2006
Outline

1. The Petaweb
 - The architecture
 - Network model
 - Classes of service

2. Petaweb network design
 - Design problem
 - Results
 - Quasi-regular topology

3. Open issues
 - Reliability problem
 - Upgrade problem
Outline

1. The Petaweb
 - The architecture
 - Network model
 - Classes of service

2. Petaweb network design
 - Design problem
 - Results
 - Quasi-regular topology

3. Open issues
 - Reliability problem
 - Upgrade problem
An innovative composite-star architecture

Network elements
1. optical core nodes
2. optical links
3. electronic edge nodes
An innovative composite-star architecture

Network elements

1. optical core nodes
2. optical links
3. electronic edge nodes
The Petaweb

Network design

Open issues

Summary

The architecture

An innovative composite-star architecture

Network elements

1. optical core nodes
2. optical links
3. electronic edge nodes
The Petaweb

Network design

Open issues

Summary

The architecture

An innovative composite-star architecture

Network elements

1. optical core nodes
2. optical links
3. electronic edge nodes

Core node (CN)

Different types.
Structure capable to switch wavelengths and time-slots in the optical domain (Huang, 2000).
An innovative composite-star architecture

- **Network elements**
 1. optical core nodes
 2. optical links
 3. electronic edge nodes

- **Optical link**
 Connects an EN to a CN.
 Group of unidirectional fibers.
 \(W = 16 \) wavelength per fiber
 \(C_{ch} = 10\text{Gb/s} \) of channel capacity
The Petaweb

Network design

Open issues

Summary

The architecture

An innovative composite-star architecture

Network elements

1. optical core nodes
2. optical links
3. electronic edge nodes

Edge node (EN)

Electronic equipment defining a set of static connection requests
Network model

Traffic and Costs

Traffic model
Two types of static traffic:
A. From industrial data
B. Given by a gravitational model

Cost model
Three costs:
1. Core node cost
 \[f_r + 2 |M| W s_r^{(s_r-1)} P \]

 Fix cost
 Variable cost

2. Fiber cost
 \[\phi(W) F \ [Km]^{-1} \]

3. Propagation delay cost
 \[\beta \ [Km Gb/s]^{-1} \]
Traffic and Costs

Traffic model

Two types of static traffic:

A From industrial data

B Given by a gravitational model

Cost model

Three costs:

1. **Core node cost**
 \[f_r + 2 |M| W s_r \gamma^{(s_r-1)} P \]
 - Fix cost
 - Variable cost

2. **Fiber cost**
 \[\phi(W) F [Km]^{-1} \]

3. **Propagation delay cost**
 \[\beta [Km Gb/s]^{-1} \]

Matrixes with many zero values
Network model

Traffic and Costs

Traffic model

Two types of static traffic:

A. From industrial data
B. Given by a gravitational model

Cost model

Three costs:

1. Core node cost
 \[f_r + 2 |M| W s_r^{(s_r-1)} P \]
 Fix cost
 Variable cost

2. Fiber cost
 \[\phi(W) F [Km]^{-1} \]

3. Propagation delay cost
 \[\beta [Km Gb/s]^{-1} \]

Dense matrixes

<table>
<thead>
<tr>
<th></th>
<th>ALBY</th>
<th>BTN</th>
<th>CHRL</th>
<th>CLEV</th>
<th>MIAM</th>
<th>NYCM</th>
<th>PHILA</th>
<th>TAMP</th>
<th>TLHS</th>
<th>WASI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBY</td>
<td>0</td>
<td>8.4</td>
<td>0.11</td>
<td>0.5</td>
<td>0.08</td>
<td>32.44</td>
<td>4.38</td>
<td>0.05</td>
<td>0.01</td>
<td>2.28</td>
</tr>
<tr>
<td>BTN</td>
<td>8.4</td>
<td>0</td>
<td>0.57</td>
<td>1.92</td>
<td>0.49</td>
<td>110.37</td>
<td>16.18</td>
<td>0.34</td>
<td>0.05</td>
<td>9.53</td>
</tr>
<tr>
<td>CHRL</td>
<td>8.4</td>
<td>0.57</td>
<td>0</td>
<td>0.78</td>
<td>0.46</td>
<td>3.81</td>
<td>1.53</td>
<td>0.47</td>
<td>0.1</td>
<td>3.49</td>
</tr>
<tr>
<td>CLEV</td>
<td>0.11</td>
<td>1.92</td>
<td>0.78</td>
<td>0</td>
<td>0.33</td>
<td>12.79</td>
<td>4.73</td>
<td>0.28</td>
<td>0.05</td>
<td>7.98</td>
</tr>
<tr>
<td>MIAM</td>
<td>0.5</td>
<td>0.49</td>
<td>0.46</td>
<td>0.33</td>
<td>0</td>
<td>2.38</td>
<td>0.79</td>
<td>7.19</td>
<td>0.22</td>
<td>1.19</td>
</tr>
<tr>
<td>NYCM</td>
<td>0.08</td>
<td>110.37</td>
<td>3.81</td>
<td>12.79</td>
<td>2.38</td>
<td>0</td>
<td>617.21</td>
<td>1.74</td>
<td>0.25</td>
<td>125.79</td>
</tr>
<tr>
<td>PHILA</td>
<td>32.44</td>
<td>16.18</td>
<td>1.53</td>
<td>4.73</td>
<td>0.79</td>
<td>617.21</td>
<td>0</td>
<td>0.59</td>
<td>0.09</td>
<td>97.05</td>
</tr>
<tr>
<td>TAMP</td>
<td>4.38</td>
<td>0.34</td>
<td>0.47</td>
<td>0.28</td>
<td>7.19</td>
<td>1.74</td>
<td>0.59</td>
<td>0</td>
<td>0.53</td>
<td>0.93</td>
</tr>
<tr>
<td>TLHS</td>
<td>0.06</td>
<td>0.05</td>
<td>0.1</td>
<td>0.05</td>
<td>0.22</td>
<td>0.25</td>
<td>0.09</td>
<td>0.53</td>
<td>0.15</td>
<td>0</td>
</tr>
<tr>
<td>WASI</td>
<td>0.01</td>
<td>9.53</td>
<td>3.49</td>
<td>7.98</td>
<td>1.19</td>
<td>125.79</td>
<td>97.05</td>
<td>0.93</td>
<td>0.15</td>
<td>0</td>
</tr>
</tbody>
</table>
Traffic and Costs

Traffic model

Two types of static traffic:

A From industrial data

B Given by a gravitational model

Cost model

Three costs:

1. **Core node cost**
 \[f_r + 2 |M| W s_r^{(s_r-1)} P \]
 - Fix cost
 - Variable cost

2. **Fiber cost**
 \[\phi(W) F [Km]^{-1} \]

3. **Propagation delay cost**
 \[\beta [Km Gb/s]^{-1} \]
Traffic and Costs

Traffic model

Two types of static traffic:

A From industrial data
B Given by a gravitational model

Cost model

Three costs:

1. Core node cost
 \[f_r + 2 |M| W s_r^{(s_r-1)} P \]

 Fix cost Variable cost

2. Fiber cost
 \[\phi(W) F [Km]^{-1} \]

3. Propagation delay cost
 \[\beta [Km Gb/s]^{-1} \]
Network model

Traffic and Costs

Traffic model

Two types of static traffic:

A. From industrial data
B. Given by a gravitational model

Cost model

Three costs:

1. Core node cost

\[f_r + 2 |M| W s_r^{(s_r-1)} P \]

2. Fiber cost

\[\phi(W) F [Km]^{-1} \]

3. Propagation delay cost

\[\beta [Km Gb/s]^{-1} \]
Classes of service

TLP-1

\[Z_1 = \frac{1}{2^n} C_{ch}, \quad n \in \mathbb{N} \]

TLP-2

\[Z_2 = C_{ch} \]

TLP-3

\[Z_3 = WC_{ch} \]
Classes of service

TLP-1
\[Z_1 = 0.625 \text{ Gb/s} \]

TLP-2
\[Z_2 = 10 \text{ Gb/s} \]

TLP-3
\[Z_3 = 160 \text{ Gb/s} \]
Outline

1. The Petaweb
 - The architecture
 - Network model
 - Classes of service

2. Petaweb network design
 - Design problem
 - Results
 - Quasi-regular topology

3. Open issues
 - Reliability problem
 - Upgrade problem
The Petaweb design problem

Given
- the network architecture and model
- the virtual topology: set of TLPs
The Petaweb design problem

Given
- the network architecture and model
- the virtual topology: set of TLPs

Find optimally
- the core nodes location and size → the resources Allocation
- the assignment of ts-lightpaths to core nodes → their 1-hop Route
- the Assignment of Fibers, Wavelengths and Time-slots to the ts-lightpaths
The Petaweb design problem

Given
- the network architecture and model
- the virtual topology: set of TLPs

Design problem

Divided in the two sub-problems:
- RFA: Route and Fiber Allocation
 resources allocation: core nodes location and TLPs 1-hop routes
- WTA: Wavelength and Time-slot Assignment
 resources assignment: wavelength and time-slot assignment
The Petaweb design problem

Given
- the network architecture and model
- the virtual topology: set of TLPs

Design problem

Divided in the two sub-problems:

- **RFA**: Route and Fiber Allocation
 - resources allocation: core nodes location and TLPs 1-hop routes
- **WTA**: Wavelength and Time-slot Assignment
 - resources assignment: wavelength and time-slot assignment
The Petaweb design problem

Given
- the network architecture and model
- the virtual topology: set of TLPs

Design problem

Divided in the two sub-problems:
- **RFA: Route and Fiber Allocation**
 - resources allocation: core nodes location and TLPs 1-hop routes
- **WTA: Wavelength and Time-slot Assignment**
 - resources assignment: wavelength and time-slot assignment
Design problem

RFA: dimensioning problem

Similarities with CFLP

Capacitated Facility Location Problem (CFLP): given set of clients with specific demands for a product; the goal is to optimally locate plants that send the product to clients.

- core nodes \approx plants, edge nodes \approx clients
- fiber cost \approx transport cost
- core node cost \approx plant cost
- capacity constraints on links

Differences

- the product is not sent from plant, but uses plant as transit
- the plant cost is variable; the delay cost is not present
- capacity constraints even on edge nodes
Design problem

RFA resolution via Integer Linear Programming

\[
\min G(y_{ire}, x_{phl}^{ire}) = \sum_{(i,r,e)} \left(2 |M| W s_r \gamma^{(s_r-1)} P + f_r \right) y_{ire} \\
+ \sum_{(i,r,e)} 2 \phi(W) F s_r \left(\sum_{j \in M} \Delta_{ij} \right) y_{ire} \\
+ \sum_{(i,r,e)} \sum_{(p,h,l)} \beta d_{ip} Z_h x_{phl}^{ire}
\]
(1)
RFA resolution via Integer Linear Programming

\[
\begin{align*}
\min \quad G(y_{ire}, x_{phl}^{ire}) &= \sum_{(i,r,e)} \left(2 |M| W s_r \gamma^{(s_r-1)} P + f_r \right) y_{ire} \\
&\quad + \sum_{(i,r,e)} 2 \phi(W) F s_r \left(\sum_{j \in M} \Delta_{ij} \right) y_{ire} \\
&\quad + \sum_{(i,r,e)} \sum_{(p,h,l)} \beta d_{ip} Z_h x_{phl}^{ire}
\end{align*}
\]
RFA resolution via Integer Linear Programming

\[
\begin{align*}
\min \quad G(y_{ire}, x_{phl}) &= \sum_{(i,r,e)} \left(2 \mid M \mid W s_r \gamma^{(s_r-1)} P + f_r \right) y_{ire} \\
&\quad + \sum_{(i,r,e)} 2 \phi(W) F s_r \left(\sum_{j \in M} \Delta_{ij} \right) y_{ire} \\
&\quad + \sum_{(i,r,e)} \sum_{(p,h,l)} \beta d_{ip} Z_h x_{phl} \\
\end{align*}
\]
RFA resolution via Integer Linear Programming

\[
\min G(\overline{y}_{ire}, \overline{x}_{phl}) = \sum_{(i,r,e)} \left(2 |M| W s_r \gamma^{(s_r-1)} P + f_r \right) y_{ire} \\
+ \sum_{(i,r,e)} 2 \phi(W) F s_r \left(\sum_{j \in M} \Delta_{ij} \right) y_{ire} \\
+ \sum_{(i,r,e)} \sum_{(p,h,l)} \beta d_{ip} Z_h x_{phl}
\]
RFA resolution: constraints

\[\sum_{r \in V} \sum_{e=1}^{E_r} x_{ph_1 l_1}^{ire} = \sum_{r \in V} \sum_{e=1}^{E_r} x_{ph_2 l_2}^{ire} \quad (2) \]

\[\sum_{(p \in O_j, h, l)} Z_h x_{ph l}^{ire} \leq C_{ch} W s_r y_{ire} \quad (5) \]

\[\forall i \in M, \forall p \in T, \forall h_1 \in H, \forall h_2 \in H, \forall l_1 |1 \leq l_1 \leq L_{h_1}, \forall l_2 |1 \leq l_2 \leq L_{h_2}, (h_1, l_1) \neq (h_2, l_2) \]

\[\sum_{(i, r, e)} x_{ph l}^{ire} = 1 \quad \forall (p, h, l) \quad (3) \]

\[\sum_{(p \in D_k, h, l)} Z_h x_{ph l}^{ire} \leq C_{ch} W s_r y_{ire} \quad (6) \]

\[\forall k \in M, \forall (i, r, e) \]

\[y_{ire} \in \{1, 0\}, \forall (i, r, e) \quad (7) \]

\[\sum_{(i, r, e)} C_{ch} W s_r y_{ire} \leq C_j \quad \forall j \in M \quad (4) \]

\[x_{ph l}^{ire} \in \{1, 0\}, \forall (i, r, e) \forall (p, h, l) \quad (8) \]
Design problem

RFA resolution: **Capacity Constraints**

\[
\sum_{r \in V} \sum_{e=1}^{E_r} x_{ph_1l_1} = \sum_{r \in V} \sum_{e=1}^{E_r} x_{ph_2l_2} \quad (2)
\]

\[
\forall i \in M, \forall p \in T, \forall h_1 \in H, \forall h_2 \in H, \forall l_1 \leq l_1 \leq L_{h_1}, \forall l_2 | 1 \leq l_2 \leq L_{h_2}, (h_1, l_1) \neq (h_2, l_2)
\]

\[
\sum_{(i,r,e)} x_{phl} = 1 \quad \forall (p, h, l) \quad (3)
\]

\[
\sum_{(p \in O_j, h, l)} Z_h x_{phl} \leq C_{ch} W s_r y_{ire} \quad (5)
\]

\[
\forall j \in M, \forall (i, r, e)
\]

\[
\sum_{(p \in D_k, h, l)} Z_h x_{phl} \leq C_{ch} W s_r y_{ire} \quad (6)
\]

\[
\forall k \in M, \forall (i, r, e)
\]

\[
y_{ire} \in \{1, 0\}, \forall (i, r, e) \quad (7)
\]

\[
x_{phl} \in \{1, 0\}, \forall (i, r, e) \forall (p, h, l) \quad (8)
\]

\[
\sum_{(i,r,e)} C_{ch} W s_r y_{ire} \leq C_j \quad \forall j \in M \quad (4)
\]
The Petaweb
Network design
Open issues
Summary

Design problem

RFA resolution: Routing Constraints

\[\sum_{r \in V} \sum_{e=1}^{E_r} x_{ph_1 l_1}^{ire} = \sum_{r \in V} \sum_{e=1}^{E_r} x_{ph_2 l_2}^{ire} \quad (2) \]

\[\forall i \in M, \forall p \in T, \forall h_1 \in H, \forall h_2 \in H, \forall l_1 \mid 1 \leq l_1 \leq L_{h_1}, \forall l_2 \mid 1 \leq l_2 \leq L_{h_2}, (h_1, l_1) \neq (h_2, l_2) \]

\[\sum_{(i,r,e)} x_{phl}^{ire} = 1 \forall (p, h, l) \quad (3) \]

\[\sum_{(p \in D_k, h, l)} Z_h x_{phl}^{ire} \leq C_{ch} W s_r y_{ire} \quad (5) \]

\[\forall k \in M, \forall (i, r, e) \]

\[\sum_{(i,r,e)} C_{ch} W s_r y_{ire} \leq C_j \forall j \in M \quad (4) \]

\[y_{ire} \in \{1, 0\}, \forall (i, r, e) \quad (7) \]

\[x_{phl}^{ire} \in \{1, 0\}, \forall (i, r, e) \forall (p, h, l) \quad (8) \]
RFA resolution: **Variables** Constraints

\[
\sum_{r \in V} \sum_{e=1}^{E_r} x_{ph_1 l_1}^{ire} = \sum_{r \in V} \sum_{e=1}^{E_r} x_{ph_2 l_2}^{ire} \quad (2)
\]

\[
\forall i \in M, \forall p \in T, \forall h_1 \in H, \forall h_2 \in H, \forall l_1 | 1 \leq l_1 \leq L_{h_1},
\forall l_2 | 1 \leq l_2 \leq L_{h_2}, (h_1, l_1) \neq (h_2, l_2)
\]

\[
\sum_{(i, r, e)} x_{p h l}^{ire} = 1 \forall (p, h, l) \quad (3)
\]

\[
\sum_{(p \in O_j, h, l)} Z_h x_{ph l}^{ire} \leq C_{ch} W s_r y_{ire} \quad (5)
\]

\[
\forall j \in M, \forall (i, r, e)
\]

\[
\sum_{(p \in D_k, h, l)} Z_h x_{ph l}^{ire} \leq C_{ch} W s_r y_{ire} \quad (6)
\]

\[
\forall k \in M, \forall (i, r, e)
\]

\[
y_{ire} \in \{1, 0\}, \forall (i, r, e) \quad (7)
\]

\[
\sum_{(i, r, e)} C_{ch} W s_r y_{ire} \leq C_j \forall j \in M \quad (4)
\]

\[
x_{ph l}^{ire} \in \{1, 0\}, \forall (i, r, e) \forall(p, h, l) \quad (8)
\]
WTA resolution algorithm

- One optical link at a time
 - TLP-3s assigned to whole fibers
 - TLP-2s and TLP-1s grouped on the base of their CR
 - TLP-2s assigned to contiguous wavelengths
 - TLP-1s assigned to contiguous time-slots
WTA resolution algorithm

One optical link at a time

- TLP-3s assigned to whole fibers
- TLP-2s and TLP-1s grouped on the base of their CR
 - TLP-2s assigned to contiguous wavelengths
 - TLP-1s assigned to contiguous time-slots

Design problem

TLP-2 to assign? ASSIGN LAMBDA
YES
NO
Lambda available?
Catch next CR
YES
ASSIGN SLOT
TLP-3 to assign?
YES
ASSIGN FIBER
NO
Catch next opt. link
Catch next fiber
TLP-3 to assign?
YES
ASSIGN FIBER
NO
Catch next CR
Lambda available?
TLP-2 to assign? ASSIGN LAMBDA
YES
NO
Slots available?
TLP-1 to assign? ASSIGN SLOT
YES
NO
More CRs?
NO
START
More CNs?
YES
Catch next CN
NO
More CN−EN connections?
YES
Catch next opt. link
Catch next fiber
TLP-3 to assign?
YES
ASSIGN FIBER
NO
Catch next CR
Lambda available?
TLP-2 to assign? ASSIGN LAMBDA
YES
NO
Slots available?
TLP-1 to assign? ASSIGN SLOT
YES
NO
More CRs?
NO
END
WTA resolution algorithm

One optical link at a time
- TLP-3s assigned to whole fibers
- TLP-2s and TLP-1s grouped on the base of their CR
 - TLP-2s assigned to contiguous wavelengths
 - TLP-1s assigned to contiguous time-slots

Diagram:
```
START

More CNs?
    NO
    END
    YES
    Catch next CN

More CN-EN connections?
    NO
    Catch next opt. link
    YES
    Catch next fiber

TLP-3 to assign?
    NO
    ASSIGN FIBER
    YES

Catch next CR

Lambda available?
    NO
    TLP_Cr^2 to assign?
    NO
    TLP_Cr^1 to assign?
    NO
    ASSIGN SLOT
    YES
    Slots available?
    NO
    ASSIGN LAMBDA
    YES

More CRs?
```
WTA resolution algorithm

One optical link at a time
- TLP-3s assigned to whole fibers
- TLP-2s and TLP-1s grouped on the base of their CR
 - TLP-2s assigned to contiguous wavelengths
 - TLP-1s assigned to contiguous time-slots
RFA results

<table>
<thead>
<tr>
<th>Model</th>
<th>10A</th>
<th>10B</th>
<th>34A</th>
<th>34B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>2281804</td>
<td>2155353</td>
<td>31995440</td>
<td>42596082</td>
</tr>
<tr>
<td>Execution time</td>
<td>169s</td>
<td>100s</td>
<td>12.07h</td>
<td>1685s</td>
</tr>
<tr>
<td>Fibers cost</td>
<td>77.8%</td>
<td>83.27%</td>
<td>82.46%</td>
<td>81.27%</td>
</tr>
<tr>
<td>CNs cost</td>
<td>11.22%</td>
<td>11.88%</td>
<td>5.44%</td>
<td>5.26%</td>
</tr>
<tr>
<td>Delays cost</td>
<td>10.98%</td>
<td>4.86%</td>
<td>12.1%</td>
<td>13.47%</td>
</tr>
<tr>
<td>μ_R</td>
<td>17.91%</td>
<td>15.15%</td>
<td>16.83%</td>
<td>12.39%</td>
</tr>
</tbody>
</table>

Diagrams

10A
- Cleveland
- Miami
- Charlotte
- Albany
- New York
- Philadelphia
- Washington
- Tampa

10B
- Cleveland
- Miami
- Charlotte
- Albany
- New York
- Philadelphia
- Washington
- Tampa

Model 10A
- Objective: 2281804
- Execution time: 169s
- Fibers cost: 77.8%
- CNs cost: 11.22%
- Delays cost: 10.98%
- μ_R: 17.91%

Model 10B
- Objective: 2155353
- Execution time: 100s
- Fibers cost: 83.27%
- CNs cost: 11.88%
- Delays cost: 4.86%
- μ_R: 15.15%

Model 34A
- Objective: 31995440
- Execution time: 12.07h
- Fibers cost: 82.46%
- CNs cost: 5.44%
- Delays cost: 12.1%
- μ_R: 16.83%

Model 34B
- Objective: 42596082
- Execution time: 1685s
- Fibers cost: 81.27%
- CNs cost: 5.26%
- Delays cost: 13.47%
- μ_R: 12.39%
RFA results

<table>
<thead>
<tr>
<th>Model</th>
<th>10A</th>
<th>10B</th>
<th>34A</th>
<th>34B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>2281804</td>
<td>2155353</td>
<td>31995440</td>
<td>42596082</td>
</tr>
<tr>
<td>Execution time</td>
<td>169s</td>
<td>100s</td>
<td>12.07h</td>
<td>1685s</td>
</tr>
<tr>
<td>Fibers cost</td>
<td>77.8%</td>
<td>83.27%</td>
<td>82.46%</td>
<td>81.27%</td>
</tr>
<tr>
<td>CNs cost</td>
<td>11.22%</td>
<td>11.88%</td>
<td>5.44%</td>
<td>5.26%</td>
</tr>
<tr>
<td>Delays cost</td>
<td>10.98%</td>
<td>4.86%</td>
<td>12.1%</td>
<td>13.47%</td>
</tr>
<tr>
<td>(\mu_R)</td>
<td>17.91%</td>
<td>15.15%</td>
<td>16.83%</td>
<td>12.39%</td>
</tr>
</tbody>
</table>

Low utilization!
Results

RFA results

<table>
<thead>
<tr>
<th>Model</th>
<th>10A</th>
<th>10B</th>
<th>34A</th>
<th>34B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>2281804</td>
<td>2155353</td>
<td>31995440</td>
<td>42596082</td>
</tr>
<tr>
<td>Execution time</td>
<td>169s</td>
<td>100s</td>
<td>12.07h</td>
<td>1685s</td>
</tr>
<tr>
<td>Fibers cost</td>
<td>77.8%</td>
<td>83.27%</td>
<td>82.46%</td>
<td>81.27%</td>
</tr>
<tr>
<td>CNs cost</td>
<td>11.22%</td>
<td>11.88%</td>
<td>5.44%</td>
<td>5.26%</td>
</tr>
<tr>
<td>Delays cost</td>
<td>10.98%</td>
<td>4.86%</td>
<td>12.1%</td>
<td>13.47%</td>
</tr>
<tr>
<td>(\mu_R)</td>
<td>17.91%</td>
<td>15.15%</td>
<td>16.83%</td>
<td>12.39%</td>
</tr>
</tbody>
</table>

High fiber cost!
Low utilization!

10A

10B

Low utilization!
A competitive quasi-regular topology

We need to:
1. reduce the network cost
2. improve the network utilization

Observation
- the traffic matrix contains few peaks and a lot of low connection requests
- the regular architecture implies few high used optical links and lots of under-used ones

Quasi-regular topology
- deactivation of the unused fibers in optical links
- regularity preserved and reachable through further upgrades
A competitive quasi-regular topology

We need to:

1. reduce the network cost
2. improve the network utilization

Observation

- the traffic matrix contains few peaks and a lot of low connection requests
- the regular architecture implies few high used optical links and lots of under-used ones

Quasi-regular topology

- deactivation of the unused fibers in optical links
- regularity preserved and reachable through further upgrades
A competitive quasi-regular topology

We need to:
1. reduce the network cost
2. improve the network utilization

Observation
- the traffic matrix contains few peaks and a lot of low connection requests
- the regular architecture implies few high used optical links and lots of under-used ones

Quasi-regular topology
- deactivation of the unused fibers in optical links
- regularity preserved and reachable through further upgrades
Quasi-regular topology

RFA results with a quasi-regular topology

<table>
<thead>
<tr>
<th>Model</th>
<th>10A</th>
<th>10B</th>
<th>34A</th>
<th>34B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>982492(-56%)</td>
<td>840006(-61%)</td>
<td>12406718(-61%)</td>
<td>15976542(-62%)</td>
</tr>
<tr>
<td>Exec. time</td>
<td>169s</td>
<td>100s</td>
<td>12.07h</td>
<td>1685s</td>
</tr>
<tr>
<td>Fibers cost</td>
<td>63.13%</td>
<td>73.65%</td>
<td>63.81%</td>
<td>60.41%</td>
</tr>
<tr>
<td>CNs cost</td>
<td>11.36%</td>
<td>13.88%</td>
<td>4.97%</td>
<td>3.67%</td>
</tr>
<tr>
<td>Delays cost</td>
<td>25.51%</td>
<td>12.46%</td>
<td>31.21%</td>
<td>35.91%</td>
</tr>
<tr>
<td>μ_R</td>
<td>48.36%</td>
<td>38.97%</td>
<td>52.69%</td>
<td>51.73%</td>
</tr>
</tbody>
</table>
The Petaweb
Network design
Open issues
Summary

Quasi-regular topology

RFA results with a quasi-regular topology

<table>
<thead>
<tr>
<th>Model</th>
<th>10A</th>
<th>10B</th>
<th>34A</th>
<th>34B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>982492(-56%)</td>
<td>840006(-61%)</td>
<td>12406718(-61%)</td>
<td>15976542(-62%)</td>
</tr>
<tr>
<td>Exec. time</td>
<td>169s</td>
<td>100s</td>
<td>12.07h</td>
<td>1685s</td>
</tr>
<tr>
<td>Fibers cost</td>
<td>63.13%</td>
<td>73.65%</td>
<td>63.81%</td>
<td>60.41%</td>
</tr>
<tr>
<td>CNs cost</td>
<td>11.36%</td>
<td>13.88%</td>
<td>4.97%</td>
<td>3.67%</td>
</tr>
<tr>
<td>Delays cost</td>
<td>25.51%</td>
<td>12.46%</td>
<td>31.21%</td>
<td>35.91%</td>
</tr>
<tr>
<td>μ_R</td>
<td>48.36%</td>
<td>38.97%</td>
<td>52.69%</td>
<td>51.73%</td>
</tr>
</tbody>
</table>

Benefits

- Utilization triplicated
- Fiber cost weight decreased of 10p%
- Network cost halved

A Petaweb quasi-regular topology can now compete with mesh topology
RFA results with a quasi-regular topology

<table>
<thead>
<tr>
<th>Model</th>
<th>10A</th>
<th>10B</th>
<th>34A</th>
<th>34B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>982492 (-56%)</td>
<td>840006 (-61%)</td>
<td>12406718 (-61%)</td>
<td>15976542 (-62%)</td>
</tr>
<tr>
<td>Exec. time</td>
<td>169s</td>
<td>100s</td>
<td>12.07h</td>
<td>1685s</td>
</tr>
<tr>
<td>Fibers cost</td>
<td>63.13%</td>
<td>73.65%</td>
<td>63.81%</td>
<td>60.41%</td>
</tr>
<tr>
<td>CNs cost</td>
<td>11.36%</td>
<td>13.88%</td>
<td>4.97%</td>
<td>3.67%</td>
</tr>
<tr>
<td>Delays cost</td>
<td>25.51%</td>
<td>12.46%</td>
<td>31.21%</td>
<td>35.91%</td>
</tr>
<tr>
<td>μR</td>
<td>48.36%</td>
<td>38.97%</td>
<td>52.69%</td>
<td>51.73%</td>
</tr>
</tbody>
</table>

Benefits
- Utilization triplicated
- Fiber cost weight decreased of 10p%
- Network cost halved

A Petaweb quasi-regular topology can now compete with mesh topology.
RFA results with a quasi-regular topology

<table>
<thead>
<tr>
<th>Model</th>
<th>10A</th>
<th>10B</th>
<th>34A</th>
<th>34B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>982492(-56%)</td>
<td>840006(-61%)</td>
<td>12406718(-61%)</td>
<td>15976542(-62%)</td>
</tr>
<tr>
<td>Exec. time</td>
<td>169s</td>
<td>100s</td>
<td>12.07h</td>
<td>1685s</td>
</tr>
<tr>
<td>Fibers cost</td>
<td>63.13%</td>
<td>73.65%</td>
<td>63.81%</td>
<td>60.41%</td>
</tr>
<tr>
<td>CNs cost</td>
<td>11.36%</td>
<td>13.88%</td>
<td>4.97%</td>
<td>3.67%</td>
</tr>
<tr>
<td>Delays cost</td>
<td>25.51%</td>
<td>12.46%</td>
<td>31.21%</td>
<td>35.91%</td>
</tr>
<tr>
<td>μR</td>
<td>48.36%</td>
<td>38.97%</td>
<td>52.69%</td>
<td>51.73%</td>
</tr>
</tbody>
</table>

Benefits
- Utilization triplicated
- Fiber cost weight decreased of 10p%
- Network cost halved

A Petaweb quasi-regular topology can now compete with mesh topology.
Quasi-regular topology

RFA results with a quasi-regular topology

<table>
<thead>
<tr>
<th>Model</th>
<th>10A</th>
<th>10B</th>
<th>34A</th>
<th>34B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>982492</td>
<td>840006</td>
<td>12406718</td>
<td>15976542</td>
</tr>
<tr>
<td>Cost%</td>
<td>-56%</td>
<td>-61%</td>
<td>-61%</td>
<td>-62%</td>
</tr>
<tr>
<td>Exec.time</td>
<td>169s</td>
<td>100s</td>
<td>12.07h</td>
<td>1685s</td>
</tr>
<tr>
<td>Fibers cost</td>
<td>63.13%</td>
<td>73.65%</td>
<td>63.81%</td>
<td>60.41%</td>
</tr>
<tr>
<td>CNs cost</td>
<td>11.36%</td>
<td>13.88%</td>
<td>4.97%</td>
<td>3.67%</td>
</tr>
<tr>
<td>Delays cost</td>
<td>25.51%</td>
<td>12.46%</td>
<td>31.21%</td>
<td>35.91%</td>
</tr>
<tr>
<td>(\mu_R)</td>
<td>48.36%</td>
<td>38.97%</td>
<td>52.69%</td>
<td>51.73%</td>
</tr>
</tbody>
</table>

High exec. time!
RFA results with a quasi-regular topology

<table>
<thead>
<tr>
<th>Model</th>
<th>10A</th>
<th>10B</th>
<th>34A</th>
<th>34B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>982492(-56%)</td>
<td>840006(-61%)</td>
<td>12406718(-61%)</td>
<td>15976542(-62%)</td>
</tr>
<tr>
<td>Exec.time</td>
<td>169s</td>
<td>100s</td>
<td>12.07h</td>
<td>1685s</td>
</tr>
<tr>
<td>Fibers cost</td>
<td>63.13%</td>
<td>73.65%</td>
<td>63.81%</td>
<td>60.41%</td>
</tr>
<tr>
<td>CNs cost</td>
<td>11.36%</td>
<td>13.88%</td>
<td>4.97%</td>
<td>3.67%</td>
</tr>
<tr>
<td>Delays cost</td>
<td>25.51%</td>
<td>12.46%</td>
<td>31.21%</td>
<td>35.91%</td>
</tr>
<tr>
<td>μ_R</td>
<td>48.36%</td>
<td>38.97%</td>
<td>52.69%</td>
<td>51.73%</td>
</tr>
</tbody>
</table>

High exec. time! ↓ Repeated Matching

Heuristic
Quasi-regular topology

RFA results with a quasi-regular topology

<table>
<thead>
<tr>
<th>Model</th>
<th>10A</th>
<th>10B</th>
<th>34A</th>
<th>34B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>982492(-56%)</td>
<td>840006(-61%)</td>
<td>12406718(-61%)</td>
<td>15976542(-62%)</td>
</tr>
<tr>
<td>Exec. time</td>
<td>169s</td>
<td>100s</td>
<td>12.07h</td>
<td>1685s</td>
</tr>
<tr>
<td>Fibers cost</td>
<td>63.13%</td>
<td>73.65%</td>
<td>63.81%</td>
<td>60.41%</td>
</tr>
<tr>
<td>CNs cost</td>
<td>11.36%</td>
<td>13.88%</td>
<td>4.97%</td>
<td>3.67%</td>
</tr>
<tr>
<td>Delays cost</td>
<td>25.51%</td>
<td>12.46%</td>
<td>31.21%</td>
<td>35.91%</td>
</tr>
<tr>
<td>μ_R</td>
<td>48.36%</td>
<td>38.97%</td>
<td>52.69%</td>
<td>51.73%</td>
</tr>
</tbody>
</table>

10A

New York
Philadelphia
Albany
Charlotte
Cleveland
Miami
Boston
Tallahassee
Tampa
Washington

10B

New York
Philadelphia
Albany
Charlotte
Cleveland
Miami
Boston
Tallahassee
Tampa
Washington
Outline

1. The Petaweb
 - The architecture
 - Network model
 - Classes of service

2. Petaweb network design
 - Design problem
 - Results
 - Quasi-regular topology

3. Open issues
 - Reliability problem
 - Upgrade problem
Absence of reliability

Optimised 10A quasi-regular

Trunk-line failure

Two possible cases deserve attention in case of one trunk-line failure:

- isolated edge nodes connected through only one trunk (possible for quasi-regular topologies)
- all the edge nodes connected through only one trunk (possible for little topologies)

Only 1 switching site
Absence of reliability

Optimised 10A quasi-regular

Trunk-line failure

Two possible cases deserve attention in case of one trunk-line failure:

- isolated edge nodes connected through only one trunk (possible for quasi-regular topologies)
- all the edge nodes connected through only one trunk (possible for little topologies)
Upgrade problem

Upgrade of an optimised Petaweb

Problem
- the requested traffic volume doubles every 6 to 12 months
- an optimised architecture has the 50% of idle capacity

Question
How to upgrade an existing optimised Petaweb architecture?
Upgrade problem

Upgrade of an optimised Petaweb

Problem

- the requested traffic volume doubles every 6 to 12 months
- an optimised architecture has the 50% of idle capacity

Question

How to upgrade an existing optimised Petaweb architecture?
Upgrade of an optimised Petaweb

Problem
- the requested traffic volume doubles every 6 to 12 months
- an optimised architecture has the 50% of idle capacity

Question
How to upgrade an existing optimised Petaweb architecture?
Objective
We furnished, for the first time, a tool for the design optimization of a Petaweb architecture. The results are realistic and showed.

Ease in network operation and management
- The 1-hop connection guarantees full access to the available capacity.
- The core node-based architecture offers simple routing, network configuration and operations.

Competitive quasi-regular physical topology
- The inexpensive quasi-regular topology offers a network around 50% cheaper than a regular one.
Summary

Objective
We furnished, for the first time, a tool for the design optimization of a Petaweb architecture. The results are realistic and showed.

Ease in network operation and management
- The 1-hop connection guarantees full access to the available capacity.
- The core node-based architecture offers simple routing, network configuration and operations.

Competitive quasi-regular physical topology
- The inexpensive quasi-regular topology offers a network around 50% cheaper than a regular one.
Summary

Objective

We furnished, for the first time, a tool for the design optimization of a Petaweb architecture. The results are realistic and showed.

Ease in network operation and management

- The 1-hop connection guarantees full access to the available capacity.
- The core node-based architecture offers simple routing, network configuration and operations.

Competitive quasi-regular physical topology

- The inexpensive quasi-regular topology offers a network around 50% cheaper than a regular one.
Summary: further works

Open Problems

- straighth optimization of a quasi-regular Petaweb architecture
- comparison mesh - Petaweb quasi-regular topologies
- partial adaptation to an existing infrastructure

Other papers

- S. Secci, B. Sansò, “Upgrading the Petaweb Architecture”, submitted to Journal of Optical Networking
Summary: further works

Open Problems

- straighth optimization of a quasi-regular Petaweb architecture
- comparison mesh - Petaweb quasi-regular topologies
- partial adaptation to an existing infrastructure

Other papers

- S. Secci, B. Sansò, “Upgrading the Petaweb Architecture”, submitted to Journal of Optical Networking
Summary: further works

Open Problems

- straighth optimization of a quasi-regular Petaweb architecture
- comparison mesh - Petaweb quasi-regular topologies
- partial adaptation to an existing infrastructure

Other papers

- S. Secci, B. Sansò, “Upgrading the Petaweb Architecture”, submitted to Journal of Optical Networking
Summary: further works

Open Problems

- straighth optimization of a quasi-regular Petaweb architecture
- comparison mesh - Petaweb quasi-regular topologies
- partial adaptation to an existing infrastructure

Other papers

- S. Secci, B. Sansò, “Upgrading the Petaweb Architecture”, submitted to Journal of Optical Networking
Summary: further works

Open Problems

- straighth optimization of a quasi-regular Petaweb architecture
- comparison mesh - Petaweb quasi-regular topologies
- partial adaptation to an existing infrastructure

Other papers

- S. Secci, B. Sansò, “Upgrading the Petaweb Architecture”, submitted to Journal of Optical Networking
Summary: further works

Open Problems
- straigth optimization of a quasi-regular Petaweb architecture
- comparison mesh - Petaweb quasi-regular topologies
- partial adaptation to an existing infrastructure

Other papers
- S. Secci, B. Sansò, “Upgrading the Petaweb Architecture”, submitted to Journal of Optical Networking
Appendix

The Petaweb Architecture
Heuristic
Explanation of core nodes structure

Figure: Core node with one switching plane

Figure: Core node with two switching planes
Time-Division at switching equipments

Figure: Time-division Space Router (Huang, 2000), replacing a switching plane
A repeated matching heuristic

At every iteration:
- calculation of matching costs matrix
- resolution of the matching problem
- solution exploitation $\Rightarrow L_1', L_2', L_3'$
- exit if not decreasing Packing cost

Jonker + Forbes algorithms

Jonker:
$$\min_{V_s} \sum_{i=1}^{n_1+n_2+n_3} c_{i,V_s[i]} \Rightarrow V_s[i]$$

Forbes:
$$V'_s \mid V'_s[i] = j, \land V'_s[j] = i$$
A repeated matching heuristic

Network status: Packing

- L_1: disabled core nodes
- L_2: unassigned TLPs
- L_3: Kits

At every iteration:
- calculation of matching costs matrix
- resolution of the matching problem
- solution exploitation $\Rightarrow L_1', L_2', L_3'$
- exit if not decreasing Packing cost

Jonker + Forbes algorithms

Jonker: $\min \sum_{i=1}^{n_1+n_2+n_3} c_{i,V[i]} \Rightarrow V_s[i]$

Forbes: $V_s' \mid V_s'[i] = j, \land V_s'[j] = i$
A repeated matching heuristic

Network status: Packing

- L_1: disabled core nodes
- L_2: unassigned TLPs
- L_3: Kits

At every iteration:

- calculation of matching costs matrix
- resolution of the matching problem
- solution exploitation $\Rightarrow L_1', L_2', L_3'$
- exit if not decreasing Packing cost

Jonker + Forbes algorithms

- **Jonker**:
 \[
 \text{Jonker} : \min \sum_{i=1}^{n_1+n_2+n_3} c_{i,V[i]} \Rightarrow V_s[i]
 \]
- **Forbes**:
 \[
 V'_s \mid V'_s[i] = j, \land V'_s[j] = i
 \]
A repeated matching heuristic

Network status: Packing

- L_1: disabled core nodes
- L_2: unassigned TLPs
- L_3: Kits

At every iteration:
- calculation of matching costs matrix
- resolution of the matching problem
- solution exploitation $\Rightarrow L_1', L_2', L_3'$
- exit if not decreasing Packing cost

Jonker + Forbes algorithms

Jonker: \[\min \sum_{i=1}^{n_1+n_2+n_3} c_{i,V[i]} \Rightarrow V_s[i] \]

Forbes: \[V'_s \mid V'_s[i] = j, \land V'_s[j] = i \]
A repeated matching heuristic

Network status: Packing
- L_1: disabled core nodes
- L_2: unassigned TLPs
- L_3: Kits

At every iteration:
- calculation of matching costs matrix
- resolution of the matching problem
- **solution exploitation** ⇒ L_1', L_2', L_3'
- exit if not decreasing Packing cost

 Jonker + Forbes algorithms

Jonker:

$$\text{min} \sum_{i=1}^{n_1+n_2+n_3} c_{i,V[i]} \Rightarrow V_s[i]$$

Forbes:

$$V'_s \mid V'_s[i] = j, \land V'_s[j] = i$$
Heuristic

A repeated matching heuristic

Network status: Packing

- L_1: disabled core nodes
- L_2: unassigned TLPs
- L_3: Kits

A Packing

At every iteration:
- calculation of matching costs matrix
- resolution of the matching problem
- solution exploitation $\Rightarrow L_1', L_2', L_3'$
- exit if not decreasing Packing cost

Jonker + Forbes algorithms

Jonker: $\min \sum_{i=1}^{n_1+n_2+n_3} c_{i,v[i]} \Rightarrow V_s[i]$

Forbes: $V_s' | V_s'[i] = j, \land V_s'[j] = i$
RFA results through an heuristic

Adapted repeated matching heuristic (Rönnqvist, 1999)

<table>
<thead>
<tr>
<th>Model</th>
<th>10A</th>
<th>10B</th>
<th>34A</th>
<th>34B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>2281803</td>
<td>2155353</td>
<td>31990695</td>
<td>42677557</td>
</tr>
<tr>
<td>ILP-optimum gap</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Execution time</td>
<td>1.8</td>
<td>2.1s</td>
<td>133.1s</td>
<td>186s</td>
</tr>
<tr>
<td>Fibers cost</td>
<td>77.8%</td>
<td>83.27%</td>
<td>81.8%</td>
<td>81.12%</td>
</tr>
<tr>
<td>CNs cost</td>
<td>11.22%</td>
<td>11.88%</td>
<td>5.49%</td>
<td>5.43%</td>
</tr>
<tr>
<td>Delays cost</td>
<td>10.98%</td>
<td>4.86%</td>
<td>12.71%</td>
<td>13.45%</td>
</tr>
<tr>
<td>μ_R</td>
<td>17.91%</td>
<td>15.15%</td>
<td>16.86%</td>
<td>12.4%</td>
</tr>
</tbody>
</table>
RFA results through an heuristic

Adapted repeated matching heuristic (Rönnqvist, 1999)

<table>
<thead>
<tr>
<th>Model</th>
<th>10A</th>
<th>10B</th>
<th>34A</th>
<th>34B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>2281803</td>
<td>2155353</td>
<td>31990695</td>
<td>42677557</td>
</tr>
<tr>
<td>ILP-optimum gap</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Execution time</td>
<td>1.8s</td>
<td>2.1s</td>
<td>133.1s</td>
<td>186s</td>
</tr>
<tr>
<td>Fibers cost</td>
<td>77.8%</td>
<td>83.27%</td>
<td>81.8%</td>
<td>81.12%</td>
</tr>
<tr>
<td>CNs cost</td>
<td>11.22%</td>
<td>11.88%</td>
<td>5.49%</td>
<td>5.43%</td>
</tr>
<tr>
<td>Delays cost</td>
<td>10.98%</td>
<td>4.86%</td>
<td>12.71%</td>
<td>13.45%</td>
</tr>
<tr>
<td>μ_R</td>
<td>17.91%</td>
<td>15.15%</td>
<td>16.86%</td>
<td>12.4%</td>
</tr>
</tbody>
</table>
RFA results for large networks

Adapted repeated matching heuristic (Rönnqvist, 1999)

<table>
<thead>
<tr>
<th>Model</th>
<th>10A</th>
<th>10B</th>
<th>34A</th>
<th>34B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>2281803</td>
<td>2155353</td>
<td>31990695</td>
<td>42677557</td>
</tr>
<tr>
<td>ILP-optimum gap</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Execution time</td>
<td>1.8s</td>
<td>2.1s</td>
<td>133.1s</td>
<td>186s</td>
</tr>
<tr>
<td>Fibers cost</td>
<td>77.8%</td>
<td>83.27%</td>
<td>81.8%</td>
<td>81.12%</td>
</tr>
<tr>
<td>CNs cost</td>
<td>11.22%</td>
<td>11.88%</td>
<td>5.49%</td>
<td>5.43%</td>
</tr>
<tr>
<td>Delays cost</td>
<td>10.98%</td>
<td>4.86%</td>
<td>12.71%</td>
<td>13.45%</td>
</tr>
<tr>
<td>μ_R</td>
<td>17.91%</td>
<td>15.15%</td>
<td>16.86%</td>
<td>12.4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>40B</th>
<th>50B</th>
<th>60B</th>
<th>70B</th>
<th>80B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>37963706</td>
<td>43210103</td>
<td>55099935</td>
<td>50886627</td>
<td>66910660</td>
</tr>
<tr>
<td>Exec. time</td>
<td>418s</td>
<td>1547s</td>
<td>1945s</td>
<td>4022s</td>
<td>6681s</td>
</tr>
<tr>
<td>μ_R</td>
<td>11.79%</td>
<td>9.9%</td>
<td>8.09%</td>
<td>9.03%</td>
<td>7.22%</td>
</tr>
<tr>
<td>Capacity</td>
<td>20.858 Tb/s</td>
<td>21.725 Tb/s</td>
<td>22.908 Tb/s</td>
<td>23.935 Tb/s</td>
<td>25.54 Tb/s</td>
</tr>
</tbody>
</table>

Quasi-regular

<table>
<thead>
<tr>
<th>Cost</th>
<th>14559611(-61%)</th>
<th>16150759(-62%)</th>
<th>2190680(-60%)</th>
<th>21718007(-57%)</th>
<th>23367917(-65%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_R</td>
<td>35.48%</td>
<td>30.65%</td>
<td>22.69%</td>
<td>22.94%</td>
<td>23.44%</td>
</tr>
</tbody>
</table>
RFA results for large networks

Adapted repeated matching heuristic (Rönnqvist, 1999)

<table>
<thead>
<tr>
<th>Model</th>
<th>10A</th>
<th>10B</th>
<th>34A</th>
<th>34B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>2281803</td>
<td>2155353</td>
<td>31990695</td>
<td>42677557</td>
</tr>
<tr>
<td>ILP-optimum gap</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Execution time</td>
<td>1.8s</td>
<td>2.1s</td>
<td>133.1s</td>
<td>186s</td>
</tr>
<tr>
<td>Fibers cost</td>
<td>77.8%</td>
<td>83.27%</td>
<td>81.8%</td>
<td>81.12%</td>
</tr>
<tr>
<td>CNs cost</td>
<td>11.22%</td>
<td>11.88%</td>
<td>5.49%</td>
<td>5.43%</td>
</tr>
<tr>
<td>Delays cost</td>
<td>10.98%</td>
<td>4.86%</td>
<td>12.71%</td>
<td>13.45%</td>
</tr>
<tr>
<td>μ_R</td>
<td>17.91%</td>
<td>15.15%</td>
<td>16.86%</td>
<td>12.4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>90B</th>
<th>100B</th>
<th>110B</th>
<th>120B</th>
<th>130B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>57212363</td>
<td>71277709</td>
<td>67253170</td>
<td>86432202</td>
<td>88164068</td>
</tr>
<tr>
<td>Exec. time</td>
<td>7663s</td>
<td>11347s</td>
<td>5.31h</td>
<td>6.45h</td>
<td>8.01h</td>
</tr>
<tr>
<td>μ_R</td>
<td>8.66%</td>
<td>7.61%</td>
<td>8.74%</td>
<td>7.15%</td>
<td>7.61%</td>
</tr>
<tr>
<td>Capacity</td>
<td>27.13 Tb/s</td>
<td>28.927 Tb/s</td>
<td>30.484 Tb/s</td>
<td>32.683 Tb/s</td>
<td>34.565 Tb/s</td>
</tr>
</tbody>
</table>

Quasi-regular

<table>
<thead>
<tr>
<th>Cost</th>
<th>23955221(-58%)</th>
<th>22309225(-69%)</th>
<th>31493248(-53%)</th>
<th>33031715(-62%)</th>
<th>34770969(-61%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_R</td>
<td>23.23%</td>
<td>28.34%</td>
<td>19.93%</td>
<td>20.89%</td>
<td>20.71%</td>
</tr>
</tbody>
</table>