Abstract—Orthogonal Frequency-Division Multiplexing (OFDM) with cyclic prefix allows low cost frequency-domain mitigation of multipath distortion. However, to determine the equalizer coefficients, knowledge of the channel frequency response is required. While a straightforward approach is to measure the response to a known pilot symbol sequence, existing literature reports a significant performance gain when exploiting the frequency correlation properties of the channel. Expressing this correlation by the finite delay spread, we build a deterministic model parametrized by the channel impulse response and, based on this model, derive the Maximum Likelihood (ML) channel estimator. In addition to being optimal, this estimator receives an elegant time-frequency interpretation. As a result, it has a significantly lower complexity than previously published methods.

I. INTRODUCTION

OFDM has become increasingly popular during the last decades, mainly because it provides a substantial reduction in equalization complexity compared to classical modulation techniques. Indeed, OFDM with cyclic prefix can be equalized by a single low-rate complex multiplication on each carrier. For this reason, it has been adopted in the upcoming standards for high data-rate wireless networks, such as ETSI Hiperlan II and IEEE 802.11a. These standards use some “zero-carriers” for spectral shaping; for example, some carriers are not used to allow smooth decaying of the spectral power on the border of the bandwidth. Hence, these standards (and possible variations) will be referred to as spectral shaping systems.

As opposed to former standards using OFDM modulation, the new standards rely on coherent QAM modulation and thus require channel estimation. Hence, the complexity of channel estimation is of crucial importance, especially for time varying channels, where it has to be performed periodically or even continuously.

Existing literature recognizes that, due to the structure of OFDM signals, the channel can be estimated by using the time and frequency correlation of the channel. This frequency correlation has inspired three different approaches. Edfors et al. [1] use explicitly the frequency correlation and derive a linear minimum mean squared (LMMSE) estimator. Using optimal rank reduction, they develop a low complexity algorithm which computes an approximated LMMSE estimator. This approximation is limiting the performance at high SNRs. Raleigh and Jones [2] link the frequency correlation to the maximum delay spread and estimate the channel from a part of the carriers only. These carriers must be regularly spaced, which limits the application of their method. P. Vandenameelee et al. [3] also use explicitly the length of the channel impulse response and derive an ad-hoc constrained least squares estimator. Their method allows non regular spacing of the carriers, with a small limitation on their number (there should be at least as many non-pilot carriers as the length of the channel impulse response).

To avoid the shortcomings of aforementioned methods (high SNR performance limitation for LMMSE, limitation on the spacing/number of pilots for the others), we explicitly use the finite delay spread of the channel and develop a low complexity algorithm capable of estimating the channel from part of the carriers only. We introduce a deterministic model and derive the associated Maximum Likelihood estimator. This ML estimator can be interpreted as a transformation from frequency domain to time domain and back to frequency. The actual estimation is done in the time domain, where the number of parameters (i.e., the channel length) is small. The estimator is obtained by minimizing a quadratic criterion, which, combined with the small number of parameters, leads to a low complexity algorithm. As such, we have obtained an exact low complexity solution. We extend our approach to Pilot Symbol Assisted Modulation (PSAM) and link it to the Constrained Least Squares (CLS) solution proposed in [3].

After introducing the OFDM system model in section II, we present the statistical model and channel estimator in section III, along with the extension to PSAM and the link with the CLS estimator. The time-frequency interpretation of the ML estimator is given, and the benefits provided by a combined PSAM/decision-feedback system are indicated. Section IV analyses the complexity of the algorithm, while section V presents and discusses simulation results for indoor PSAM and spectral-shaping systems.

II. SYSTEM MODEL

A. Notations

Normal letters represent scalar quantities, boldface represent vectors and boldface capitals matrices. Slanted (resp. roman) letters indicate time (resp. frequency) domain quantities. X^T, X^H and X^* respectively mean transpose, conjugate transpose and Moore-Penrose pseudo-inverse of X. If X is full column rank, then $X^* = (X^HX)^{-1}X^H$ and $P_X = X(X^HX)^{-1}X^H$ is the orthogonal projection onto the space spanned by the columns of X.

B. Transmission model and training setup

OFDM modulation consists in multiplexing QAM data symbols over a large number of orthogonal carriers. To this end, the QAM symbols of an OFDM symbol are passed through an Inverse Fast Fourier Transform (IFFT). In the presence of a time dispersive channel, a Cyclic Prefix (CP) is prepended to each
OFDM symbol to preserve orthogonality between carriers and eliminate InterSymbol Interference (ISI) (for a global overview, see [4]).

We consider a single user / single channel communication setup (see figure 1), with OFDM modulation, described by

\[Y = X \odot H + N \]

where \(\odot \) denotes Hadamard (i.e. element-wise) product of the columns of \(X \) with \(H \). For a single OFDM symbol, it boils down to

\[y = x \odot H + n \] (1)

Notations in the model are detailed here : the QAM source is written as \(X = [x_0 \cdots x_{M-1}] \), where \(x_m = [x_{0,m} \cdots x_{N_c-1,m}]^T \) is an OFDM symbol. \(N_c \) denotes the number of carriers, \(m \) is a time index (often omitted for clarity) and \(M \) is the number of OFDM symbols. After IFFT and cyclic prefix insertion, the transmitted signal is \(X_m = [X_{N_c-N_p,m} \cdots X_{N_c-1,m}x_{0,m} \cdots X_{N_c-1,m}]^T \) where \(N_p \) is the size of the prefix and \(X = [X_0 \cdots X_{M-1}] \).

For a channel \(h = [h_0 \cdots h_{N_c-1}] \), where \(N_h \leq N_p \), the received vector is, after prefix removal and FFT, \(y_m = x_m \odot H \), where \(H = [H_0 \cdots H_{N_c-1}]^T \) is the FFT of the channel. Equation (1) further takes the additive (possibly colored) Gaussian noise into account. Equalization is then done by a complex division on each carrier.

\[
\begin{align*}
\text{IDFT} & \quad x_m/0 \quad \cdots \quad x_m/N_c-1 \\
\text{Parallel/Spectral} & \quad y_m/0 \quad \cdots \quad y_m/N_c-1 \\
\end{align*}
\]

Fig. 1. OFDM system

Two types of training (pure PSAM and spectral shaping systems) are considered. In classical training based estimation, all components of \(x \) are known. Spectral based systems use a minor modification of the classical training, zeroing a small number of carriers (named zero carriers) at the edges and in the middle of the band used. PSAM on the other hand bases it’s channel estimation on a small fraction of the carriers, usually evenly spaced on the whole band, and possibly on varying positions from one OFDM symbol to the next, which allows to adapt the channel estimate continuously at the cost of a small overhead. Note that PSAM and spectral shaping are usually combined in band-limited systems.

III. MAXIMUM LIKELIHOOD ESTIMATION

The ML estimator is first derived, based on a reduced order model. It is then extended to PSAM, linked to the CLS method, and interpreted in terms of time-frequency transformations. Finally, it is also applied on a combination of PSAM and decision-feedback estimation.

A. Reduced order model

As equation (1) shows, the OFDM system can be described as a set of parallel Gaussian channels. Because the time domain channel \(h \) has a finite length (smaller than the prefix length in a well-designed OFDM system), these parallel channels feature correlated attenuations. Considering, without loss of generality, \(x = [1 \ 1 \cdots 1]^T \), the model expressed in (1) becomes

\[y = F h + n, \] (2)

where \(F \) is a \(N_c \times N_c \) FFT matrix. The vector \(y \) is a Gaussian random variable with mean \(F h \) and covariance \(F h F^H \). However, the signal part of \(y \) is contained only in the space spanned by its mean. Separating the “signal subspace” from the “noise only subspace”, the received signal can be rewritten as

\[y = [F_h F_h] h + n. \] (3)

Relying on this, the reduced space signal is defined as

\[r = F_h y = h + F_h n = h + v, \] (4)

where \(v \) is a zero-mean Gaussian noise of covariance \(C_v = \sigma_v^2 I_{N_h} \), \(v \) is a white Gaussian noise of covariance matrix \(\sigma_v^2 I_{N_h} \). The reduced space (Gaussian) signal has a log likelihood function expressed by

\[\log f(r) = -\log(\pi \det(C_v)) - (F_h^H y - h)^H C_v^{-1} (F_h^H y - h). \] (5)

Maximizing this log likelihood with respect to \(h \) leads to the ML estimator given by

\[\hat{H} = F_h^H y = P_{\hat{F}_h} y, \] (6)

where \(P_{\hat{F}_h} \) denotes the orthogonal projection on the column-space of \(\hat{F}_h \). Before performing the ML estimation, \(N_h \) must be determined, and we denote its estimation as \(N_h \).

B. Extensions to PSAM and spectral shaping systems

In the case of Pilot Symbol Assisted Modulation and spectral shaping systems, not all symbols in \(x \) are known, and only a subset of \(N_m \) measured carriers can be used. Only this part of the signal (noted \(y_u \)) will be used and the reduced space signal (4) becomes

\[r = F_{uh}^H y_u = h + F_{uh}^H n = h + v, \] (7)

where \(F \) has been decomposed as

\[F = \begin{bmatrix} F_{ah} \\ F_{bh} \end{bmatrix} \] (8)

and where measured pilots have been grouped together. Ungrouped pilots can be handled by straightforward permutations in columns and lines of the vectors and matrices.

The ML estimator for spectral shaping systems, corresponding to (7), is \(\hat{H}_h = P_{\hat{F}_h} y_u \) (only the measured carriers are estimated, as they are the only ones carrying data) and, for PSAM, it is \(\hat{H} = F_{uh}^H y_u \) (the whole channel is estimated).
P. Vandenaken et al. [3], derived a Constrained Least Squares estimator by expressing the reduced channel length in the following equation:

\[
\begin{bmatrix}
 h \\
 0
\end{bmatrix} = \begin{bmatrix}
 C_u \\
 C_l
\end{bmatrix} \cdot \begin{bmatrix}
 y_u \\
 y_l
\end{bmatrix},
\]

where \(C_u \) and \(C_l \) are parts of an inverse FFT matrix. From this equation, we can write a constraint equation as

\[
C_u y_u + C_l y_l = 0,
\]

leading to the Constrained Least Squares solution

\[
\hat{h} = C_u^H (C_u C_u^H)^{-1} C_u C_l y_u = \Delta P_S y_u,
\]

where \(P_S \) is an orthogonal projection matrix (hermitian and such that \(P_S^H = P_S \)) which can be further simplified to \(P_S = C_u^H PC_u \). However, finding an explicit expression for \(S \) is not straightforward.

When \(N_c - N_u \geq N_h \) (otherwise \(P_S \) is not full rank and the CLS solution is not defined) and taking into account that \(C_u F_{uh} + C_l F_{lh} = 0 \), the following equations show that \(P_S = P_{F_{ab}} \). Indeed, the combined projection on \(S \) and \(F_{ab} \) is shown to be a projection on \(F_{ab} \):

\[
P_S P_{F_{ab}} = C_u^H P_C C_u F_{ab} (F_{ab}^H F_{ab})^{-1} F_{ab}^H
\]

\[
= C_u^H P_C C_u F_{ab} (F_{ab}^H F_{ab})^{-1} F_{ab}^H
\]

\[
= -C_u^H P_C C_u F_{ab} (F_{ab}^H F_{ab})^{-1} F_{ab}^H
\]

\[
= C_u^H C_l F_{lh} F_{ab} C_u^H C_u
\]

\[
= P_{F_{ab}}
\]

Hence, the two spaces are the same and the estimators are identical.

D. Time-Frequency interpretation

As \(\hat{h} = F(F_{ab}^H F_{ab})^{-1} F_{ab} y_u \), the channel estimator is the cascade of a partial IFFT, a weighting matrix and a partial FFT. Indeed, if all pilots are present, or if they are regularly spaced, this boils down to going from the frequency domain to the time domain, force the time channel estimator to be of length \(N_h \) and going back to the frequency domain [2]. For an arbitrary number of pilots \(\geq N_h \), the same global scheme is applicable, with the following modifications:

- The initial IFFT is partial, as only part of the carriers are measured.
- The non-trivial part of the channel impulse response is weighted by \((F_{ab}^H F_{ab})^{-1}\).

E. Combination of PSAM and Decision-Feedback (DF)

The classical ML solution can be applied to a combination of PSAM and decision-feedback. Indeed, suppose we use the pilot symbols along with decisions taken on the other carriers, then \(r = h + v \) remains valid, with a given \(C_{vw} \), which leads to \(\hat{h} = P_{F_{ab}} y \). Hence, if the designer can afford the increment in complexity, combination of PSAM and decision-feedback is desirable. Indeed, figure 7 shows that a difference in performance of 2-3 dB can be expected between an all-pilot system (which is equivalent to combined PSAM/DF if decision errors are neglected) and a PSAM system with 8 pilot carriers.

IV. COMPLEXITY

The complexity of the ML estimator is significantly lower than [1], both for spectral shaping and PSAM systems. This low complexity relies on the time-frequency interpretation and pruning of the (I)FFTs.

A. Spectral shaping systems

By construction, \(P_{F_{ab}} \) is a low rank matrix (of rank \(N_h \)). Taking its hermiticity into account, it can be written as

\[
P_{F_{ab}} = VV^H
\]

where \(V \) is a matrix of size \(N_c \times N_h \) that can be precomputed. Hence, the complexity for computing the estimator is \(2 N_c \times N_h \) complex multiplications for the global ML estimator. This complexity is about the same as for [1], however, while [1] uses an approximation, (13) is exact.

Further complexity reduction can be obtained by using the time-frequency interpretation. Indeed, the projection operation can be expressed by the cascade of two partial FFTs, weighted by a \(N_h \times N_h \) matrix (if all carriers are used as pilots, it is an identity matrix). With a radix-4 implementation of the FFT, the complete estimator would require \(1.5 N_c (\log_2 (N_c) - 1) + N_h^2 \) complex multiplications. Furthermore, some additional complexity gain can be achieved by using FFT pruning or transform decomposition [5]. Such techniques lead to a significant gain for the Fourier Transforms. However, the last term \((N_h^2)\), due to the weighting matrix \((F_{ab}^H F_{ab})^{-1}\), remains unchanged (figures 3,4).

B. PSAM

When using Pilot Symbol Assisted Modulation, a comb spectrum (figure 2) has to be measured, and only the teeth of this comb are used for the FFTs. This particular case has been studied by He and Torkelson in [6]. In this case, the DFT can be computed with \(N_c/4 + N_h/2 + \log_2 N_h - N_h \) complex multiplications, which represents a large gain for a large number of carriers.

![Fig. 2. Comb spectrum for \(N_c/N_h = 8 \)](image-url)
The complexity for FFT-based solutions is much lower than for the SVD-based approach, both for spectral shaping and PSAM systems. Furthermore, simulations (Section V) show that the ML algorithm can work with a significantly smaller N_h than the LMMSE, which results in a still larger gain than appears in figure 3.

For a relatively large number of pilot carriers, the main contribution to the complexity is due to the weighting matrix (see the N_h^2 curves in figures 3 and 4). However, for pure PSAM with regularly spaced pilot carriers, it can easily be shown that the weighting matrix $((F_{uh}^H F_{uh})^{-1})$ is proportional to the identity matrix, and complexity is even lower. This special case of our algorithm is the frequency correlation part of the algorithm developed by Raleigh and Jones [2].

V. SIMULATION RESULTS

To evaluate the performances of the ML estimator, and compare it with the LMMSE algorithm, we simulate a spectral shaping system and a PSAM-based system in an indoor radio channel.

Two OFDM schemes with 64 and 256 carriers are considered, both with uncoded QPSK modulated carriers and a cyclic prefix of 16. The 64-carriers scheme is simulated with the Hiperlan II zero carriers and the 256-carriers with PSAM. The data rate is 25 Msamples/second over the air (i.e. including the cyclic prefix) with a carrier frequency of 5.6 GHz.

We consider a collection of 120 indoor office-like channels. The channel is modeled by means of a ray-tracing technique, considering 20 emmiter locations and 6 receiver locations in a typical office environment. From the ray-tracing results, it appears that the channel length is of the order of 4 to 6 and can be modeled as having an exponentially decaying power delay profile with normalised time constant 2 (for simulation of [1]).

For the spectral shaping system, the Bit Error Rate (BER) is simulated for both LMMSE [1] and ML estimators and for N_h ranging from 4 to 16. BER based on exact channel knowledge and raw measurements are evaluated for comparisons. Simulation results (figure 6) clearly show that the LMMSE suffers from a threshold effect at high SNR, as reported in [1]. To obtain similar performances for both algorithms, N_h must be 2 to 4 times larger for LMMSE than for ML.

The behavior of the ML (and to some extent of the LMMSE) estimator at low SNR gives some insight on the influence of N_h. Going from higher to lower N_h leads to better performance (figure 6) : indeed, the values of the channel impulse response beyond the lower N_h are below the noise level, so that their estimation introduces more noise than relevant information about the channel.

For the PSAM-based system, we have evaluated both estimators with 8 and 32 tones and $N_h = 8$ (figure 7). In this simulation, “raw measurements” mean measurements on all pilots. As for the spectral shaping system, the flooring effect of the LMMSE estimator is essentially limiting it’s effectiveness at high SNR’s. Noteworthy, the ML estimator based on 8 over 256 tones gives similar performance as raw measurements on all carriers.
VI. Conclusions

A low complexity Maximum Likelihood (ML) OFDM channel estimator is proposed. It relies on a deterministic model (i.e. no statistical information on the channel) that takes the finite delay spread of the channel into account, which is linked to the frequency correlation of the channel. Our ML estimator can be interpreted as a translation of some initial estimate of the frequency response of the channel to the time domain, followed by a linear transformation of this channel impulse response, and retranslation to the frequency domain. This interpretation leads to low complexity algorithms, derived by combining the partial (I)FFTs involved and a small weighting matrix. Comb spectrum due to Pulse Symbol Assisted Modulation allows further pruning of the FFT’s.

Based on theoretical grounds that shade a new light on former solutions ([3], [2]), the proposed algorithms have a significantly lower complexity than the low-rank approximation of the LMMSE estimator [1], while being optimal.

ACKNOWLEDGMENTS

The authors gratefully acknowledge their colleagues who successfully implemented the ML estimator on an OFDM ASIC.

REFERENCES