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Abstract. Many computer vision algorithms have been successfully
adapted and applied to biomedical imaging applications. However,
biomedical computer vision is far beyond being only an application field.
Indeed, it is a wide field with huge potential for developing novel con-
cepts and algorithms and can be seen as a driving force for computer
vision research. To emphasize this view of biomedical computer vision
we consider a variety of important topics of biomedical imaging in this
paper and exemplarily discuss some challenges, the related concepts,
techniques, and algorithms.

1 Introduction

The success story of modern biology and medicine is also one of imaging. It is
the imaging techniques that enable biological experiments (for high-throughput
behavioral screens or conformation analysis) and make the body of humans and
animals anatomically or functionally visible for clinical purposes (medical pro-
cedures seeking to reveal, diagnose, or examine disease). With the widespread
use of imaging modalities in fundamental research and routine clinical practice,
researchers and physicians are faced with ever-increasing amount of image data
to be analyzed and the quantitative outcomes of such analysis are getting in-
creasingly important. Modern computer vision technology is thus indispensable
to acquire and extract information out of the huge amount of data.

Computer vision has a long history and is becoming increasingly mature.
Many computer vision algorithms have been successfully adapted and applied
to biomedical imaging applications. However, biomedical imaging has several
special characteristics which pose particular challenges, e.g.,

– Acquisition and enhancement techniques for challenging imaging situations
are needed.

– The variety of different imaging sensors, each with its own physical principle
and characteristics (e.g., noise modeling), often requires modality-specific
treatment.
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(a) (b) (c) (d)

Fig. 1. Illustration of three noise models. (a) Noise-free 1D signal. (b) Signal biased
by additive Gaussian noise with σ = 5. (c) Signal biased by Poisson noise. (d) Signal
biased by speckle noise with σ = 5 and γ = 1. (from [42])

– It is not seldom that different modalities are involved. Thus, algorithms must
be designed to cope with multiple modalities.

– Due to the high complexity of many biomedical image analysis tasks, semi-
automatic processing may be unavoidable in some cases. The design of in-
telligent and user-friendly interactive tools is a challenging task.

– Also the different body organs may require specific treatment.

As an example, the influence of noise modeling is considered. The following noise
models are popular:

– Additive Gaussian noise: f = μ+ ν, where μ is the unbiased image intensity
and ν is a Gaussian-distributed random variable with expectation 0 and
variance σ2.

– Poisson noise (”photon counting noise”): This type of noise is signal-depen-
dent and appears in a wide class of real-life applications, e.g., in positron
emission tomography and fluorescence microscopy.

– Speckle noise: f = μ + νμγ/2 occurs in ultrasound imaging and is of multi-
plicative nature. Its dependency on the unbiased image intensity μ is con-
trolled by the parameter γ. ν is the same as for additive Gaussian noise.

To illustrate the different characteristics of these noise forms a synthetic 1D
signal and its corrupted versions are shown in Figure 1. We can observe that for
similar parameters, the appearance of signal-dependent Poisson and speckle noise
is in general stronger compared to the additive Gaussian noise. Their processing
is thus definitively challenging and pushes the need for accurate data modeling
in computer vision.

On the other hand, the special characteristics of biomedical imaging also give
extra power to computer vision research. Multimodality can be helpful since they
carry complementary information and their combined use may ease some image
analysis tasks (e.g., segmentation [25]). Generally, a lot of knowledge specific to
a particular application or object type may exist that should be accurately mod-
eled and integrated into algorithms for dedicated processing towards improved
performance.

Given the challenges discussed above, biomedical computer vision is far be-
yond simply adapting and applying advanced computer vision techniques to solve
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real problems. It is also a wide field with huge potential of developing novel con-
cepts, techniques, and algorithms. Indeed, biomedical imaging can be seen as a
driving force for computer vision research.

In this paper this view of biomedical computer vision is emphasized by
considering important topics of biomedical imaging: Minimum-cost boundary de-
tection, region-based image segmentation, image registration, optical flow com-
putation, and imaging techniques. Our intention is not to give a complete
coverage of these topics, but rather exemplarily focus on typical challenges and
the related concepts, techniques, and algorithms. The majority of the given ex-
amples is based on our own research and experiences in the respective fields.

2 Minimum-cost Boundary Detection

Quantification is one of the key words in biomedical imaging and requires robust,
fast, and possibly automatic image segmentation algorithms. It can be either
in the form of boundary detection or alternatively region-based segmentation.
Automatic segmentation enables assessment of meaningful parameters, e.g., for
diagnosis of pathological findings in clinical environments.

2.1 Live-Wire Techniques

Several paradigms of minimum-cost boundary detection exist in the literature.
Among them the live-wire approach was initially introduced by Mortensen et
al. [37] and Udupa et al. [51]. The user interactively picks a seed point on the
boundary. Then, a live-wire is displayed in real time from the initial point to any
subsequent position taken by the cursor. The entire 2D boundary is specified by
means of a set of live-wire segments in this manner. The detection of segments
is formulated as a graph searching problem, which finds the globally optimal
(minimum-cost) path between an initial start pixel and an end pixel.

Placing seed points precisely on an object boundary may be difficult and
tedious. To facilitate seed point placement, a cursor snap mechanism forces the
mouse point to the pixel of maximum gradient magnitude within a user-specified
neighborhood. The user-friendliness can be further increased by the live lane
approach [20]. The user selects only the initial point. Subsequent points are
selected automatically as the cursor is moved within a lane surrounding the
boundary whose width changes as a function of the speed and acceleration of
cursor motion.

Live-wire boundaries are piecewise optimal (between two seed points) and
thus provide a balance between global optimality and local control. In contrast
to statistical deformable approaches (e.g., [10,11,28]) no training is required.
This semi-automatic technique has established itself as a robust and user-friendly
method for the extraction of structure outlines for many biomedical applications.

A very fast implementation called live-wire on the fly is described in [19]
which avoids unnecessary minimum-cost path computation during segmentation.
Another important extension is the 3D generalization proposed in [18] to segment
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Fig. 2. B-mode CCA image (left) and detected intima and adventitia layer of far wall
(right)

3D volume data or time sequences of 2D images. The key idea there is that the
user specifies contours via live-wiring on a few slices that are orthogonal to the
natural slices of the original data. If these slices are selected strategically, then
one obtains a sufficient number of seed points in each natural slice which enable
a subsequent automatic optimal boundary detection therein.

Live-wire techniques are a good example of designing intelligent and user-
friendly interactive segmentation tools. They help to solve complex segmentation
tasks by locally and non-extensively integrating the expertises and wishes of
domain experts, which in turn also increases the user’s faith in the automatic
solution.

2.2 Dynamic Programming Based Boundary Detection

Dynamic programming (DP) is a popular technique for boundary detection due
to its elegance, efficiency, and guarantee of optimality. One class of detectable
boundaries starts from the left, passes each image column exactly once, and ends
in the last column. An example is shown in Figure 2 for detecting the intimal
and adventitial layers of the common carotid artery (CCA) in B-mode sono-
graphic images [8]. Given an image of n rows and m columns, a total number of
O(n ·3m−1) potential paths exist. However, the dynamic programming technique
gives us an efficient algorithm for exactly finding the minimum-cost path with
O(mn) time and space [45].

Another, perhaps even more important, application class deals with closed
boundaries. Based on a point p in the interior of the boundary, a polar transfor-
mation with p being the central point brings the original image into a matrix, in
which a closed boundary becomes one from left to right afterwards. Finally, the
detected boundary has to be transformed back to the original image space. This
technique works well for star-shaped boundaries1, particularly including (nearly)
convex boundaries. Note that special care must be taken in order to guarantee
the closedness of the detected boundary [47].

Typically, DP-based boundary detection assumes strong edges along the
boundary and is thus based on gradient computation. In the simplest case the
cost function is defined by the sum of gradient magnitudes. In practice, however,

1 A star-shaped boundary is characterized by the existence of a point p such that for
each interior point q the segment pq lies entirely inside.
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(a) (b) (c) (d)

Fig. 3. (a) Tumor cell ROI; (b) gradient; (c) gradient-based optimal boundary; (d)
region-based optimal contour (from [29])

gradient is not always a reliable measure to work with. One such example is the
region-of-interest (ROI) of a tumor cell from microscopic imaging shown in Fig-
ure 3. Maximizing the sum of gradient magnitude does not produce satisfactory
result.

There are only very few works on DP-based boundary detection using non-
gradient information [35,53]. A challenge remains to develop boundary detection
methods based on region information. A general framework for this purpose is
proposed in [29]. A star-shaped contour C can be represented in polar form
r(θ), θ ∈ [0, 2π). Given the image boundary B(θ), θ ∈ [0, 2π), the segmentation
task can be generally formulated as one of optimizing the energy function:

E(C) =

∫ 2π

0

[ ∫ r(θ)

0

Fi(θ, r)dr +

∫ B(θ)

r(θ)

Fo(θ, r)dr
]
dθ (1)

Each region is assumed to be well represented by some model, which can be
validated by a model testing function Fi (inside) and Fo (outside), respectively.
This problem, however, cannot be solved by dynamic programming since the
model parameters have to be estimated by the entirety of inside and outside of
C. In [29] an approximation is thus made by modeling each radial ray separately,
enabling to restrict the model testing functions Fi(θ, r) and Fo(θ, r) to a par-
ticular radial ray θ instead of the whole image. Then, a dynamic programming
solution becomes possible for any representation model and model testing func-
tion independent of their form, complexity, and mathematical properties, e.g.,
differentiability. This universality gives the rather simple scheme of dynamic
programming considerable power for real-world applications. In particular, ro-
bust estimation methods such as median-based approaches and L1 norm (see
Figure 3d for a related result) are highly desired for improved robustness. Also,
sophisticated testing criteria like Fisher linear discriminant and others from ma-
chine learning theory provide extra useful options for measuring the separability
of two distributions.

The principle of DP-based boundary detection can be extended in various
ways. One extension is to simultaneously extract multiple boundaries [8,46],
e.g., for detecting a pair of intimal and adventitial boundary in sonographic im-
ages (Figure 2). The domain of detectable boundaries can be further enlarged to
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contain non-star-shaped objects. One such attempt from [30] allows the user to
interactively specify and edit the general shape of the desired object by using a
so-called rack, which basically corresponds to the object skeleton. The straight-
forward extension of the boundary class considered here to 3D is the terrain-like
surface z = f(x, y) (height field or discrete Monge surface). Unfortunately, there
is no way of extending the dynamic programming solution to the 3D minimum-
cost surface detection problem in an efficient manner. An optimal 3D graph
search algorithm approach is presented in [32] with low polynomial time for this
purpose. Similar to handling closed boundaries, cylindrical (tube-like) surfaces
can be handled by first unfolding into a terrain-like surface using cylindrical
coordinate transform. In addition to detecting minimum-cost surfaces this algo-
rithm can also be applied to sequences of 2D images for temporally consistent
boundary detection.

In practice, fast and easy-to-use algorithms like DP-based boundary detection
are highly desired. To cite the biologist colleague who provided us the microscopic
images used in [29] (see Figure 3): ”I have literally tens of thousands of images per
experiment” that must be processed within reasonable time. Therefore, further
developments like boundary detection based on region information will have high
practical impact.

3 Region-Based Image Segmentation

Region-based image segmentation is one of the fundamental problems in biomed-
ical imaging for quantitative reasoning and diagnostic. Recently, mathematical
tools such as level sets and variational methods led to significant improvements
in image segmentation. However, a majority of works on image segmentation
implicitly assume the given image to be biased by additive Gaussian noise, for
instance the popular Mumford-Shah model [38]. Generally, it still lacks mature
treatment of segmenting images with non-Gaussian noise models.

3.1 Discriminant Analysis Based Level Set Segmentation

The popular Chan-Vese (CV) approach [7], which is a special case of the
Mumford-Shah formulation, uses a closed contour Γ ⊂ Ω to separate a given im-
age domain Ω into two regions Ω1, Ω2. In particular, Γ is implicitly represented
by the level sets of a Lipschitz function Φ : Ω → �, i.e., Φ(x) < 0 for x ∈ Ω1,
Φ(x) = 0 for x ∈ Γ , and Φ(x) > 0 for x ∈ Ω2. Disregarding regularization of the
segmentation area, the CV energy functional is given as:

ECV (c1, c2, Φ) = β

∫
Ω

δ0(Φ(x)) |∇Φ(x)| dx

+ λ1

∫
Ω

(c1 − f(x))2 H(Φ) dx + λ2

∫
Ω

(c2 − f(x))2 (1 −H(Φ(x))) dx

(2)

Here f is the perturbed image to be segmented and c1 and c2 are constant
approximations of f in Ω1 and Ω2, respectively. The Heavyside function H is
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used as indicator function for Ω1, while δ0 denotes the one-dimensional δ-Dirac
measure.

In case of additive Gaussian noise (cf. Figure 1b) it is shown in [48] that
for fixed c1, c2, the energy in Eq. (2) gets minimal if Φ partitions the data
according to a natural threshold tCV = (c1 + c2)/2 as in clustering where c1
and c2 are cluster centers. However, the situation in presence of multiplicative
noise is different and the optimal threshold cannot be tCV in this case (see
[42] for details). In [48] a discriminant analysis (corresponding to the popular
Otsu thresholding method) is thus applied to determine an optimal threshold
tO. Then, a new variational segmentation model is formulated as:

E(Φ) =
1

2

∫
Ω

sgn(Φ(x)) (f(x) − tO) dx + β

∫
Ω

δ0(Φ(x)) |∇Φ(x)| dx (3)

This approach has been demonstrated to be superior to the Chan-Vese for-
mulation on real patient data from echocardiography, which are known to be
perturbed by multiplicative speckle noise.

3.2 Variational Segmentation Framework Incorporating Physical
Noise Models

Despite its high popularity the Mumford-Shah formulation has not yet been
investigated in a more general context of explicit physical noise modeling. Indeed,
only few publications considered the effect of a specific noise model on the results
of image segmentation [9,36]. A lot of segmentation problems need a suitable
noise model, e.g., positron emission tomography or medical ultrasound imaging.
Especially for data with poor statistics, i.e., with a low signal-to-noise ratio, it is
important to consider the impact of the present noise model on the segmentation
process.

In [42] a general segmentation framework for different physical noise models
is presented, which also allows the incorporation of a-priori knowledge by using
different regularization terms. For the special case of two-phase segmentation
problems, the image domain Ω is partitioned into a background and a target
subregion Ω1 and Ω2, respectively. An indicator function χ is introduced such
that χ(x) = 1 if x ∈ Ω1 and 0 otherwise (comparable to the Heavyside function
H(Φ) in Eq. (2)). The data fidelity functions are defined by the negative log-
likelihood functions derived from Bayesian modeling:

Di(f, ui) = − log pi(f | ui) for i ∈ {1, 2} (4)

where ui is a smooth function for each subregion, which is chosen according to
the assumed noise model for the given data f . Then, the energy functional for
the two-phase segmentation problem is formulated as:

E(u1, u2, χ) =

∫
Ω

χ(x)D1(f, u1) + (1 − χ(x))D2(f, u2) dx

+ α1R1(u1) + α2R2(u2) + βHn−1(Γ )

(5)
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Here Hn−1(Γ ) is the (n− 1)-dimensional Hausdorff measure. The regularization
terms R1 and R2 are used to incorporate a-priori knowledge about the expected
unbiased signals, e.g., H1 seminorm, Fisher information, or TV regularization.

The choice of the probability densities pi(f |ui) for i = 1, 2 crucially depends
on the image formation process and hence on the noise model assumed for the
data f and the subregion Ωi. This is the place where physical noise modeling
comes into play. In [42] the cases of Poisson and multiplicative speckle noise (cf.
Figure 1c and 1d, respectively) have been intensively discussed.

In [50] the influence of three different noise models is investigated using this
variational segmentation framework. In particular, shape priors are integrated
as regularization term to the framework. It is demonstrated that correct physical
noise modeling is of high importance for the computation of accurate segmenta-
tion results both in low-level as well as high-level segmentation.

The two approaches discussed above are representative for a variety of seg-
mentation algorithms which fully utilize the knowledge about the specific char-
acteristics of the image data at hand. A better modeling is the prerequisite for
improved segmentation accuracy and robustness. This is especially important in
biomedical imaging due to the variety of imaging modalities.

4 Image Registration

Image registration [21,34] aims at geometrically aligning two images of the same
scene, which may be taken at different times, from different viewpoints, and by
different sensors. It is among the most important tasks of biomedical imaging in
practice. Given a template image T : Ω → � and a reference image R : Ω →
�, where Ω ⊂ �d is the image domain and d the dimension, the registration
yields a transformation y : �d → �d representing point-to-point correspondences
between T and R. To find y, the following functional has to be minimized:

min
y

D(M(T , y),R) + αS(y) (6)

Here, D denotes the distance functional and the M transformation model, and
S is the regularization functional. D measures the dissimilarity between the
transformed template image and the fixed reference image. If both images are
of the same modality, the sum-of-squared differences (SSD) can be used as a
distance functional D. In case of multimodal image registration information-
theoretic measures, in particular, mutual information, are popular [39].

The SSD and related dissimilarity measures implicitly assume the intensity
constancy between the template and reference image. Thus, we solely search
for the optimal geometric transformation. In medical imaging, however, this as-
sumption is not always satisfied. Such a problem instance appears in the context
of motion correction in positron emission tomography (PET) [14].

PET requires relatively long image acquisition times in the range of minutes.
In thoracic PET both respiratory and cardiac motion lead to spatially blurred
images. To reduce motion artifacts in PET, so-called gating based techniques
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Fig. 4. Coronal slices of the left ventricle in a human heart during systole (a) and
diastole (b) and corresponding line profiles (c) are shown for one patient. It can be
observed that the maximum peaks in these line profiles vary a lot. (from [24])

were found useful, which decompose the whole dataset into parts that represent
different breathing and/or cardiac phases [16]. After gating, each single gate
shows less motion, however, suffers from a relatively low signal-to-noise ratio
(SNR) as only a small portion of all available events is contained. After gating
the data, each gate is reconstructed individually and registered to one assigned
reference gate. The registered images are averaged afterwards to overcome the
problem of low SNR. Tissue compression and the partial volume effect (PVE)
lead to intensity modulations. Especially for relatively small structures like the
myocardium the true uptake values are affected by the PVE. An example is
given in Figure 4 where a systolic and diastolic slice (same respiratory phase)
of a gated 3D dataset and line profiles are shown. Among others, the maximum
intensity values of the two heart phases indicate that corresponding points can
differ in intensity significantly.

In this situation an image registration mechanism is required which consists
of simultaneous geometric transformation (spatially moving the pixels) and in-
tensity modulation (redistributing the intensity values). In gating, all gates are
formed over the same time interval. Hence, the total amount of radioactivity in
each phase is approximately equal. In other words, in any respiratory and/or car-
diac gate no radioactivity can be lost or added apart from some minor changes
at the edges of the field of view. This property provides the foundation for a
mass-preserving image registration. VAMPIRE (Variational Algorithm for Mass-
Preserving Image REgistration) [24] incorporates a mass-preserving component
by accounting for the volumetric change induced by the transformation y. Based
on the integration by substitution theorem for multiple variables we have:

∫
y(Ω)

T (x)dx =

∫
Ω

T (y(x))|det(∇y(x))|dx (7)

It guarantees the same total amount of radioactivity before and after applying
the transformation y to T . Therefore, for an image T and a transformation y,
the mass-preserving transformation model is defined as:

MMP(T , y) := T (y) · det(∇y) (8)
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which is used in the registration functional (6) to enable simultaneous geometric
transformation and intensity modulation.

In [24] this mass-preserving registration algorithm has been successfully ap-
plied to correct motion for dual – cardiac as well as respiratory – gated PET
imaging. Motion estimation is also a fundamental requirement for super-resolu-
tion computation. More robust motion estimation based on mass-preserving reg-
istration thus facilitates improved super-resolution quality [52].

Similar to noise modeling discussed for region-based image segmentation, it
is the explicit consideration of the mass-preserving property which enables im-
proved image registration. This is another example of the benefit of accurate
modeling in biomedical imaging.

5 Optical Flow Computation

Motion analysis is an important tool in biomedical imaging and optical flow
estimation plays a central role in this context [2,22]. The basis of most optical
flow algorithms is the brightness constancy2:

I(x, y, t) = I(x + u, y + v, t+ 1) (9)

which assumes that when a pixel moves from one image to another, its inten-
sity (or color) does not change. In fact, this assumption combines a number of
assumptions about the reflectance properties of the scene, the illumination in
the scene, and the image formation process in the camera [2]. Linearizing this
constancy equation by applying a first-order Taylor expansion to the right-hand
side leads to the fundamental optical flow constraint (OFC):

u · Ix + v · Iy = −It (10)

or more compactly:
f · ∇I = −It (11)

with f = (u, v) and ∇I = (Ix, Iy), which is used to derive optimization algo-
rithms in a continuous setting.

In practice, however, this popular brightness constancy is not always valid.
Other constancy terms have also been suggested including gradient, gradient
magnitude, higher-order derivatives, e.g., on the (spatial) Hessian photometric
invariants, texture features, and combination of multiple features (see [5] for a
discussion). In the following two subsections we briefly discuss two additional
variants from the medical imaging perspective.

5.1 Mass-Preserving Optical Flow

The problem of intensity modulations discussed for image registration in the
previous section can also be tackled with optical flow techniques. According to

2 For notation simplicity we consistently give the 2D version only. Its extension to n-D
cases is straightforward.
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the observation that the OFC is very similar to the continuity equation of fluid
dynamics, Schunck [44] presented the extended optical flow constraint (EOFC):

f · ∇I + I · div(f) = −It (12)

where div(f) = ux + vy is the divergence of f . Optical flow computaton
based on EOFC has been studied and compared with ordinary OFC-based
methods [4].

Interestingly, the EOFC has a physical interpretation of mass preservation.
As shown by several researchers [3,12,40], this constraint is equivalent to a to-
tal brightness invariance hypothesis. The total brightness is defined as the sum
of intensity values of a moving object. Instead of assuming that a point has a
constant brightness over time, it is assumed that a moving object has a total
brightness constant over time. Combined with a non-quadratic penalization a
mass-preserving optical flow method has been applied for cardiac motion cor-
rection in 3D PET imaging [13]. In contrast to OFC-based optical flow [15,17],
mass-preserving methods reflect better the physical reality of PET imaging.

Note that the idea behind the mass-preserving optical flow and the mass-
preserving registration discussed in Section 4 is the same. Indeed, Eq. (12) can
also be derived from Eq. (6), see [23]. Both registration and optical flow methods
give us a powerful tool for solving mass-preserving motion estimation problems.

5.2 Histogram-Based Optical Flow

Multiplicative speckle noise (cf. Figure 1d) is characteristic for diagnostic ultra-
sound imaging. The origin of speckle are tiny inhomogeneities within the tissue,
which reflect ultrasound waves but cannot be resolved by the ultrasound system.
Speckle noise f = μ + νμγ/2 is of multiplicative nature, i.e., the noise variance
directly depends on the underlying signal intensity.

The speckle noise has substantial impact on motion estimation. In fact, it
turns out that the brightness constancy does not hold any more (see [49] for a
mathematical proof). This can be demonstrated by the following simple experi-
ment [49]. Starting from two pixel patches of size 5 × 5 with constant intensity
values μ = 150 and η ∈ [0, 255], a realistic amount of speckle noise was added
according to f = μ + νμγ/2 with γ = 1.5. The resulting pixel patches, denoted
by X150 and Y η, were compared pixelwise with the squared L2-distance. Com-
parison of the two pixel patches was performed 10,000 times for every value of
η ∈ [0, 255]. The simulation results (average distance of the two pixel patches
and standard deviation) are plotted in Figure 5 (left). Normally, one would ex-
pect the minimum of the graph to be exactly at the value η = μ = 150, i.e., both
pixel patches have the same constant intensity before adding noise. However, the
minimum of the graph is below the expected value. This discrepancy has been
theoretically analyzed in [49], which predicts the minimum at η ≈ 141 for the
particular example as can be observed in Figure 5 (left).

In [49] it is argued that the overall distribution within a local image region
remains approximately constant since the tissue characteristics remain and thus
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Fig. 5. Left: Average distance between two pixel patches biased by speckle noise. The
global minimum is below the correct value of η = 150. Right: Average distance between
the histograms of two pixel patches biased by speckle noise. The global minimum
matches with the correct value of η = 150. In both case the two dashed lines represent
the standard deviation of the 10,000 experiments. (from [49])

suggested to consider a small neighborhood around a pixel and compare the
local statistics, i.e, local histograms as a discrete representation of the intensity
distribution, of the images. This leads to the histogram constancy constraint:

H(x, y, t) = H(x+ u, y + v, t+ 1) (13)

whereH represents the cumulative histogram of the region surrounding the pixel
(x, y) at time t. The validity of this new constraint has been mathematically
proven in [49] and can also been seen in Figure 5 (right). On ultrasound data
the derived histogram-based optical flow algorithm outperforms state-of-the-art
general-purpose optical flow methods.

5.3 Periodic Optical Flow

In medical imaging some motion is inherently periodic. For example, this occurs
in cardiac gated imaging, where images are obtained at different phases of the
periodic cardiac cycle. Another example is in respiratory gated imaging, where
the respiratory motion of the chest can also be described by a periodic model. Li
and Yang [33] proposed optical flow estimation for a sequence of images wherein
the inherent motion is periodic over time. Although in principle one could adopt
a frame-by-frame approach to determine the motion fields, a joint estimation,
in which all motion fields of a sequence are estimated simultaneously, explicitly
exploits the inherent periodicity in image motion over time and can thus be
advantageous against the framewise approach.

By applying Fourier series expansion, the components (u, v) at location (x, y)
over time are modeled by:

u(x, y, t) =

L∑
l=1

[
al(x, y) cos

2πl

T
t+ bl(x, y) sin

2πl

T
t
]

(14)

v(x, y, t) =

L∑
l=1

[
cl(x, y) cos

2πl

T
t+ dl(x, y) sin

2πl

T
t
]

(15)
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where al(x, y), bl(x, y), cl(x, y), dl(x, y) are the coefficients associated with har-
monic component l and L is the order of the harmonic representation. This
motion model is embedded into the motion estimation for each pair of two suc-
cessive images and the overall data term of the energy function to be minimized
is the sum of all pairwise data terms from the brightness constancy.

While a number of constancy terms have been suggested in computer vi-
sion, the popular brightness constancy is dominating. The mass-preserving and
histogram-based optical flow computation discussed above exemplarily demon-
strate the need of finding suitable constancy terms in particular biomedical imag-
ing scenarios. Periodic optical flow is a new concept and not fully explored yet.
In both cases biomedical imaging provides large room for methodological devel-
opment from a computer vision perspective.

6 Novel Imaging Techniques

Biomedical imaging has a broad range of subjects to be imaged and various
imaging modalities. Despite of the enormous progresses there is still substan-
tial room for further development of imaging technology. In the following we
exemplarily describe two scenarios.

6.1 PET Imaging of Freely Moving Mice

In an on-going project we aim to track freely moving small animals with high
precision inside a positron emission tomograph. Normally, the animals have to be
anesthetized during 15-60 minutes of data acquisition to avoid motion artifacts.
However, anesthesia influences the metabolism which is measured by PET. To
avoid this, the aim of our project is to track awake and freely moving animals
during the scan and use the information to correct the acquired PET data for
motion. For this task a small animal chamber of 20×10×9 cm was built (Figure 6)
with a pair of stereo cameras positioned on both small sides of the chamber.

Due to the experimental setup highly distorted wide angle lenses have to be
used. To reach the required tracking accuracy a high-precision lens distortion
correction is crucial. First tests using a simple polynomial model for lens dis-
tortion correction lead to deviations from a pinhole camera model of up to 5
pixels. Therefore, more sophisticated methods are needed. Two high-precision
lens distortion correction methods are described in [26,27]. In the latter case
several images of a harp of wire are acquired and a massive amount of edge
points is used to determine the parameters of a 11th grade polynomial distor-
tion function. Both methods require a very accurately manufactured calibration
pattern. In [43] another solution is suggested using a planar checkerboard pat-
tern to provide very accurately detectable feature points even under distortion
as a calibration pattern. Smoothed thin plate splines are applied to model the
mapping between control points, leading to a mean accuracy below 0.084 pixel.



14 X. Jiang et al.

Fig. 6. Camera setup for PET imaging of freely moving mice. Left: Construction model
of the animal chamber. Right: Manufactured chamber halfway inserted into a quad-
HIDAC PET-scanner (16 cm in diameter). (from [43])

In addition to lens distortion correction we also need to solve other problems
like feature detection and stereo vision in order to provide the technical funda-
ment for a motion-corrected reconstruction. It is this bundle of computer vision
solutions that will help to further improve the functionality of PET imaging
towards imaging of freely moving mice.

6.2 FTIR-Based Imaging Method

The investigation of complex movement patterns of various organisms has be-
come an integral subject of biological research. One of the most popular model
organisms to study how the nervous system controls locomotion is Drosophila
melanogaster (i.e., fruit fly). Drosophila is a holomethabolous insect. In the lar-
val stage locomotion is confined to 2D, whereas the adult fly moves in two and
three dimensions.

Work on freely flying fruit flies is still in its infancy because they form the
so-called general multi-index assignment problem, which is nondeterministically
polynomial-time hard (NP-hard) [6]. The current solutions are only able to track
a small number of subjects for a short period [1,54]. From the computer vision
perspective 3D tracking of flying flies is an unsolved challenge. Much efforts are
still required to realize highly accurate tracking systems in order to fully meet
the need of biological behavior studies.

In contrast, larval crawling occurs in two dimensions at relatively low speed.
In principle, larval movement can be documented by a simple camera setup.
However, recording of crawling larvae requires high contrast images, which are
typically obtained by following sophisticated illumination protocols or dye ap-
plications [31]. For conventional, relatively low resolution tracking of larval lo-
comotion, larvae are illuminated by incident or transmitted light and monitored
by cameras with appropriate filters. This is technically challenging due to the
semi-translucent body of these small animals. In addition, the observation of
larvae is complicated by light reflections caused by the tracking surface. Thus,
illumination problems aggravate faithful recordings of larval crawling paths and
the poor signal to noise ratio complicates subsequent computer-based analysis.
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Fig. 7. The FIM setup. (A) Image of 10 larvae (arrow) imaged in a conventional
setup. The asterisks denote scratches and reflections in the tracking surface. (B) Image
of 10 larvae (arrow) imaged in the FIM setup with high contrast. (C) The principle
of frustrated total internal reflection. na, n1, n2, and n3 indicate different refractory
indices of air, acrylic glass, agar and larvae respectively, an acrylic glass plate is flooded
with infrared light (indicated by red lines). The camera is mounted below the tracking
table. (D) Schematic drawing of the setup. (E) Image of the tracking table. (from [41])

A novel imaging technique based on frustrated total internal reflection (FTIR)
is reported in [41], see Figure 7. Instead of directly illuminating crawling larvae,
the frustrated total internal reflection is used to determine the contact surface
between the animal and the substrate. In this FIM setup, an acrylic glass plate
is flooded with infrared light. Due to the differences in the refractive indices of
acrylic glass and air, it is completely reflected at the glass/air boundary (Fig-
ure 7C). To provide a moist crawling environment a thin agar layer is added.
According to Snell’s law, the light enters the agar layer since its refractive index
(n2) is higher than the refractive index of the acrylic glass (n1). The larvae have
an even higher optical density resulting in a higher refractive index (n3), and
thus, reflection is frustrated at the agar/larva interface and light enters the larval
body. Here, light is reflected and since the reflection angle is smaller than the
critical angle, the light passes through the different layers and can be detected
by a camera equipped with an infrared filter (Figure 7D,E). This setup is easy to
assemble and does not require cost-intensive equipment. This new imaging ap-
proach, named FIM (FTIR-based Imaging Method), provides an unprecedented
high contrast view on crawling animals. Even without any background subtrac-
tion it generates constant image quality superior to previous setups. In addition,
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it even allows to image internal organs. FIM is suitable for a wide range of
biological applications and a wide range of organisms. Together with optimized
tracking software it facilitates analysis of larval locomotion and will simplify
genetic screening procedures.

7 Conclusion

Biomedical computer vision is far beyond simply adapting and applying ad-
vanced computer vision techniques to solve real problems. Biomedical imaging
also poses new and challenging computer vision problems in order to cope with
the complex and multifarious reality. In this paper we have exemplarily discussed
a number of challenges and the related concepts and algorithms, mainly in the
fields of our own research. They are well motivated by the practice. Biomedical
imaging is full of such challenges and powerful computer vision solutions will
immediately have benefit for the practice.

We need to understand how the domain experts work best with a technical
system, which helps to design intelligent and user-friendly interactive tools. In
addition, we are forced to have deeper understanding of the sources of signals
and images to be processed, i.e., the objects of interest and biomedical devices.
Only this way essential knowledge can be included for improved modeling and
solution.

Many fundamental assumptions made when developing algorithms for biome-
dical imaging are shared by different - even non-biomedical - imaging modalities.
For instance, the speckle noise model applies to both ultrasound and synthetic
aperture radar imaging. Thus, the developed algorithms are of general interest
and can be used in manifold application contexts.

Modern biology and medicine is a successful story of imaging. In the past
biomedical computer vision has already established a vast body of powerful
methods and tools. Continuous well-founded research will further enlarge the
spectrum of successfully solved practical problems and thus continue to make a
noticable contribution to biology and medicine.
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Schäfers, K.P.: Motion correction in respiratory gated cardiac PET/CT using
multi-scale optical flow. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.)
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