Bernhard B Singer

PhD
Principle Investigator and Lecturer
University of Duisburg-Essen · Kliniken Essen-Mitte

Publications

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: An estimated 10 million people suffer worldwide from vision loss caused by corneal damage. For the worst cases, the only available treatment is transplantation with human donor corneal tissue. However, in numerous countries there is a considerable shortage of corneal tissue of good quality, leading to various efforts to develop tissue substitutes. The present study aims to introduce a nanofibrous scaffold of poly(glycerol sebacate) PGS as a biodegradable implant, for the corneal tissue engineering. Materials and Methods: Nanofibrous scaffolds were produced from PGS and poly(ε-caprolactone) (PCL) by a modified electro-spinning process. The biocompatibility of the material was tested in vitro by colorimetric MTT assay on days 3, 5, and 7 to test the cell viability of human corneal endothelium cells (HCEC). To examine a potential immunological reaction of the scaffolds, samples were exposed to mononuclear cells derived from peripheral blood (PBMCs). After an incubation period of 3 days, supernatants were assayed for apoptotic assessment and immunogenic potentials by annexin V FITC//propidium iodide and flow-cytometric analysis. Results: We could successfully demonstrate that cultivation of HCECs on PGS/PCL scaffolds was possible. Compared to day 3, cell density determined by microplate absorbance was significantly higher after 7 days of cultivation (p < 0.0001). According to the MTT data, none of the samples showed toxicity. Apoptotic assessments by FACS analysis showed that no composition stimulated apoptosis or activated PBMCs occurred. All the compositions were inert for native as well as activated T/B/NK cells and monocytes. It can be concluded that leukocytes and their activity was not affected by the scaffolds. Conclusion: A tissue-like scaffold mimicking the human stroma could be developed. The results indicate that PGS/PCL scaffolds could be considered as ideal candidates for corneal tissue engineering as they are biocompatible in contact to corneal endothelial cells and blood cells.
    Acta ophthalmologica 06/2014; 231(6):626-630. · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The C-type lectin receptor Dectin-1 is expressed mainly on myeloid cells mediating the immune response targeting respiratory pathogens such as Aspergillus fumigatus and Mycobacterium tuberculosis. The pulmonary epithelium serves as an important interface for interactions between these pathogens and the respiratory tract. Therefore, we analyzed the expression pattern of Dectin-1 in the human lung. Immunohistochemically stained human lung sections from 17 out of 19 individuals were positive for Dectin-1, which was expressed mainly apically on bronchial and alveolar epithelium. Our results showed no correlation with chronic obstructive pulmonary disease (COPD) or the smoking habits of the patients. Nontypeable Haemophilus influenzae (NTHI), an important bacterial pathogen of the respiratory tract with significant importance in COPD, has also been proposed to be recognized by Dectin-1, suggesting a possible impact on the NTHI-dependent immune response in human airways. Therefore, the involvement of Dectin-1 in NTHI-triggered cytokine responses was investigated in primary normal human bronchial epithelial (NHBE) cells and in the A549 cell line stably transfected with Dectin-1. The presence of Dectin-1 significantly increased cytokine release in response to NTHI in NHBE and A549 cells. In addition, phosphorylation of the Dectin-1 hem-immunoreceptor tyrosine-based activation motif (hemITAM) was essential for the Dectin-1-triggered response to NTHI in A549 cells. In conclusion, in human airways, epithelium-expressed Dectin-1 may play a significant role in generating an NTHI-mediated, proinflammatory immune response.
    mBio 01/2014; 5(5). · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lower respiratory tract bacterial infections are characterized by neutrophilic inflammation in the airways. The carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 8 is expressed in and released by human granulocytes. Our study demonstrates that human granulocytes release CEACAM8 in response to bacterial DNA in a TLR9-dependent manner. Individuals with a high percentage of bronchial lavage fluid (BALF) granulocytes were more likely to have detectable levels of released CEACAM8 in the BALF than those with a normal granulocyte count. Soluble, recombinant CEACAM8-Fc binds to CEACAM1 expressed on human airway epithelium. Application of CEACAM8-Fc to CEACAM1-positive human pulmonary epithelial cells resulted in reduced TLR2-dependent inflammatory responses. These inhibitory effects were accompanied by tyrosine phosphorylation of the immunoreceptor tyrosine-based inhibitory motif (ITIM) of CEACAM1 and by recruitment of the phosphatase SHP-1, which could negatively regulate Toll-like receptor 2-dependent activation of the phosphatidylinositol 3-OH kinase-Akt kinase pathway. Our results suggest a new mechanism by which granulocytes reduce pro-inflammatory immune responses in human airways via secretion of CEACAM8 in neutrophil-driven bacterial infections.
    PLoS ONE 01/2014; 9(4):e94106. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The carcinoembryonic antigen (CEA)-related cell adhesion molecules CEACAM1 (BGP, CD66a), CEACAM5 (CEA, CD66e) and CEACAM6 (NCA, CD66c) are expressed in human lung. They play a role in innate and adaptive immunity and are targets for various bacterial and viral adhesins. Two pathogens that colonize the normally sterile lower respiratory tract in patients with chronic obstructive pulmonary disease (COPD) are non-typable Haemophilus influenzae (NTHI) and Moraxella catarrhalis. Both pathogens bind to CEACAMs and elicit a variety of cellular reactions, including bacterial internalization, cell adhesion and apoptosis. To analyze the (co-) expression of CEACAM1, CEACAM5 and CEACAM6 in different lung tissues with respect to COPD, smoking status and granulocyte infiltration, immunohistochemically stained paraffin sections of 19 donors were studied. To address short-term effects of cigarette smoke and acute inflammation, transcriptional regulation of CEACAM5, CEACAM6 and different CEACAM1 isoforms by cigarette smoke extract, interferons, Toll-like receptor agonists, and bacteria was tested in normal human bronchial epithelial (NHBE) cells by quantitative PCR. Corresponding CEACAM protein levels were determined by flow cytometry. Immunohistochemical analysis of lung sections showed the most frequent and intense staining for CEACAM1, CEACAM5 and CEACAM6 in bronchial and alveolar epithelium, but revealed no significant differences in connection with COPD, smoking status and granulocyte infiltration. In NHBE cells, mRNA expression of CEACAM1 isoforms CEACAM1-4L, CEACAM1-4S, CEACAM1-3L and CEACAM1-3S were up-regulated by interferons alpha, beta and gamma, as well as the TLR3 agonist polyinosinic:polycytidylic acid (poly I:C). Interferon-gamma also increased CEACAM5 expression. These results were confirmed on protein level by FACS analysis. Importantly, also NTHI and M. catarrhalis increased CEACAM1 mRNA levels. This effect was independent of the ability to bind to CEACAM1. The expression of CEACAM6 was not affected by any treatment or bacterial infection. While we did not find a direct correlation between CEACAM1 expression and COPD, the COPD-associated bacteria NTHi and M. catarrhalis were able to increase the expression of their own receptor on host cells. Further, the data suggest a role for CEACAM1 and CEACAM5 in the phenomenon of increased host susceptibility to bacterial infection upon viral challenge in the human respiratory tract.
    Respiratory research 08/2013; 14(1):85. · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CEACAM1 is the founder molecule of the family of 'carcinoembryonic antigen-related cell adhesion molecules' and part of the immunoglobulin superfamily. Due to its role as a coreceptor to many other receptors (e.g. Toll-like receptor 2, Toll-like receptor 4, T-cell receptor, B-cell receptor, epidermal growth factor receptor and vascular endothelial growth factor receptor) and its different isoforms, CEACAM1 is a multifunctional protein with an impact on proliferation and differentiation of multiple cell types. Although different modes of action in other tissues are described, the role of CEACAM1 in the developing brain remains elusive. Here we report for the first time that CEACAM1 is expressed ontogenetically in oligodendrocytes of the developing rat brain, and that CEACAM1 expression has a spatiotemporal relation to myelination. In addition, CEACAM1 expression is altered in a model of hyperoxia- and inflammation-induced encephalopathy of prematurity, a myelination disorder of children born preterm. Furthermore, primary oligodendrocytes stimulated with CEACAM1 show increased myelination. Therefore, we postulate that CEACAM1 is, at least in part, involved in hyperoxia- and inflammation-induced disruption of myelination, but may also play a role in intact myelination as it is ontogenetically expressed in myelinating oligodendrocytes.
    Developmental Neuroscience 05/2013; · 3.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pregnancy-specific glycoproteins (PSGs) are immunoglobulin superfamily members encoded by multigene families in rodents and primates. In human pregnancy, PSGs are secreted by the syncytiotrophoblast, a fetal tissue, and reach a concentration of up to 400 ug/ml in the maternal bloodstream at term. Human and mouse PSGs induce release of anti-inflammatory cytokines such as IL-10 and TGFβ1 from monocytes, macrophages, and other cell types, suggesting an immunoregulatory function. RGD tri-peptide motifs in the majority of human PSGs suggest that they may function like snake venom disintegrins, which bind integrins and inhibit interactions with ligands. We noted that human PSG1 has a KGD, rather than an RGD motif. The presence of a KGD in barbourin, a platelet integrin αIIbβ3 antagonist found in snake venom, suggested that PSG1 may be a selective αIIbβ3 ligand. Here we show that human PSG1 binds αIIbβ3 and inhibits the platelet - fibrinogen interaction. Unexpectedly, however, the KGD is not critical as multiple PSG1 domains independently bind and inhibit αIIbβ3 function. Human PSG9 and mouse Psg23 are also inhibitory suggesting conservation of this function across primate and rodent families. Our results suggest that in species with haemochorial placentation, in which maternal blood is in direct contact with fetal trophoblast, the high expression level of PSGs reflects a requirement to antagonise abundant (3 mg/ml) fibrinogen in the maternal circulation, which may be necessary to prevent platelet aggregation and thrombosis in the prothrombotic maternal environment of pregnancy.
    PLoS ONE 01/2013; 8(2):e57491. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Normal and malignant cells release a variety of different vesicles into their extracellular environment. The most prominent vesicles are the microvesicles (MVs, 100-1 000 nm in diameter), which are shed of the plasma membrane, and the exosomes (70-120 nm in diameter), derivates of the endosomal system. MVs have been associated with intercellular communication processes and transport numerous proteins, lipids and RNAs. As essential component of immune-escape mechanisms tumor-derived MVs suppress immune responses. Additionally, tumor-derived MVs have been found to promote metastasis, tumor-stroma interactions and angiogenesis. Since members of the carcinoembryonic antigen related cell adhesion molecule (CEACAM)-family have been associated with similar processes, we studied the distribution and function of CEACAMs in MV fractions of different human epithelial tumor cells and of human and murine endothelial cells. Here we demonstrate that in association to their cell surface phenotype, MVs released from different human epithelial tumor cells contain CEACAM1, CEACAM5 and CEACAM6, while human and murine endothelial cells were positive for CEACAM1 only. Furthermore, MVs derived from CEACAM1 transfected CHO cells carried CEACAM1. In terms of their secretion kinetics, we show that MVs are permanently released in low doses, which are extensively increased upon cellular starvation stress. Although CEACAM1 did not transmit signals into MVs it served as ligand for CEACAM expressing cell types. We gained evidence that CEACAM1-positive MVs significantly increase the CD3 and CD3/CD28-induced T-cell proliferation. All together, our data demonstrate that MV-bound forms of CEACAMs play important roles in intercellular communication processes, which can modulate immune response, tumor progression, metastasis and angiogenesis.
    PLoS ONE 01/2013; 8(9):e74654. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: What's known on the subject? and What does the study add? Insulin-like growth factor mRNA-binding protein 3 (IMP3) is an oncofetal protein found to be re-expressed in a series of human cancers including bladder cancer. In vitro analyses showed an invasion and proliferation promoting effect for IMP3. Further in vitro studies suggested that IMP3 is able to bind to the mRNAs of CD44 and insulin-like growth factor 2 (IGF2), enhancing their stability and expression. However, this molecular interaction has not yet been analysed in tumour samples. In the present study, we identified for the first time high IMP3 tissue protein expression as an independent predictor of poor patients' survival in muscle-invasive bladder cancer. Furthermore, there was no correlation between IMP3 and its molecular targets in bladder carcinoma specimens and concluded that the tumour-promoting effect of IMP3 is not related to its regulatory action on IGF2 and CD44. To assess the prognostic value and molecular actions of the oncofetal protein insulin-like growth factor mRNA-binding protein 3 (IMP3) in muscle-invasive bladder cancer (BC). IMP3 expression was analysed by immunohistochemistry, real-time polymerase chain reaction and Western blot analysis in 224 patients with BC. The molecular targets of IMP3; CD44, insulin-like growth factor 2 (IGF2) and its receptor the IGF1 receptor (IGF1-R) were also investigated. Expression levels were correlated with clinical follow-up data by using both univariate and multivariate Cox regression analyses. IMP3 mRNA and protein levels were significantly elevated in high-stage and high-grade muscle-invasive BC. In muscle-invasive BC IMP3 protein but not gene expression proved to be an independent predictor of disease-specific (hazard ratio [HR] 2.58, 95% confidence interval [CI] 1.28-4.56, P = 0.004) and overall survival (HR 2.07, 95% CI 1.12-3.82, P = 0.020). The expression levels of IGF2 and CD44 showed no correlation with that of IMP3. High IMP3 protein levels may identify patients with BC at high risk of disease progression and may therefore select patients for a more intensive therapy or for a strict follow-up. Its high expression in high-grade bladder carcinoma cells makes IMP3 for an attractive target for therapy. The tumour promoting effect of IMP3 is independent from its regulatory action on IGF2 and CD44 expression.
    BJU International 04/2012; 110(6 Pt B):E308-17. · 3.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcium phosphate nanoparticles (CaP-NP) are ideal tools for transfection due to their high biocompatibility and easy biodegradability. After transfection these particles dissociate into calcium and phosphate ions, i.e. physiological components found in every cell, and it has been shown that the small increase in intracellular calcium level does not affect cell viability. CaP-NP functionalized with pcDNA3-EGFP (CaP/DNA/CaP/DNA) and stabilized using different amounts of poly(ethylenimine) (PEI) were prepared. Polyfect®-pcDNA3-EGFP polyplexes served as a positive control. The transfection of human and murine corneal endothelial cells (suspensions and donor tissue) was optimized by varying the concentration of CaP-NP and the duration of transfection. The transfection efficiency was determined as EGFP expression detected by flow cytometry and fluorescence microscopy. To evaluate the toxicity of the system the cell viability was detected by TUNEL staining. Coating with PEI significantly increased the transfection efficiency of CaP-NP but decreased cell viability, due to the cytotoxic nature of PEI. The aim of this study was to develop CaP-NP with the highest possible transfection efficiency accompanied by the least apoptosis in corneal endothelial cells. EGFP expression in the tissues remained stable as corneal endothelial cells exhibit minimal proliferative capacity and very low apoptosis after transfection with CaP-NP. In summary, CaP-NP are suitable tools for the transfection of corneal endothelial cells. As CaP-NP induce little apoptosis these nanoparticles offer a safe alternative to viral transfection agents.
    Acta biomaterialia 03/2012; 8(3):1156-63. · 5.09 Impact Factor
  • Source
    Gesine Pless-Petig, Bernhard B Singer, Ursula Rauen
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary hepatocytes are of great importance for basic research as well as cell transplantation. However, their stability, especially in suspension, is very low. This feature severely compromises storage and shipment. Based on previous studies with adherent cells, we here assessed cold storage injury in rat hepatocyte suspensions and aimed to find a cold storage solution that preserves viability, attachment ability and functionality of these cells. Rat hepatocyte suspensions were stored in cell culture medium, organ preservation solutions and modified TiProtec solutions at 4°C for one week. Viability and cell volume were determined by flow cytometry. Thereafter, cells were seeded and density and metabolic capacity (reductive metabolism, forskolin-induced glucose release, urea production) of adherent cells were assessed. Cold storage injury in hepatocyte suspensions became evident as cell death occurring during cold storage or rewarming or as loss of attachment ability. Cell death during cold storage was not dependent on cell swelling and was almost completely inhibited in the presence of glycine and L-alanine. Cell attachment could be greatly improved by use of chloride-poor solutions and addition of iron chelators. Using a chloride-poor, potassium-rich storage solution containing glycine, alanine and iron chelators, cultures with 75% of the density of control cultures and with practically normal cell metabolism could be obtained after one week of cold storage. In the solution presented here, cold storage injury of hepatocyte suspensions, differing from that of adherent hepatocytes, was effectively inhibited. The components which acted on the different injurious processes were identified.
    PLoS ONE 01/2012; 7(7):e40444. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Encephalopathy of prematurity subsumes the two main neuropathological disorders of preterm white matter injury and neuronal/axonal disease. Factors such as hypoxia-ischemia, drug exposure, hyperoxia and maternal/neonatal inflammation are causal. Particularly with regards to infection/inflammation a significant role of CEACAM1 in different diseases is described. CEACAM1, a member of the carcinoembryonic antigen family of cell adhesion molecules, is a multifunctional molecule that contributes i.e. to morphogenesis of new blood vessels, cell proliferation, apoptosis, insulin metabolism, infection and inflammation. Because of its important role in inflammation-associated signaling we hypothesize that CEACAM1 might contribute to inflammation-induced perinatal brain injury. The aim of the current study is to evaluate the physiological regulation of CEACAM1 in the developing brain in newborn rats, which is yet unknown.
    Pediatric Research 11/2011; · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: • To assess the presence of matrix metalloproteinase (MMP)-7 in urine samples of patients with bladder cancer and to investigate the correlation between MMP-7 urine concentration and clinicopathological variables. • The presence of MMP-7 in the urine of patients with bladder cancer was tested in 32 representative cases using immunoprecipitation followed by western blot analysis. • Urinary MMP-7 concentration levels were analyzed in 132 patients with bladder cancer and 96 controls using an enzyme-linked immunosorbent assay. • MMP-7 levels did not differ significantly between patients with localized bladder cancer and controls (P= 0.174). On the other hand, we detected a fourfold, significantly elevated MMP-7 concentration in urine samples of patients with bladder cancer with regional or distant metastasis (P= 0.003). • Using a threshold value of 6.88 ng/ml, determined by receiver-operating characteristic curve analysis, a specificity of 82% and a sensitivity of 78% were observed. • Western blot analysis revealed that the 55-kDa tissue inhibitor of metalloproteinase 1 complexed MMP-7 is the dominant form of urinary matrilysin. • MMP-7 is present in detectable amounts in the urine of patients with bladder cancer. Its concentrations are significantly elevated in patients with metastatic disease. • Determination of urinary matrilysin level could help to detect bladder cancer metastasis, and may therefore provide a more reliable prognosis and influence therapy decisions.
    BJU International 04/2011; 107(7):1069-73. · 3.05 Impact Factor
  • Journal of Urology - J UROL. 01/2011; 185(4).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CEACAM1, CEA/CEACAM5, and CEACAM6 are cell adhesion molecules (CAMs) of the carcinoembryonic antigen (CEA) family that have been shown to be deregulated in lung cancer and in up to 50% of all human cancers. However, little is known about the functional impact of these molecules on undifferentiated cell growth and tumor progression. Here we demonstrate that cell surface expression of CEACAM1 on confluent A549 human lung adenocarcinoma cells plays a critical role in differentiated, contact-inhibited cell growth. Interestingly, CEACAM1-L, but not CEACAM1-S, negatively regulates proliferation via its ITIM domain, while in proliferating cells no CEACAM expression is detectable. Furthermore, we show for the first time that CEACAM6 acts as an inducer of cellular proliferation in A549 cells, likely by interfering with the contact-inhibiting signal triggered by CEACAM1-4L, leading to undifferentiated anchorage-independent cell growth. We also found that A549 cells expressed significant amounts of non-membrane anchored variants of CEACAM5 and CEACAM6, representing a putative source for the increased CEACAM5/6 serum levels frequently found in lung cancer patients. Taken together, our data suggest that post-confluent contact inhibition is established and maintained by CEACAM1-4L, but disturbances of CEACAM1 signalling by CEACAM1-4S and other CEACAMs lead to undifferentiated cell growth and malignant transformation.
    PLoS ONE 01/2010; 5(1):e8747. · 3.53 Impact Factor
  • European Urology Supplements - EUR UROL SUPPL. 01/2010; 9(2):275-275.
  • Pneumologie 01/2010; 64.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell adhesion molecules (CAMs) sense the extracellular microenvironment and transmit signals to the intracellular compartment. In this investigation, we addressed the mechanism of signal generation by ectodomains of single-pass transmembrane homophilic CAMs. We analyzed the structure and homophilic interactions of carcinoembryonic antigen (CEA)-related CAM 1 (CEACAM1), which regulates cell proliferation, apoptosis, motility, morphogenesis, and microbial responses. Soluble and membrane-attached CEACAM1 ectodomains were investigated by surface plasmon resonance-based biosensor analysis, molecular electron tomography, and chemical cross-linking. The CEACAM1 ectodomain, which is composed of four glycosylated immunoglobulin-like (Ig) domains, is highly flexible and participates in both antiparallel (trans) and parallel (cis) homophilic binding. Membrane-attached CEACAM1 ectodomains form microclusters in which all four Ig domains participate. Trans-binding between the N-terminal Ig domains increases formation of CEACAM1 cis-dimers and changes CEACAM1 interactions within the microclusters. These data suggest that CEACAM1 transmembrane signaling is initiated by adhesion-regulated changes of cis-interactions that are transmitted to the inner phase of the plasma membrane.
    The Journal of Cell Biology 11/2009; 187(4):553-67. · 10.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carcinoembryonic antigen (CEA)-related cell adhesion molecule 1 (CAM1 [CEACAM1]) mediates homophilic cell adhesion and regulates signaling. Although there is evidence that CEACAM1 binds and activates SHP-1, SHP-2, and c-Src, knowledge about the mechanism of transmembrane signaling is lacking. To analyze the regulation of SHP-1/SHP-2/c-Src binding, we expressed various CFP/YFP-tagged CEACAM1 isoforms in epithelial cells. The supramolecular organization of CEACAM1 was examined by cross-linking, coclustering, coimmunoprecipitation, and fluorescence resonance energy transfer. SHP-1/SHP-2/c-Src binding was monitored by coimmunoprecipitation and phosphotyrosine-induced recruitment to CEACAM1-L in cellular monolayers. We find that trans-homophilic CEACAM1 binding induces cis-dimerization by an allosteric mechanism transmitted by the N-terminal immunoglobulin-like domain. The balance of SHP-2 and c-Src binding is dependent on the monomer/dimer equilibrium of CEACAM1-L and is regulated by trans-binding, whereas SHP-1 does not bind under physiological conditions. CEACAM1-L homodimer formation is reduced by coexpression of CEACAM1-S and modulated by antibody ligation. These data suggest that transmembrane signaling by CEACAM1 operates by alteration of the monomer/dimer equilibrium, which leads to changes in the SHP-2/c-Src-binding ratio.
    The Journal of Cell Biology 11/2009; 187(4):569-81. · 10.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The acute phase protein orosomucoid (ORM), also known as alpha1-acid glycoprotein (AGP), is found to be increased in infection, inflammation and cancer. Recently, we demonstrated that ORM is produced by endothelial cells and detectable in urine samples of patients with bladder cancer. However, it was not clarified yet whether ORM plays a role in new vessel formation. To this aim we performed overexpression and gene silencing for ORM in human microvascular endothelial cells (HDMECs). ORM purified from human plasma was used individually or in combination with VEGF-A in endothelial tube formation, migration and proliferation assay. The in vivo effect of ORM in angiogenesis was studied using the chicken chorionallantois membrane (CAM) with subsequent counting of blood vessels on histological sections from the stimulated areas of CAM tissue. Our data show that ORM alone enhances migration but not proliferation of HDMECs. ORM alone does not induce endothelial tubes in vitro but simultaneous application of ORM with VEGF-A increases the number and the network of VEGF-A-induced endothelial tubes. Remarkably, ORM alone induces new vessel formation in vivo using CAM assay and supports the VEGF-A-induced new vessel formation in this assay. Taken together, our results let assume that ORM has pro-angiogenic properties and supports the angiogenic effect of VEGF-A. Thus, ORM seems to be involved in the regulation of angiogenesis.
    Experimental Cell Research 08/2009; 315(18):3201-9. · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Various imaging modalities, such as magnetic resonance imaging (MRI), have been assessed with regard to their value in the detection of prostate cancer (CaP). However, there is a need for less time-consuming and more cost effective procedures in urology. In order to determine the ability of contrast-enhanced transrectal ultrasound (CE-TRUS) to identify CaP, we investigated patients scheduled for radical prostatectomy for CaP and radical cystoprostatectomy for bladder cancer. Between May and August 2008, 35 consecutive patients with CaP and muscle-invasive bladder carcinoma were prospectively enrolled in this single center study. All patients underwent B-mode TRUS and CE-TRUS (Sequoia 512 unit with an endocavity probe EV8C4, 8 MHz; Siemens, Erlangen, Germany) by one investigator blinded to any clinical data before radical surgery. Contrast-enhanced images were obtained after intravenous infusion of a bolus (2.4 ml) of the contrast agent SonoVue (Bracco, Milan, Italy). Ultrasound findings (CE-TRUS and B-mode TRUS) were correlated with step-section histology. On a per-patient basis, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for detecting CaP with CE-TRUS were 71.0%, 50.0%, 91.7%, and 18.2%, respectively. In comparison with B-mode TRUS (sensitivity 45.2%, specificity 75.0%, PPV 93.3%, and NPV 18.0%), CE-TRUS performed significantly better (P=0.004, McNemar test). On a per-prostate-lobe basis sensitivity, specificity, PPV, and NPV were 69.0%, 33.3%, 83.3%, and 18.2%. CE-TRUS detected prostate cancer with a modest sensitivity and a high PPV in a selected patient cohort. Future randomized-controlled multicenter studies are needed to further validate the value of CE-TRUS in the detection of CaP. Based on our results, CE-TRUS may not be recommended as a routine procedure in the diagnosis of CaP at present.
    Urologic Oncology 07/2009; 29(3):295-301. · 3.65 Impact Factor

66 Following View all

90 Followers View all