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Abstract

The balance between pro-inflammatory and regulatory immune responses in determining optimal T cell activation is vital
for the successful resolution of microbial infections. This balance is maintained in part by the negative regulators of T cell
activation, CTLA-4 and PD-1/PD-L, which dampen effector responses during chronic infections. However, their role in acute
infections, such as malaria, remains less clear. In this study, we determined the contribution of CTLA-4 and PD-1/PD-L to the
regulation of T cell responses during Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM) in
susceptible (C57BL/6) and resistant (BALB/c) mice. We found that the expression of CTLA-4 and PD-1 on T cells correlates
with the extent of pro-inflammatory responses induced during PbA infection, being higher in C57BL/6 than in BALB/c mice.
Thus, ECM develops despite high levels of expression of these inhibitory receptors. However, antibody-mediated blockade
of either the CTLA-4 or PD-1/PD-L1, but not the PD-1/PD-L2, pathways during PbA-infection in ECM-resistant BALB/c mice
resulted in higher levels of T cell activation, enhanced IFN-c production, increased intravascular arrest of both parasitised
erythrocytes and CD8+ T cells to the brain, and augmented incidence of ECM. Thus, in ECM-resistant BALB/c mice, CTLA-4
and PD-1/PD-L1 represent essential, independent and non-redundant pathways for maintaining T cell homeostasis during a
virulent malaria infection. Moreover, neutralisation of IFN-c or depletion of CD8+ T cells during PbA infection was shown to
reverse the pathologic effects of regulatory pathway blockade, highlighting that the aetiology of ECM in the BALB/c mice is
similar to that in C57BL/6 mice. In summary, our results underscore the differential and complex regulation that governs
immune responses to malaria parasites.
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Introduction

The outcome of microbial infections is dependent on the

balance between pro-inflammatory and regulatory immune

responses. Priming of naı̈ve T cells and their differentiation into

effector cells needs to be balanced by switching off these cells, at an

appropriate stage of infection, in order to prevent tissue damage

(immune pathology). Two important T cell inhibitory pathways

involve signalling through members of the CD28:B7 superfamily

of costimulatory molecules, namely cytotoxic T lymphocyte

antigen-4 (CTLA-4; CD152) and programmed death-1 (PD-1;

CD279). While CTLA-4 is expressed on activated T cells

including regulatory T cells [1–3], PD-1 is broadly expressed on

activated T cells, regulatory T cells and other haematopoietic cells

[4]. T cell activation through the T cell receptor (TCR) and the

costimulatory molecule CD28 results in increased expression of

CTLA-4 [1]. Since both CD28 and CTLA-4 bind to B7-1 (CD80)

and B7-2 (CD86) on antigen-presenting cells [5–7], sequential

expression of CD28 and then CTLA-4 allows T cells to be

intrinsically self-regulating. CTLA-4 has higher affinity to the B7

molecules than CD28. Similarly, PD-1 binds to PD ligand 1 (PD-

L1; CD274) and 2 (PD-L1; CD273) which are upregulated on

activated macrophages and dendritic cells (DCs) [4]. In addition,

PD-L1, which is also expressed on activated T cells, has recently

been shown to bind B7-1 [8], suggesting that there may be

opportunities for cross-talk between the CTLA-4/B7 and PD-1/

PD-L1 pathways. Consistent with their roles in the physiological

regulation of cellular immune responses, CTLA-42/2 and PD-12/

2 mice develop spontaneous autoimmune diseases; CTLA-42/2

mice die 2–3 weeks after birth from systemic lymphoproliferation

[9,10] while PD-12/2 mice develop lupus-like glomerulonephritis

and destructive arthritis [11,12].
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Accumulating data suggest that PD-1/PD-L1 signalling, and in

some cases CTLA-4 signalling, is implicated in the T cell

exhaustion that is seen in many chronic infections [13–15]. For

example, expression of PD-1 is associated with progressive loss of

CD8+ T cell effector function during persistent lymphocytic

choriomeningitis virus (LCMV) infection in mice; blockade of PD-

1/PD-L1 interactions but not the CTLA-4 pathway augmented T

cell function and allowed the virus to be controlled [16]. Similarly,

in humans, PD-1 is upregulated on both CD4+ and CD8+ T cells

during human immunodeficiency virus (HIV) infection and on

CD8+ T cells during hepatitis C virus (HCV) infections and is

associated with functional impairment of T cells and disease

progression [17–19]. In vitro blockade of PD-1/PD-L1 pathway

significantly increases CD8+ and CD4+ T cell function during HIV

infection [20]. There is limited information available on the role of

the PD-1/PD-L2 in chronic infections. In vitro blockade of PD-1/

PD-L1 and to a lesser extent PD-1/PD-L2 resulted in reversal of

immune dysfunction in HCV [21]. PD-L2 expression on dendritic

cells is correlated to morbidity in experimental chronic schistoso-

miasis [22]. High levels of CTLA-4 expression are found on HIV-

specific CD4+ T cells, but not on CD8+ T cells, and in vitro

blockade of CTLA-4 enhances HIV-specific CD4+ T cell function

[17]. Likewise, CTLA-4 blockade augments T cell responses to,

and resolution of chronic infections such as Helicobacter pylori [23],

Leishmania donovani [24], Leishmania chagasi [25] and Trypanosoma

cruzi [26] in mice.

With regard to acute infections, CTLA-4 blockade during

Nippostrongylus brasiliensis [27] and Listeria monocytogenes [28] infection

greatly enhanced T cell responses, resulting in more effective

infection control. However, although CTLA-4 blockade enhanced

T cell responses during Mycobacterium bovis infection, this did not

have any effect on bacterial clearance [29]. PD-L12/2 mice are

markedly more resistant to rabies virus [30] and Histoplasma

capsulatum infection [31] than are wild-type mice. While these

studies clearly indicate a role for the PD-1/PD-L1 pathway in

dampening T cell responses, there is, rather confusingly, some

evidence that this pathway is important in promoting CD8+ T cell

responses in murine influenza virus [32] and Listeria monocytogenes

[33] infections, suggesting that the outcome of PD-1/PD-L1

interactions might be modified by other regulatory pathways.

Moreover, in Plasmodium yoelii malaria infections, CTLA-4

blockade increased T cell activation and IFN-c production leading

to early resolution of infections with the non-lethal 17X strain, but

to increased severity of infections with the highly virulent 17XL

strain of the parasite [34], suggesting that enhancing T cell

activation can be beneficial in relatively mild infections but can

exacerbate virulent infections. Limited data are available for the

PD-1/PD-L2 pathway during acute infections: PD-1/PD-L2 but

not PD-1/PD-L1 blockade favours trypanosomatid growth in

macrophages [35] and PD-L2 blockade enhances Th2 responses

during Nippostrongylus infection [36].

Very few studies have directly contrasted the roles of CTLA-4

and PD-1 in the same infection, investigated the role of these

pathways in determining susceptibility or resistance to infection in

different mouse strains, or evaluated the extent to which they

modulate immune pathology versus pathogen clearance. Here we

have directly compared the roles of the CTLA-4 and PD-1

pathways in an acute malaria infection model in which resistance

or susceptibility to immune-mediated pathology varies among

strains of mice.

P. berghei ANKA (PbA) infection of experimental cerebral

malaria (ECM)-susceptible C57BL/6 mice reproduces the neuro-

logical signs associated with human cerebral malaria, the most

severe complication of infection by the human parasite, P.

falciparum [37]. Ante-mortem, the diagnostic neurological signs of

ECM are ataxia and/or paralysis, which quickly leads to seizures,

prostration and death within 10 days of infection. Histologically,

CM is characterised by oedema, petechial haemorrhages and

adherence of leucocytes and parasitised red blood cells to brain

endothelium [37]. The essential triggers for ECM include systemic

priming of CD4+ T cells by conventional DCs [37], the production

of pro-inflammatory cytokines such as IFN-c [38,39], the

recruitment of effector CD8+ T cells to the brain [40,41], and

parasite accumulation in the cerebral microvasculature [42–44].

C57BL/6 mice infected with PbA develop a multi-organ disease as

recently described [45] and – as in the brain - this is mediated by T

cells and IFN-c. However, this systemic disease, in the absence of

cerebral involvement, does not appear to be fatal and mice will die

at a later time point from hyperparasitaemia. The current best

model of the pathogenesis of ECM is that CD8+ T cells damage

cerebral vascular endothelial cells and the underlying basement

membrane, thereby breaching the blood brain barrier, causing

haemorrhage and oedema. Thus, pathology manifests initially in

the brain because this organ is particularly vulnerable to the

immediate consequences of endothelial damage.

In contrast, the majority of PbA-infected BALB/c mice do not

develop ECM but die from high parasitaemia and anaemia 2–3

weeks post-infection [46]. Hence, BALB/c mice are considered

resistant to PbA-induced immune pathology. We hypothesised,

therefore, that T cell-mediated inflammatory responses may be

down-regulated in BALB/c mice (preventing control of parasitae-

mia but also preventing accumulation of T cells in the brain), and

that this might be due to differential regulation of CD4+ and/or

CD8+ T cells by CTLA-4 and/or PD-1. We found that in C57BL/

6 mice, ECM develops despite high levels of expression of

inhibitory receptors on CD4+ and CD8+ T cells. Conversely, we

found that blockade of either CTLA-4 or PD-1/PD-L1, but not

PD-1/PD-L2, during PbA-infection leads to the onset of ECM in

normally resistant BALB/c mice and that this is accompanied by

the characteristic features of T cell hyperactivity, raised IFN-c
levels and accumulation of CD8+ T cells and parasites in the brain.

Thus, the CTLA-4 and PD-1/PD-L1 pathways seem to function

Author Summary

T cells are part of the body’s defense system in response to
infection. However, once the infection has been suitably
controlled, these T cells must be switched off. Inhibitory
pathways, such as CTLA-4 and PD-1, are known to send the
‘turn off’ signal to T cells during chronic infections.
However, their roles in acute infections, such as malaria,
are unclear. We compared the function of these inhibitory
pathways in mice that are either susceptible or resistant to
severe malarial disease (cerebral malaria). Strikingly, we
found that receptors for CTLA-4 and PD-1 are more highly
expressed in T cells from susceptible mice than from
resistant mice. Therefore, cerebral malaria develops
despite the high expression of these inhibitory receptors.
Moreover, we demonstrated that blocking these inhibitory
receptors in the resistant mice increased the function of T
cells, which in turn led to the characteristic signs of
cerebral malaria. Finally, reminiscent of what is known for
the susceptible strain, we confirmed that certain T cells
(CD8+) and molecules (IFN-c) are crucial to the develop-
ment of cerebral malaria in the otherwise resistant mice.
Thus, the CTLA-4 and PD-1 inhibitory pathways have
essential, independent and non-redundant roles in regu-
lating the body’s complex response to malaria.
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very efficiently in BALB/c mice, maintaining the balance between

immunity and immune pathology during the critical early stage of

infection.

Materials and Methods

Ethics statement
Animal experiments performed in the United Kingdom were

approved by the LSHTM Animal Procedures and Ethics

Committee and were performed under licence from the United

Kingdom Home Office under the Animals (Scientific Procedures)

Act 1986. In Singapore, all experiments and procedures were

approved by the Institutional Animal Care and Use Committee

(IACUC) of A*STAR (Biopolis, Singapore) (Authorization No

IACUC 080321) in accordance with the guidelines of the Agri-

Food and Veterinary Authority (AVA) and the National Advisory

Committee for Laboratory Animal Research (NACLAR) of

Singapore.

Mice, parasites and experimental infections
Six- to twelve week old BALB/cAnNCrl mice and C57BL/

6NCrl mice were purchased from Charles River UK Ltd and

maintained under barrier conditions. PbA parasites, derived from

the PbA clone 15cy1, which had been genetically engineered to

express green fluorescent protein (PbAgfp [47], referred to here as

PbA) were maintained by passage through naı̈ve mice. For in vivo

imaging experiments, seven- to eight weeks old BALB/cJ mice

were bred in-house and kept under specific pathogen-free

conditions. Transgenic P. berghei ANKA 231c1l parasites

expressing luciferase under the control of the ef1-a promoter

(referred here as PbAluc) were provided by Dr. Christian

Engwerda (Queensland Institute for Medical Research, Brisbane,

Australia) from a stock originally from Leiden, The Netherlands

[48,49].

Experimental infections were initiated by i.v. inoculation of 104

PbA-parasitised red blood cells (pRBC) and infected mice were

monitored for neurological symptoms (paralysis, ataxia, convul-

sions, and coma occurring between day 6 and 10 post-infection) as

previously described [50]. All mice that developed signs of

irreversible pathology were immediately humanely sacrificed and

their brains examined for signs of ECM (see Protocol S1 in Text

S1 for additional details). Cumulative ECM incidence during the

observation period was then reported. Parasitaemia was deter-

mined by examination of Giemsa-stained thin blood smears. On

various days post-infection, mice were sacrificed and exsanguinat-

ed. Moreover, their spleens were removed, and single spleen cell

suspensions were prepared by homogenisation through a 70 mm

cell strainer (BD Biosciences). CD4+ and CD8+ T cells were

purified by magnetic bead sorting (MACS, Miltenyi Biotec). Brain-

sequestered leucocytes were isolated from perfused animals as

described [51]. Live cells were counted by trypan blue exclusion.

Heparinised plasma was stored at 270uC for cytokine quantifi-

cation.

In vivo administration of antibodies
Blocking antibodies to CTLA-4 [UC10-4F10-11], PD-L1 [9G2]

and PD-L2 [TY5] and neutralising antibodies to IFN-c [XMG1.2]

and TNF [XT3.11] were administered by intraperitoneal injection

(0.4 mg/mouse) on days 21, 1, 3, 5 and 7 of infection. Depleting

antibodies to CD4 [GK1.5] and CD8 [53.6.72] were administered

by intraperitoneal injection (0.25 mg/mouse) on days 21, 1, 4 and

6 (or on days 4 and 6) of infection. All antibodies were rat-a-mouse

IgG and were obtained from BioXCell; control rat IgG was

obtained from Pierce.

Flow cytometry
Antibodies [clones] for cell-surface staining were obtained from

eBiosciences (a-mouse CD4 [GK1.5], CD8 [53.6-7], CD11a

[M17/4], CD11c [N418], CD44 [IM7], CD62L [MEL-14],

CD71 [R17217], CD273/PD-L2 [122], CD274/PD-L1 [MIH5],

CD279/PD-1 [RMP1-30]), F4/80 [BM8] or BD Biosciences (a-

mouse CD3 [145-2C11], CD4 [RM4-5] and CD8 [53-6.7]).

Isolated leucocytes were directly stained according to standard

protocols. Antibodies for intracellular staining were obtained from

eBiosciences (a-mouse CD152/CTLA4 [UC10-4B9], FoxP3 [FJK-

16s], and IFN-c [XMG1.2]). Intracellular staining was performed

by permeabilising cells with 0.1% Saponin/PBS. Cells were

analysed using a FACSCalibur or LSR II (BD Immunocytometry

Systems) and FlowJo software (TreeStar).

Cytokine quantification
Plasma cytokines were assayed by cytometric bead array (mouse

inflammation kit; BD Bioscience) following the manufacturer’s

protocol. Intracellular IFN-c was assayed by flow cytometry

(above) following 5-hour culture of mixed spleen cells in the

presence of PMA (50 ng/mL), ionomycin (1 mg/mL), and

Brefeldin A (1 mg/mL). Secreted IFN-c and IL-10 were assayed

by conventional ELISA [52] in supernatants of purified CD4+ or

CD8+ T cells cultured (at 105 cells per well) for 24 or 48 hours

respectively in the presence of a-CD3 [clone 145-2C11, 1 mg/mL]

and a-CD28 [clone 37.51, 1 mg/mL] antibodies (eBioscience).

Histopathology
Brain and liver tissues were fixed in 10% formaldehyde saline,

paraffin-wax embedded, sectioned, stained with haematoxylin and

eosin and examined by light microscopy at 20X magnification.

Bioluminescent imaging
Distribution of PbAluc parasites was monitored daily by in vivo

imaging (IVIS; Xenogen, Alameda, California). Infected mice

were anaesthesised, injected s.c. with 100 ml of D-luciferin

potassium salt (Caliper Life Sciences) (5mg/ml in PBS) and, two

minutes later, bioluminescence images were acquired, with

medium binning factor and fields-of-view (FOV) of 21.7 and

4 cm for the whole body (ventral) and head (dorsal), respectively.

Imaging time was between 5 to 60 seconds per mouse. In terminal

experiments, mice were given a second injection of luciferase

substrate and, within 3 minutes, mice were sacrificed (by cervical

dislocation). Brains were removed and imaged with 10 cm FOV.

To allow comparison of images from different days of the

experiment, uninfected mice injected with luciferin were imaged

for background subtraction. Bioluminescence in the brains was

quantified using Living Imaging 3.0 software and expressed as

average radiance units (p/s/cm2/sr).

Statistical analysis
Statistical analysis was performed in GraphPad Prism (Graph-

Pad Software Inc). Comparisons between two groups were made

using the Mann Whitney test. For comparisons involving more

than two groups, statistical significance was determined using the

Kruksal Wallis test with Dunn’s post-test for multiple comparisons

with p,0.05 taken as evidence of a significant difference.

Differences in survival curves between two groups were analysed

using the Log-rank (Mantel Cox) test. Differences in cumulative

ECM incidence between two groups was analysed using the

Fisher’s exact test. Bonferroni correction was used to adjust for

multiple comparisons within the Log-rank (Mantel Cox) and

Fisher’s exact tests. The Bonferroni-corrected threshold for

Regulation of Malaria Acute Immune Pathology
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significance was calculated by dividing the conventionally set level

of significance (0.05) by the number of comparisons.

Results

Expression of the inhibitory receptors CTLA-4 and PD-1
correlates with the induction of pro-inflammatory
responses during PbA infection in both ECM-resistant
and ECM-susceptible mouse strains

The course of PbA infection was compared in C57BL/6 and

BALB/c mice (Figure 1A). PbA-infected C57BL/6 mice became

moribund on day 7 post-infection after developing neurological

signs. In contrast, the majority of PbA-infected BALB/c mice

survived up to day 15 post-infection when they were euthanised

due to the development of severe anaemia and moderate

parasitaemia. Over the course of three experiments, 100% (12/

12) of C57BL/6 mice but only 25% (4/16) of BALB/c mice

developed signs of ECM (Figure 1B). There was no difference

between C57BL/6 and BALB/c mice in peripheral parasitaemia

up to day 7 (Figure 1C).

To determine if T cell regulatory receptors could explain

differences in susceptibility to ECM, intracellular expression of

CTLA-4 and surface expression of PD-1 were compared on

splenic T cells of BALB/c and C57BL/6 mice at different times

after PbA infection (Figure 2). The proportions of CD4+ and

CD8+ T cells expressing either CTLA-4 or PD-1 were similar in

the two mouse strains during the first 6 days of infection, but

surprisingly, on day 7 – i.e. at exactly the time when susceptible

mice began to show signs of ECM – the proportions of both CD4+

and CD8+ T cells expressing CTLA-4 and PD-1 were significantly

higher in ECM-susceptible C75BL/6 mice than in ECM-resistant

BALB/c mice (Figure 2A, B). Consistent with previous reports in

other models that PD-L1 is also expressed on T cells and is further

upregulated during activation [4], PD-L1 was upregulated on

virtually all CD4+ and CD8+ T cells by day 5 of PbA infection in

both C57BL/6 and BALB/c mice (Figure S1A in Text S1). In

addition, dendritic cells (Figure S1B in Text S1) and macrophages

(Figure S1C in Text S1) from both groups of mice upregulated

PD-L1 and PD-L2 during infection.

The higher frequency of CTLA-4hi and PD-1hi cells in infected

C57BL/6 mice correlated with a higher proportion of CD4+ and

CD8+ splenic T cells able to secrete IFN-c (Figure 2C).

Furthermore, T cells from C57BL/6 mice expressed significantly

higher levels of effector and activation markers: CD11ahi, a

surrogate marker for polyclonal, antigen-experienced CD8+ T

cells [53,54] and CD62Llo, a commonly used marker of effector

cells [53,55] (Figure S2 in Text S1).

In both strains of infected mice, and in both CD4+ and CD8+ T

cells, CTLA-4 and PD-1 seem to be co-expressed on the same cells

(Figure 2D, Figure S3 in Text S1), indicating that the two

receptors may function co-operatively. Consequently, CTLA-4hi/

PD-1hi expression on T cells coincided with CD11ahi (Figure

S3B,E in Text S1) and CD62Llo (Figure S3C,F in Text S1)

suggesting that these are activated cells induced in response to

infection. Moreover, the vast majority of CTLA-4hi and PD-1hi

CD4+ T cells were FoxP3-, indicating that they are not classical

regulatory T cells (Figure 2E,F).

Together, these data indicate that CTLA-4, PD-1 and PD-L1

are upregulated on activated T cells during PbA infection in both

ECM-susceptible and ECM-resistant mice. However, the very

high degree of T cell activation in C57BL/6 mice may provide a

situation where positive signals override physiological levels of

immune regulation mediated by CTLA-4 and PD-1 such that they

are unable to prevent immune-mediated pathology.

Blockade of CTLA-4 and PD-1/PD-L1 pathways induces
experimental cerebral malaria in otherwise resistant mice

To determine whether the CTLA-4 and PD-1 pathways

modulate ECM pathogenesis in the ECM-resistant strain, the

outcome of PbA infection was compared between control mice and

mice treated with blocking antibodies to PD-L1 or CTLA-4. We

decided to focus on CTLA-4 and PD-1/PD-L1 particularly

because both of these inhibitory pathways have been extensively

studied in chronic infections but a comparison of the two pathways

during an acute infection was lacking.

BALB/c mice treated with either a-CTLA-4 (20/20; 100%) or

a-PD-L1 (20/22; 90.9%) developed classical neurological signs of

ECM and were euthanised on days 7–8 post-infection or days 8–

10 post-infection, respectively, whereas control mice (treated with

rat IgG or PBS) survived for up to two weeks and were euthanised

due to severe anaemia (Figure 3A, B). Importantly, antibody

treatment had no effect on parasitaemia (Figure 3C). The

survival curves for a-CTLA-4 and a-PD-L1-treated mice differ

significantly from the control mice. In addition, the survival curves

for a-CTLA-4 and a-PD-L1-treated mice were also significantly

different from each other. Since PD-1 also binds another ligand,

PD-L2, the outcome of PbA infection was compared between

control mice and mice treated with a-PD-L2. As shown in Figure

S4 in Text S1, a-PD-L2 treatment had no effect on the course of

infection or the pathological outcome of PbA-infection in BALB/c

mice.

Consistent with their development of neurological signs of

ECM, numbers of arrested CD8+ T cells were significantly higher

in brain microvessels of a-CTLA-4-treated and a-PD-L1-treated

BALB/c mice than in brains of control mice (Figure 3D).

Moreover, histological examination revealed more frequent

Figure 1. Course of infection of Plasmodium berghei ANKA (PbA)
in C5BL/6 (ECM-susceptible) and BALB/c (ECM-resistant) mice.
Mice were infected i.v. with 104 PbA pRBCs. The course of infection in
C57BL/6 (n = 12) and BALB/c (n = 16) mice was followed by monitoring:
(A) Cumulative survival – C57BL/6 (N) and BALB/c (#), *** P,0.0001
(Log-rank (Mantel Cox) test); and (B) Development of experimental
cerebral malaria (ECM; cumulative incidence during the observation
period), *** P,0.0001 (Fisher’s exact test). The incidence of ECM was
based on neurological signs, i.e. ataxia and paralysis. This was confirmed
by histopathological examination of the brain. Surviving BALB/c mice
were euthanized on day 15 due to the development of high
parasitaemia and anemia; these mice were not ataxic or paralysed
and they did not have brain lesions. (C) Parasitaemias are shown as
mean + SD; representative of three experiments (four to six mice per
group in each experiment). (D) H&E histopathology of brains from
uninfected (left panel) and day 7 infected (right panel) C57BL/6 mice.
Blue arrow indicates an area of haemorrhage. Magnification = 20X.
doi:10.1371/journal.ppat.1002504.g001
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petechial haemorrhages and a higher proportion of cerebral blood

vessels plugged with parasitised red blood cells in brains of BALB/

c mice treated with a-CTLA-4 or a-PD-L1 antibodies than in

brains of control (treated with rat IgG or PBS or left untreated)

mice (Figure 3E, Table 1) as well as increased numbers of

pigmented (parasite-containing) macrophages in their livers

(Table 1).

The accumulation of parasitised erythrocytes in the microvas-

culature of the brain is a cardinal feature of cerebral pathology in

both human cerebral malaria [56] and ECM in mice [42,43]. To

further quantify the effects of CTLA-4 and PD-L1 blockade on

parasite accumulation, a-CTLA-4- and a-PD-L1 antibody-

treated BALB/c mice (and controls) were infected with PbAluc

(transgenic PbA expressing luciferase) and whole body, head and

brain parasite burdens were quantified by bioluminescence at the

onset of signs of ECM. The course of PbAluc infection in control,

a-PD-L1- and a-CTLA-4-treated mice (Figure 4A–C) was

similar to the course of PbA infection (Figure 3A–C), confirming

that insertion of the luciferase gene had not significantly altered

the basic biology of the parasite, although the onset of ECM was

slightly delayed (a-CTLA-4-treated mice developed ECM on day

10 post infection; a-PD-L1-teated mice developed ECM on day

11 and control mice were euthanised on day 18). Nevertheless,

after day 7 of infection, whole body (Figure 4D), head

(Figure 4E) and isolated brain (Figure 4F,G) parasite burdens

were significantly higher in a-CTLA-4- and a-PD-L1-treated

mice than in control mice. It should be noted that the detection of

a weak luminescence signal in the brains of control (no ECM)

mice in Figure 4F simply reflects the presence of luminescent

parasites in the circulating blood in all organs. These results show

that, despite similar peripheral parasite burden in control and

antibody-treated mice, overall parasite biomass is significantly

increased when the CTLA-4/PD-1 regulatory pathways are

blocked.

Taken together, these data indicate that blockade of either the

inhibitory receptor CTLA-4 or PD-L1, leads to striking immune

pathology, with all the phenotypic characteristics of ECM, in

otherwise ECM-resistant mice.

Figure 2. Differential expression of CTLA-4 and PD-1 by T cells of PbA-infected C5BL/6 and BALB/c mice. Mice were infected i.v. with
104 PbA pRBCs. Splenocytes were prepared from uninfected (solid curves) or day 7 infected (clear curves) mice and stained for CD4 (left) or CD8 (right)
expression of (A) CTLA-4 or (B) PD-1. For CTLA-4, staining was for both surface and intracellular protein; for PD-1, staining was for surface expression
only. Line graphs show the kinetics of expression during the first 7 days of infection: data points (mean 6 SD) from C57BL/6 (N) and BALB/c (#);
n = 6, ** P,0.01 and *** P,0.001, P-values (Mann Whitney U test). (C) CD4+ and CD8+ T cells from uninfected and day 7 infected mice were stained
for intracellular IFN-c following stimulation with PMA/Ionomycin in the presence of Brefeldin A. CD4+ T cells were directly stained ex vivo for
(D) intracellular CTLA-4 and surface PD-1; (E) CTLA-4 and intracellular FoxP3 or (F) surface PD-1 and intracellular FoxP3. Data for (C) and (D) are
representative of three independent experiments with three to six mice in each group. Data for (E) and (F) are representative of two independent
experiments with three mice in each group.
doi:10.1371/journal.ppat.1002504.g002
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Effector responses are enhanced following CTLA-4 and
PD-L1 blockade

Since ECM is known to be a consequence of T cell-mediated

inflammation in susceptible C57BL/6 mice[57], the development

of neurological signs of ECM - together with CD8+ T cell

infiltration and parasite accumulation in the microvasculature of

the brain - in PbA-infected BALB/c mice after a-CTLA-4 or a-

PD-L1 antibody treatment was suggestive of an enhanced

inflammatory T cell response. To explore this hypothesis, we

assessed levels of splenic T cell activation on day 7 post-infection

(Figure S5 in Text S1). The proportions of splenic CD4+ and

CD8+ T cells expressing an activated phenotype [CD71+

(transferrin receptor) and CD4+ T cells expressing CD44+ (Pgp-

1)] were generally higher in a-CTLA-4-treated than in control

Figure 3. CTLA-4 and PD-1 blockade in PbA-infected BALB/c mice leads to onset of ECM. BALB/c mice were infected i.v. with 104 PbA
pRBCs and treated with a-CTLA4 or a-PD-L1 antibodies or with no antibody. (A) Cumulative survival curve: X = Control (n = 31); &= a-CTLA-4 (n = 20);
%=a-PD-L1 (n = 22), P-values (Log-rank (Mantel Cox) test). (B) Cumulative incidence of mice developing ECM, P-values (Fisher’s exact) test.
Bonferroni correction was used to adjust for multiple comparisons; threshold for significance is P,0.017 for (A) and (B). The incidence of ECM was
based on neurological signs, i.e. ataxia and paralysis. Surviving BALB/c mice were euthanized on day 15 due to high parasitaemia and anemia. (C)
Parasitaemia levels, shown as mean 6 SD, of PbA-infected mice: X = Control; &= a-CTLA-4; %= a-PD-L1. Data are representative of three
independent experiments with four to six mice in each group. (D) Absolute numbers of brain infiltrating CD8 T cell lymphocytes. Data (mean 6 SD)
are from two experiments, the numbers of animals are shown; P-values (Kruskal-Wallis Test/Dunn’s multiple comparison test). (E) Histological
examination of H&E stained brain sections from uninfected and day 7 infected mice (control without ECM and treated with ECM). Blue arrows indicate
areas of haemorrhages. Magnification = 20X.
doi:10.1371/journal.ppat.1002504.g003

Table 1. Histological analysis of brain and liver sections.

Brain Liver

Petechial haemorrhages/50 fields1 Plugged vessels/50 fields2 Pigmented macrophages/50 fields3

Control (untreated) 3.865.9 + 15366

a-CTLA-4 46.0610.2 ++/+++ 263633

a-PD-L1 24.964.8 + 218611

1Sections from each mouse were examined and the numbers in 50 fields were recorded.
Control vs a-CTLA-4 p,0.05, Control vs a-PD-L1 p,0.05, a-CTLA-4 vs a-PD-L1 p,0.05.
2Vessels plugged with pRBCs and leucocytes/50 fields: +++ = 11–15, ++ = 6–10, + = 1–5.
3Control vs a-CTLA-4 p = 0.01, Control vs a-PD-L1 p = 0.02, a-CTLA-4 vs a-PD-L1 p = 0.07.
doi:10.1371/journal.ppat.1002504.t001
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mice (Figure S5 in Text S1). Notably, the proportions of splenic

CD8+ T cells expressing CD11a+ was generally higher in both a-

CTLA-4 and a-PD-L1-treated mice than in control mice. A trend

was observed for higher proportions of splenic CD8+ T cells to

express CD62L2 and CD11a+ in a-PD-L1-treated than in control

mice. Thus, the slightly earlier onset of ECM in the a-CTLA-4-

treated mice than in the a-PD-L1-treated mice (Figures 3A and

4A) correlates with the slightly higher levels (statistically significant)

of T cell activation in the a-CTLA-4-treated mice.

Indicators of systemic inflammation following CTLA-4
and PD-L1 blockade

Plasma concentrations of cytokines and chemokines (measures

of systemic inflammation) peaked on day 5 after infection

(Figure 5). Plasma concentrations of IFN-c, MCP-1 and IL-10

were significantly higher in a-CTLA-4- and a-PD-L1-treated mice

than in untreated control mice. Concentrations of TNF and IL-6

were significantly higher in a-CTLA-4-treated mice than in either

of the other two groups, and importantly, TNF and IL-6 levels did

not differ between control mice and a-PD-L1-treated mice

(Figure 5A).

To determine whether differences in plasma cytokine levels

were related to differences in CD4+ and CD8+ T cell cytokine

secretion, IFN-c and IL-10 were quantified in culture supernatants

of purified CD4+ and CD8+ T cells stimulated for 48 and

24 hours, respectively with a-CD3/a-CD28 antibodies. CD4+ T

cells isolated on days 5 and 7 post-infection from a-CTLA-4-

treated mice secreted significantly more IFN-c and IL-10 than did

CD4+ T cells from control mice (Figure 5B). In addition, CD4+
T cells isolated from day 5 post-infection from a-PD-L1-treated

mice secreted more IFN-c than did CD4+ T cells from control

mice. Furthermore, CD4+ T cells isolated from a-CTLA-4-treated

mice secreted significantly more IFN-c (day 7) and IL-10 (days 5

and 7) than did CD4+ T cells from a-PD-L1 treated mice.

Similarly, CD8+ T cells isolated from a-CTLA-4 (day 7 post-

infection)- and a-PD-L1 (days 5 and 7 post-infection)-treated mice

secreted significantly more IFN-c than did CD8+ T cells from

control mice (Figure 5C). CD8+ T cells isolated on day 5 post

Figure 4. Onset of ECM after CTLA-4 and PD-1 blockade in PbA-infected BALB/c mice is associated with parasite accumulation in
the brain. BALB/c mice were infected i.v. with 104 PbAluc pRBCs and were either untreated (control) or treated with a-CTLA4 or a-PD-L1 antibodies.
(A) Cumulative survival curve: X = Control (n = 10); &= a-CTLA-4 (n = 10); %= a-PD-L1 (n = 10), P-values (Log-rank (Mantel Cox) test). (B) Cumulative
incidence of mice developing ECM, P-values (Fisher’s exact) test. Bonferroni correction was used to adjust for multiple comparisons; threshold for
significance is P,0.017 for (A) and (B). (C) Parasitaemia, shown as mean 6 SD, of PbA-infected mice: X = Control; &=a-CTLA-4; %= a-PD-L1. Data are
representative of two independent experiments performed with 5 mice in each group. (D–G) Kinetics of parasite accumulation in the (D) whole
body, (E) head and (F,G) isolated brain as measured by luciferase activity. X = Control; &= a-CTLA-4; %= a-PD-L1. For D-G, data are shown as mean
6 SD. For D and E, 1 Control vs a-CTLA4 p,0.05, 2 Control vs a-PD-L1 p,0.05, and 3 a-CTLA4 vs a-PD-L1 p,0.05 (Kruskal-Wallis Test/Dunn’s multiple
comparison test). For G, P-values (Mann Whitney U test).
doi:10.1371/journal.ppat.1002504.g004
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infection from a-PD-L1 -treated mice secreted significantly more

IFN-c than did CD8+ T cells from a-CTLA-4 treated mice. As

further confirmation that the changes in IFN-csecretion were due

to changes in T cell function, spleen cells collected from treated

mice on day 7 of infection were analysed by intracellular cytokine

staining following short-term stimulation with PMA/ionomycin

(Figure 5D–G). Consistent with the secreted cytokine data

(above) the proportions of IFN-c+splenic CD4+ and CD8+ T cells

were higher in a-CTLA-4- and a-PD-L1-treated mice than in

control mice.

Development of ECM in BALB/c mice following a-CTLA-4
and a-PD-L1 blockade is T cell-mediated

Blockade of either CTLA-4 or PD-L1 renders normally resistant

BALB/c mice fully susceptible to ECM, and this is associated with

increased levels of activation and inflammatory cytokine secretion

in both the CD4+ and CD8+ T cell populations, consistent with the

hypothesis that signalling through both the CTLA-4 and PD-1

pathways is required to down-regulate T cell reactivity and

thereby prevent ECM. To determine whether CD4+ or CD8+ T

cell populations (or both) are the targets of CTLA-4 and PD-1

mediated regulation, CTLA-4 and PD-L1 blockade were com-

bined with in vivo depletion of CD4+ or CD8+ cells (Figure 6).

Depletion of CD8+ cells before and during PbA infection (a-CD8

antibodies administered on days -1, 0, +4 and +6 of infection; full

course) or just prior to the expected onset of neurological signs (a-

CD8 antibodies administered on Days +4 and +6 of infection; late)

completely abrogated the development of ECM in both a-CTLA-

4-treated (Figure 6A) and a-PD-L1-treated (Figure 6B) mice;

instead, CD8-depleted mice developed severe anaemia and were

euthanised significantly later than non-depleted mice.

In contrast, although depletion of CD4+ cells throughout

infection (a-CD4 antibodies administered on days 21, 0, +4 and

+6 of infection) led to a delay in onset of ECM in a-CTLA-4

treated mice (day 8–11 as compared to day 7–8 in a-CTLA-4

treated mice but were not given a-CD4 antibodies), CD4+

depletion later in infection (a-CD4 antibodies administered on

days +4 and +6 of infection) in a-CTLA-4 treated mice had no

effect on the development of ECM. These results are entirely

Figure 5. Enhanced cytokine secretion in PbA-infected BALB/c mice treated with a-CTLA and a-PD-L1 antibodies. (A) Plasma cytokine
levels as determined by cytometric bead array: X = Control; &= a-CTLA-4-treated; %=a-PD-L1-treated. 1 Control vs a-CTLA4 p,0.05, 2 Control vs a-
PD-L1 p,0.05, and 3 a-CTLA4 vs a-PD-L1 p,0.05. (B,C) IFN-c and IL-10 ELISA of culture supernatants of splenocytes (from day 5 and day 7 infected
mice) cultured for 48 h with a-CD3/CD28 antibodies. Spleens from 3–5 individual mice in each treatment group were pooled and each supernatant
was analysed in triplicate. Mean (SE) values are shown for six wells. Uninfected = bar with horizontal line, Control = bar with vertical line, a-CTLA-
4 = black bar, a-PD-L1 = white bar. (D–G) Intracellular IFN-c staining of splenocytes isolated on day 7 post-infection and stimulated with PMA/
Ionomycin for 5 hours in the presence of Brefeldin A. (D,F) Representative plots. (E,G) IFN-c levels, shown as mean 6 SD, are representative of three
experiments (three to six mice per group in each experiment).
doi:10.1371/journal.ppat.1002504.g005
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consistent with data from C57BL/6 mice indicating that CD4+ T

cells play an essential helper role in priming CD8+ T cells in the

first 4 or 5 days of infection but after this time only CD8+ T cells

are required for initiation of ECM [40].

Among a-PD-L1 treated mice, neither CD4+ depletion

throughout infection nor CD4+ depletion later in infection had

any significant effect on the development of ECM. These results

reveal fundamental differences between the CTLA-4 and PD-1

pathways and suggest that the CD4+ T cells in this infection model

are effectively regulated via the CTLA-4/B-7 pathway but are

relatively unaffected to regulation via the PD-1/PD-L1 pathway.

Moreover, additional pairwise analysis comparing the results of

CTLA-4 blockade and PD-L1 blockade in Figure 6 indicate that

the effects of CTLA-4 blockade and PD-L1 blockade are similar

(i.e. not significantly different) for all treatment regimes with the

exception that CTLA-4 blockade combined with late-stage CD4

depletion is significantly different than is PD-L1 blockade

combined with late-stage CD4 depletion (p = 0.0006; Bonferroni

correction indicates that the threshold for significance is

p = 0.006).

Both IFN-c and TNF have been implicated in the development

of ECM [38,58]. To determine their roles in the induction of

ECM in a-CTLA-4- and a-PD-L1-treated PbA-infected BALB/c

mice, in vivo treatment with neutralising a-IFN-c or a-TNF

antibodies throughout infection (days 21, 1, 3, 5, 7) was

performed (Figure 6 C,D). Among a-CTLA-4 treated mice,

neutralisation of IFN-c abrogated the development of ECM, while

neutralisation of TNF had a small but significant effect on the

survival curve. Among the a-PD-L1 treated mice, neutralisation of

IFN-c also abrogated the development of ECM, but neutralisation

of TNF had no significant effect.

Discussion

Regulation of effector T cell function is crucial for immune

homeostasis during infection. Immune homeostasis is maintained,

in part, by the negative regulators of T cell activation, CTLA-4

and PD-1. While PD-1/PD-L1 - and to some extent the CTLA-4/

B-7 pathway - negatively regulate T cell responses during chronic

infections, their roles in acute infections are much less clear. In

addition, there is limited information available for the role of PD-

1/PD-L2 during infection. The extent to which these pathways

may regulate different aspects of the T cell response to acute

infections in animals with differing susceptibility to immunopa-

thology is not known. Whilst other pathways of immune regulation

may contribute to the outcome of virulent malaria infections, only

modest effects on PbA-induced ECM were observed after IL-10

neutralisation in BALB/c mice [59]. Similarly, depletion of

regulatory T cells using a-CD25 antibodies did not increase

mortality rates in BALB/c mice during primary infection with PbA

[60]. Therefore, in this study, we directly compared the roles of the

CTLA-4 and PD-1/PD-L pathways during acute infection with a

Figure 6. T cell depletion or cytokine blockade abrogates the effects of CTLA-4 and PD-L1 blockade in PbA-infected BALB/c mice.
BALB/c mice were infected i.v. with 104 PbA pRBCs and were treated with (A,C) a-CTLA or (B,D) a-PD-L1 antibodies. (A,B) CTLA-4 or PD-L1 blockade
without T cell depletion (%,&); with a-CD8 depletion throughout infection (h,.); with a-CD8 depletion early in infection (g,m); with a-CD4
depletion throughout infection (e, X); or with a-CD4 depletion early in infection (#,N). Cumulative survival curves (left) and cumulative incidence of
ECM (right). (C,D) CTLA-4 or PD-L1 blockade without cytokine blockade (%,&) or with a-IFN-c ( ) or a-TNF ( ) treatment on on days 21, 1, 3, 5 and
7. Cumulative survival curves (left) and cumulative incidence of ECM (right). Data are representative of two independent experiments performed with
four mice in each group. P values: Log-rank (Mantel Cox) test for the survival curves, and Fisher’s exact test for cumulative ECM incidence. Bonferroni
correction was used to adjust for multiple comparisons; threshold for significance is P,0.01 for the T cell depletions and P,0.017 for the cytokine
neutralisations.
doi:10.1371/journal.ppat.1002504.g006
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virulent rodent malaria parasite, PbA in ECM-susceptible

(C57BL/6) and ECM-resistant (BALB/c) mice.

We initially hypothesised that inadequate T cell expression of

CTLA-4 and PD-1 during infection, leading to overproduction of

Th-1 cytokines and migration of activated CD8+ T cells to the

brain, could explain susceptibility to ECM. Interestingly, contrary

to our expectations, proportions of CD4+ and CD8+ T cells

expressing CTLA-4 and PD-1 were significantly higher in ECM-

susceptible C57BL/6 mice than in ECM-resistant BALB/c mice,

and CTLA-4 and PD-1 expression were positively correlated with

IFN-c secretion as well as with the CD11ahi and CD62Llo

phenotype. Indeed, CTLA-4 and PD-1 expression coincided with

expression of the activation markers CD11ahi and CD62Llo. The

expression of both CD11ahi and CD62Llo were used as surrogate

T cell activation markers due to a paucity of defined CD8+ or

CD4+ T cell epitopes associated with pathological responses.

Besides the expansion of parasite-specific T cells, there is likely to

be non-specific bystander activation. However, it remains unclear

whether T cells activated in a bystander manner can contribute to

ECM pathogenesis. Studies with ovalbumin-expressing PbA and

ovalbumin-specific transgenic T cells suggest that this is possible

since transfer of antigen-specific effector memory cells into mice

deficient of recombination-activating gene is not always sufficient

to induce ECM [61,62]. Indeed, in their study, Miyakoda et al

specifically analysed non-specific activation of CD8 T cells [62]

and found that while non-specific activation occurred it was at a

much lower level compared to specific activation.

Our results raise the intriguing and important question of why

the very efficient activation of CTLA-4 and PD-1 pathways in

C57BL/6 mice fails to protect them from acute immune

pathology. One interpretation is that T cell activation is so

extensive in ECM-susceptible C75BL/6 mice that positive T cell-

derived signals override physiological levels of immune inhibition

mediated by CTLA-4 and PD-1. Another interpretation of this

data is that in ECM-susceptible mice, CTLA-4 and PD-1 are

induced on highly activated T cells, but that their down-stream

signalling is impaired. Further studies are required to understand

why these potent immunoregulatory pathways are unable to

control T cell activation in animals with severe malarial

immunopathology and to determine whether these pathways play

roles in humans with cerebral malaria.

Strikingly, however, in vivo blockade of either CTLA-4 or PD-1/

PD-L1, but not PD-1/PD-L2, rendered otherwise resistant

BALB/c mice fully susceptible to ECM. Treated animals exhibited

characteristic neurological signs, their brains revealed the cardinal

features of ECM (haemorrhages, CD8+ T cell arrest and parasite

intravascular accumulation in the microvasculature) and there was

clear evidence of excessive systemic inflammation and T cell

activation. Thus, CTLA-4 and PD-1/PD-L1 play essential,

independent and non-redundant roles in preventing ECM in

resistant animals; this reinforces the urgent need to compare the

activation and down-stream effects of these pathways in humans

with or without severe malaria pathology. It is noteworthy that in

vivo blockade of either CTLA-4 did not affect the expression of

PD-1 on T cells; in vivo blockade of PD-1/PD-L1 did not affect the

expression of CTLA-4 on T cells (data not shown).

This study reveals – for the first time - evidence of subtle but

important differences in the effects of CTLA-4-mediated and PD-

1/PD-L1-mediated immune regulation during acute infections.

Infected animals treated with a-CTLA-4 always succumb to

infection significantly earlier than animals treated with a-PD-L1.

In addition, disruption of the CTLA-4 pathway led to higher levels

of T cell activation, significantly higher levels of circulating TNF

and IL-6 and, accordingly, earlier onset of ECM than did

blockade of the PD-1/PD-L1 pathway. Furthermore, we observed

that depletion of CD4+ T cells during PbA infection abrogated the

effects of a-CTLA-4 treatment but had no effect on a-PD-L1

treatment. Thus, our study suggests that CTLA-4 may be much

more effective than PD-1/PD-L1 at regulating CD4+ T cells

particularly in this experimental model of cerebral malaria,

although this hypothesis remains to be directly tested. Since

CD4+ T cells are essential for activation of CD8+ T cells and for

their arrest in the brain during ECM [40], effective regulation of

CD4+ T cells by CTLA-4 is likely to interrupt the chain of events

leading to ECM at a much earlier stage of infection than is

regulation of CD8+ T cell activity (by either CTLA-4 or PD-1/

PD-L1). It should be noted however, that in other models - such as

during M. tuberculosis infection - the PD-1/PD-L1 pathway has a

direct effect on CD4+ T cells in preventing T cell-driven

exacerbation of infection [63].

Our study thus raises the intriguing hypothesis that in the our

malaria model, CTLA-4 may be the primary regulatory pathway

for CD4+ T cells, thereby indirectly affecting CD8+ T cell

responses, whereas PD-1/PD-L1 preferentially and directly fulfils

this role for CD8+ T cells. This notion is consistent with published

data suggesting that CD8+ T cells are less dependent upon

costimulation through the CD28/CTLA-4/B7 axis than are

CD4+ T cells [64-66] and that blockade of the PD-1/PD-L1

pathway restores the effector functions of CD8+ T cells in the

absence of CD4+ T cell help [16,67]. Such a hypothesis is also

consistent with associations between PD-1/PD-L1 expression and

inability to control chronic viral infections such as LCMV [16]

and rabies [30], the failure of CTLA-4 blockade to ameliorate

CD8+ T cell exhaustion during LCMV infection [16], and the

preferential expression of CTLA-4 on CD4+ rather than CD8+

cells during HIV infection [17]. In addition, in LCMV-infected

mice that lacked CD4+ T cell-help, blockade of the PD-1/PD-L1

pathway reinvigorated the ‘helpless’ CD8+ T cells and allowed

them to function as effector cells [16].

Our observation that CTLA-4 blockade enhances susceptibility

to ECM in BALB/c mice but had no effect on the outcome of

infection in C57BL/6 mice is somewhat at odds with a previous

study in which CTLA-4 blockade was shown to increase

susceptibility to ECM, but in C57BL/6 mice [68]. The apparent

discrepancy may be explained by the unusually slow kinetics of

PbA infection in the study of Jacobs et al and by the fact that the

majority of the control mice survived for at least 20 days after

infection and did not develop ECM [68]; in our hands, and those

of most other investigators, PbA uniformly causes death from

ECM within 10 days in all C57BL/6 mice. It is not possible to

distinguish whether this reflects differences in susceptibility

between colonies of C57BL/6 mice or differences in virulence of

the parasite isolates (the PbA parasites used in the study of Jacobs et

al appear to be highly attenuated), but the message is clear: the

virulence of mouse/parasite combinations that do not normally

lead to ECM is significantly exacerbated by CTLA-4 blockade.

In addition to the very important observations emanating from

our direct side-by-side comparison of the roles of CTLA-4 and

PD-1/PD-L1, we have significantly extended our understanding of

the role of T cell regulatory pathways during malaria infection by

thoroughly characterising the effects of regulatory blockade on

both CD4+ and CD8+ T cells. The onset of ECM in BALB/c mice

following CTLA-4 or PD-1/PD-L1 blockade was accompanied by

elevated production of pro-inflammatory cytokines and by

increased migration of activated CD8+ T cells to the brain.

Neutralisation of IFN-c or depletion of CD8+ T cells during PbA

infection was shown to reverse the pathologic effects of the

inhibitory pathway blockade, confirming that the aetiology of
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ECM in the BALB/c mice is similar to that in susceptible C57BL/

6 mice [40]. These experiments not only identify the primary

targets of CTLA-4- and PD-1/PD-L1-mediated regulation as

being pro-inflammatory T cells, but also re-emphasise that CD8+

T cells and IFN-c are critical effectors of ECM.

In summary, we have revealed essential, independent and non-

redundant roles for CTLA-4/B-7 and PD-1/PD-L1 pathways in

regulating T cell-mediated pathology and host resistance to PbA-

induced ECM. Exploration of the relationship between T cell

regulatory pathways and outcome of malaria infection in humans

is clearly now a priority; such studies will need to go beyond simple

characterisation of CTLA-4 or PD-1 expression [69,70] and

consider the potential for genetic variation in the receptors, their

ligands and downstream signalling molecules to affect the outcome

of infection.
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