Layout Decomposition for Triple Patterning Lithography

Bei Yu1 Kun Yuan2 Boyang Zhang1 Duo Ding1 David Z. Pan1

1ECE Dept. University of Texas at Austin, Austin, TX USA
2Cadence Design Systems, Inc., San Jose, CA USA

Nov. 7, 2011
Outline

1 Introduction

2 Algorithm
 - TPL Decomposition Flow
 - Mathematical Formulation and Graph Simplification
 - Semidefinite Programming (SDP) Approximation

3 Experimental Results
Overcome the lithography limitations

- 193nm based lithography tool, hard for sub-30nm
- Delay or limitations of other techniques, i.e. EUV, E-Beam

Double/Multiple Patterning Lithography

- Original layout is divided into two/several masks (layout decomposition)
- Decrease pattern density, improve the depth of focus (DOF)
- Objective: minimize both conflicts and stitches
Introduction to Triple Patterning Lithography (TPL)

- Layout is decomposed into three masks.
- Similar but more difficult than 3 coloring problem.

Why Triple Patterning Lithography (TPL)?
- Resolve some native conflict from DPL.
- Reduce the number of stitches.
- Triple effective pitch, achieve further feature-size scaling (22nm/16nm).
Layout Decomposition

DPL Layout Decomposition
- Iterative Method (remove conflict → minimize stitch) Local Optimal
 - Cut based methodologies (ICCAD’08, ICCAD’09, ASPDAC’2010)
- Minimize conflict and stitch simultaneously
 - ILP Formulation (Yuan et. al ISPD’2009) → optimal but slow
 - Heuristic (Xu et. al ISPD’2010) → only for planar layout

TPL Layout Decomposition
- Previously only via layout is considered (Cork et. al SPIE’08)
Our work is the first systematic study for general layout

- Mathematical Formulation
- Novel Color representations
- Semidefinite Programming based approximation

TPL Layout Decomposition is HARDER

- Solution space is much bigger
- Conflict graph is NOT planar
- Detect conflict is not P, but NP-Complete
Problem Formulation

Problem: TPL Layout Decomposition
Input: layout and minimum coloring space.
Output: decomposed layout,
minimize the stitch number and the conflict number.

Two Lemmas:
- Deciding whether a planar graph is 3-colorable is NP-complete
- Coloring a 3-colorable graph with 4 colors is NP-complete

Theorem 1
TPL Layout Decomposition problem is NP-Hard
Graphs Construction*:

1. Given input layout.
2. Generate Layout Graph (LG).
3. Projection.
4. Generate Decomposition Graph (DG).

* same with Yuan et. al ISPD’09

Two sets of edges:

- CE: conflict edge.
- SE: stitch edge.
Graphs Construction*:

1. Given input layout.
2. Generate Layout Graph (LG).
3. Projection.
4. Generate Decomposition Graph (DG).

* same with Yuan et. al ISPD’09

Two sets of edges:

- CE: conflict edge.
- SE: stitch edge.
Graphs Construction*:

1. Given input layout.
2. Generate Layout Graph (LG).
3. Projection.
4. Generate Decomposition Graph (DG).

* same with Yuan et. al ISPD’09

Two sets of edges:
- **CE**: conflict edge.
- **SE**: stitch edge.
Graphs Construction*:
1. Given input layout.
2. Generate Layout Graph (LG).
3. Projection.
4. Generate Decomposition Graph (DG).

* same with Yuan et. al ISPD’09

Two sets of edges:
- **CE**: conflict edge.
- **SE**: stitch edge.
Overview of the TPL Decomposition Flow

Resolve Layout Decomposition problem:
- Integer Linear Programming (ILP)
- Vector Programming

Three graph based Simplifications – improve scalability
- Vector Programming can be replaced by approximation methods:
 - Semidefinite Programming (SDP)
 - Mapping Algorithm
Overview of the TPL Decomposition Flow

- Input Layout
- Layout Graph Construction
- Independent Component Computation
- Layout Graph Simplification
- Decomposition Graph Construction
- Bridge Computation
- ILP / Vector Programming
- Output Masks

Resolve Layout Decomposition problem:
- Integer Linear Programming (ILP)
- Vector Programming

Three graph based Simplifications – improve scalability

Vector Programming can be replaced by approximation methods:
- Semidefinite Programming (SDP)
- Mapping Algorithm
Overview of the TPL Decomposition Flow

- Resolve Layout Decomposition problem:
 - Integer Linear Programming (ILP)
 - Vector Programming

- Three graph based Simplifications – improve scalability

- Vector Programming can be replaced by approximation methods:
 - Semidefinite Programming (SDP)
 - Mapping Algorithm
Overview of the TPL Decomposition Flow

- Resolve Layout Decomposition problem:
 - Integer Linear Programming (ILP)
 - Vector Programming

- Three graph based Simplifications – improve scalability

- Vector Programming can be replaced by approximation methods:
 - Semidefinite Programming (SDP)
 - Mapping Algorithm
Mathematical Formulation

\[
\min \sum_{e_{ij} \in CE} c_{ij} + \alpha \sum_{e_{ij} \in SE} s_{ij}
\]

\[
\text{s.t. } c_{ij} = (x_i == x_j) \quad \forall e_{ij} \in CE
\]

\[
s_{ij} = x_i \oplus x_j \quad \forall e_{ij} \in SE
\]

\[
x_i \in \{0, 1, 2\} \quad \forall i \in V
\]

- \(\sum c_{ij} \) is the number of conflicts, \(\sum s_{ij} \) is the number of stitches
- Represent 3 colors using two 0-1 variables (0, 0), (0, 1), (1, 0)
- Similar to previous DPL works, (1) can be transferred to ILP
- Solving ILP is NP-Hard problem, suffers from runtime penalty
Graph Simplification

Independent Component Computation
- Partition the whole problem into several sub-problems

Bridge Computation
- Further partition the problem by removing bridges

Remove bridge
Rotate colors to insert bridge
Graph Simplification (cont.)

Layout Graph Simplification

- Iteratively remove node with degree \(\leq 2 \)
- Push the nodes into stack
- Right layout can be directly colored
Vector Programming

New representation of colors

- Three vectors \((1, 0), (-\frac{1}{2}, \frac{\sqrt{3}}{2})\) and \((-\frac{1}{2}, -\frac{\sqrt{3}}{2})\)
- same color: \(\vec{v}_i \cdot \vec{v}_j = 1\)
- different color: \(\vec{v}_i \cdot \vec{v}_j = -\frac{1}{2}\)

Vector Programming:

\[
\min \sum_{e_{ij} \in CE} \frac{2}{3} (\vec{v}_i \cdot \vec{v}_j + \frac{1}{2}) + \frac{2\alpha}{3} \sum_{e_{ij} \in SE} (1 - \vec{v}_i \cdot \vec{v}_j) \tag{2}
\]

\[
\text{s.t. } \vec{v}_i \in \{(1, 0), (\frac{-1}{2}, \frac{\sqrt{3}}{2}), (\frac{-1}{2}, -\frac{\sqrt{3}}{2})\}
\]

- Equal to Mathematical Formulation (1)
- Still NP-Hard
Relax Vector Programming (2) to Semidefinite Programming (SDP)

\[
\text{SDP: } \min \ A \cdot X \\
X_{ii} = 1, \ \forall i \in V \\
X_{ij} \geq -\frac{1}{2}, \ \forall e_{ij} \in CE \\
X \succeq 0
\]

SDP (3) can be solved in polynomial time

Mapping Algorithm
- Continuous SDP Solutions ⇒ Three Vectors
- Tradeoff between speed and global optimality
Example of SDP Approximation

\[A = \begin{pmatrix} 0 & 1 & 1 & -\alpha & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ -\alpha & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{pmatrix} \]

SDP: \[
\min A \cdot X \\
X_{ii} = 1, \quad \forall i \in V \\
X_{ij} \geq -\frac{1}{2}, \quad \forall e_{ij} \in CE \\
X \succeq 0
\]
Example of SDP Approximation

\[
A = \begin{pmatrix}
0 & 1 & 1 & -\alpha & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
-\alpha & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0
\end{pmatrix}
\]

SDP:
\[
\min A \cdot X \\
X_{ii} = 1, \quad \forall i \in V \\
X_{ij} \geq -\frac{1}{2}, \quad \forall e_{ij} \in CE \\
X \succeq 0
\]

After solving the SDP:

\[
X = \begin{pmatrix}
1.0 & -0.5 & -0.5 & 1.0 & -0.5 \\
1.0 & -0.5 & -0.5 & -0.5 \\
1.0 & -0.5 & 1.0 \\
\ldots & 1.0 & -0.5 & 1.0
\end{pmatrix}
\]
Experimental Results

Experimental Setting:
- implement in C++
- Intel Core 3.0GHz Linux machine with 32G RAM
- 15 layouts based on ISCAS-85 & 89 are tested

- Layout parser: OpenAccess2.2
- ILP solver: CBC
- SDP solver: CSDP
Graph Simplification can save 82% runtime \(^1\)

Still maintain the optimality

\(^1\) Normal ILP uses Independent Component Computation
Experimental Results – How fast is SDP?

- SDP can effectively speed-up ILP
- Compared with Accelerated ILP, SDP can save 42% runtime
SDP can achieve near optimal results.
Experimental Results – Dense Layout

<table>
<thead>
<tr>
<th>Circuit</th>
<th>SE#</th>
<th>CE#</th>
<th>Accelerated ILP</th>
<th>SDP Based</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>st#</td>
<td>cn#</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CPU(s)</td>
<td>st#</td>
</tr>
<tr>
<td>C1</td>
<td>16</td>
<td>247</td>
<td>1</td>
<td>5</td>
<td>5.5</td>
<td>0</td>
</tr>
<tr>
<td>C2</td>
<td>38</td>
<td>289</td>
<td>0</td>
<td>15</td>
<td>17.32</td>
<td>0</td>
</tr>
<tr>
<td>C3</td>
<td>24</td>
<td>381</td>
<td>0</td>
<td>14</td>
<td>33.41</td>
<td>0</td>
</tr>
<tr>
<td>C4</td>
<td>56</td>
<td>437</td>
<td>9</td>
<td>32</td>
<td>203.17</td>
<td>9</td>
</tr>
<tr>
<td>avg.</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>16.5</td>
<td>64.9</td>
<td>2.25</td>
</tr>
<tr>
<td>ratio</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.9</td>
</tr>
</tbody>
</table>

- For very dense layout
- SDP can achieve $140\times$ speed-up.
Experimental Results – S1488

- Stitch number: 0
- Conflict number: 1
First systematic work on triple patterning layout decomposition
- Mathematical formulation to minimize both stitches and conflicts
- Novel color representations
- Semidefinite programming based approximation

Expect to see more researches on Triple Patterning Lithography
Thank You!
Appendix – ILP Formulation

\[
\begin{align*}
\min \quad & \sum_{e_{ij} \in CE} c_{ij} + \alpha \sum_{e_{ij} \in SE} s_{ij} \\
\text{s.t.} \quad & x_i + x_j \leq 1 \\
& x_i + x_j \leq 1 + c_{ij} \quad \forall e_{ij} \in CE \\
& (1 - x_i) + (1 - x_j) \leq 1 + c_{ij} \quad \forall e_{ij} \in CE \\
& x_i + x_j \leq 1 + c_{ij} \quad \forall e_{ij} \in CE \\
& (1 - x_i) + (1 - x_j) \leq 1 + c_{ij} \quad \forall e_{ij} \in CE \\
& c_{ij1} + c_{ij2} \leq 1 + c_{ij} \quad \forall e_{ij} \in CE \\
& x_i - x_j \leq s_{ij1} \quad \forall e_{ij} \in SE \\
& x_j - x_i \leq s_{ij1} \quad \forall e_{ij} \in SE \\
& x_i - x_j \leq s_{ij2} \quad \forall e_{ij} \in SE \\
& x_j - x_i \leq s_{ij2} \quad \forall e_{ij} \in SE \\
& s_{ij} \geq s_{ij1}, s_{ij} \geq s_{ij2} \quad \forall e_{ij} \in SE
\end{align*}
\]