In the Search of Improvements to the \mathcal{EL}^+ Classification Algorithm

Barış Sertkaya

July 16, 2011
\mathcal{EL}^+ Classification Algorithm [Baader et al., 2005]

1. Normalize the axioms
2. Simultaneously compute the concept hierarchy (without making single subsumption tests)

The Normal Form:
- All GCI's of the form
 - $A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B$
 - $A_1 \sqsubseteq \exists r.A_2$
 - $\exists r.A_1 \sqsubseteq B$
- All RIs are of the form
 - $r \sqsubseteq s$, or $r_1 \circ r_2 \sqsubseteq s$
\mathcal{EL}^+ Classification Algorithm

Given a normalized \mathcal{EL}^+ TBox \mathcal{T} the algorithm computes:

1. a mapping S from $\mathit{CN}_{\mathcal{T}}$ to $\mathit{CN}_{\mathcal{T}}$
2. a mapping R from $\mathit{RN}_{\mathcal{T}}$ to $\mathit{CN}_{\mathcal{T}} \times \mathit{CN}_{\mathcal{T}}$

with the meanings:

- $B \in S(A)$ implies $A \sqsubseteq_{\mathcal{T}} B$,
- $(A, B) \in R(r)$ implies $A \sqsubseteq_{\mathcal{T}} \exists r . B$

exhaustively applies a set of completion rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>If $A_1, \ldots, A_n \in S(X)$, $A_1 \sqcap \cdots \sqcap A_n \sqsubseteq B \in \mathcal{O}$, and $B \notin S(X)$ then $S(X) := S(X) \cup {B}$</td>
</tr>
<tr>
<td>R2</td>
<td>If $A \in S(X)$, $A \sqsubseteq \exists r . B \in \mathcal{O}$, and $(X, B) \notin R(r)$ then $R(r) := R(r) \cup {(X, B)}$</td>
</tr>
<tr>
<td>R3</td>
<td>If $(X, Y) \in R(r)$, $A \in S(Y)$, $\exists r . A \sqsubseteq B \in \mathcal{O}$, and $B \notin S(X)$ then $S(X) := S(X) \cup {B}$</td>
</tr>
<tr>
<td>R4</td>
<td>If $(X, Y) \in R(r)$, $r \sqsubseteq s \in \mathcal{O}$, and $(X, Y) \notin R(s)$ then $R(s) := R(s) \cup {(X, Y)}$</td>
</tr>
<tr>
<td>R5</td>
<td>If $(X, Y) \in R(r)$, $(Y, Z) \in R(s)$, $r \circ s \sqsubseteq t \in \mathcal{O}$, and $(X, Z) \notin R(t)$ then $R(t) := R(t) \cup {(X, Z)}$</td>
</tr>
</tbody>
</table>
Classification based on Closure

In terms of closure from relational databases [?]
- \(S(A) \) is the *closure* of \(A \) under \(T \)
- classifying \(T \) is computing the closure of every concept name

In relational databases
- *functional dependencies* (FD) specify constraints on data
- relation \(r \) satisfies the FD \(X \rightarrow Y \) if the tuples with equal \(X \)-values also have equal \(Y \)-values
- closure of \(X \subseteq R \) under the FDs \(F \) is \(X^+ \) s.t:
 - for \(A \rightarrow B \in F \) if \(A \subseteq X^+ \), then \(B \subseteq X^+ \)
 - \(X^+ \) is minimal

\((r \text{ a relation, } X, Y \subseteq R \text{ a set of attributes})\)
The Linear Closure Algorithm [Beeri & Bernstein, 1979]

- **input**: attribute set X, set of FDs \mathcal{F}
- **output**: closure of X under \mathcal{F}

Initialization:
- a counter for each FD, initially $\text{count}[W \rightarrow X] := |W|$
- an index for each attribute: $\text{index}[A] := \{ W \rightarrow Z \mid A \in W \}$
- queue of attributes to be processed, initially $q := X$
- closure, initially $c := X$

Computation:
- pop an attribute A from q
- traverse $\text{index}[A]$, decrement the counters of those FDs
- if $\text{count}[W \rightarrow Z] == 0$ then $q := q \cup (Z \setminus c)$ and $c := c \cup Z$
- repeat until $q == \emptyset$
\(\mathcal{EL}^+ \) Classification based on LinClosure

- make use of the idea with counters
- avoid subset tests when checking whether an axiom applies

```
procedure process(A, X)
begin
    if \( X = B_1, \ldots, B_n \rightarrow B \) and \( B \notin S(A) \) then
        if \( \{B_1, \ldots, B_n\} \subseteq S(A) \) then
            (P1) \( S(A) := S(A) \cup \{B\} \);
            (Q1) \( \text{queue}(A) := \text{queue}(A) \cup \hat{O}(B) \);
        endif
    endif
end
```

- avoid in the worst-case an \(n \) step
Classification based on LinClosure

- slightly modified normal form
- all GCIs of the form:
 - $C_1 \sqcap \ldots \sqcap C_n \sqsubseteq D_1 \sqcap \ldots \sqcap D_n$ where C_i, D_i concept name, or of the form $\exists r.A$.
- “stripped down” version of the original normalization rules
- the linear upper bound on the size of the normalized TBox still holds
- the algorithm computes closure of every $A \in CN_{\mathcal{T}}$ under \mathcal{T}
\(\mathcal{EL}^+ \) Classification based on LinClosure

Initialization
- counter per concept name per GCI, \(\text{count}[A][\mathbf{\sqcap} C_i \sqsubseteq \mathbf{\sqcap} D_i] := |\mathbf{\sqcap} C_i| \)
- index for each concept name or existential restriction
 \(\text{index}[C] := \{\mathbf{\sqcap} C_i \sqsubseteq \mathbf{\sqcap} D_i \mid C \text{ occurs in } \mathbf{\sqcap} C_i\} \)
- queue of concepts to be processed for each \(A \in \text{CN}_T \), \(q(A) := \{A, \top\} \)
- subsumer list for each \(A \in \text{CN}_T \), \(S(A) := \{A, \top\} \)

Computation
- fetch a concept \(C \) from \(q(A) \)
- if \(C \) concept name \(\text{process} - \text{name}(C) \), else \(\text{process} - \text{existential}(C) \)
- traverse \(\text{index}[C] \), decrement the counters of those GCIs
- if \(\text{count}[A][\mathbf{\sqcap} C_i \sqsubseteq \mathbf{\sqcap} D_i] == 0 \), extend \(q(A) \) and \(S(A) \) with new concepts in \(\mathbf{\sqcap} D_i \)
- repeat until all queues are empty
\(\mathcal{EL}^+ \) Classification based on LinClosure

Initialization
- counter per concept name per GCI, \(\text{count}[A][\bigcap C_i \sqsubseteq \bigcap D_i] := |\bigcap C_i| \)
- index for each concept name or existential restriction
 \(\text{index}[C] := \{\bigcap C_i \sqsubseteq \bigcap D_i \mid C \text{ occurs in } \bigcap C_i\} \)
- queue of concepts to be processed for each \(A \in \text{CN}_T \), \(q(A) := \{A, \top\} \)
- subsumer list for each \(A \in \text{CN}_T \), \(S(A) := \{A, \top\} \)

Computation
- fetch a concept \(C \) from \(q(A) \)
 - if \(C \) concept name \(\text{process - name}(C) \), else \(\text{process - existential}(C) \)
 - traverse \(\text{index}[C] \), decrement the counters of those GCIs
 - if \(\text{count}[A][\bigcap C_i \sqsubseteq \bigcap D_i] == 0 \), extend \(q(A) \) and \(S(A) \) with new concepts in \(\bigcap D_i \)
 - repeat until all queues are empty
\(\mathcal{EL}^+ \) Classification based on LinClosure

Initialization

- counter per concept name per GCI, \(\text{count}[A][\sqcap C_i \sqsubseteq \sqcap D_i] := |\sqcap C_i| \)
- index for each concept name or existential restriction
 \(\text{index}[C] := \{\sqcap C_i \sqsubseteq \sqcap D_i \mid C \text{ occurs in } \sqcap C_i\} \)
- queue of concepts to be processed for each \(A \in CN_T \), \(q(A) := \{A, \top\} \)
- subsumer list for each \(A \in CN_T \), \(S(A) := \{A, \top\} \)

Computation

- fetch a concept \(C \) from \(q(A) \)
- if \(C \) concept name \(\text{process} \) \(\text{name}(C) \), else \(\text{process} \) \(\text{existential}(C) \)
- traverse \(\text{index}[C] \), decrement the counters of those GCIs
- if \(\text{count}[A][\sqcap C_i \sqsubseteq \sqcap D_i] = 0 \), extend \(q(A) \) and \(S(A) \) with new concepts in \(\sqcap D_i \)
- repeat until all queues are empty
\textbf{\(\mathcal{EL}^+\) Classification based on LinClosure}

\textbf{Initialization}

- counter per concept name per GCI, \(\text{count}[A][\sqcap C_i \sqsubseteq \sqcap D_i] := |\sqcap C_i|\)
- index for each concept name or existential restriction
 \(\text{index}[C] := \{\sqcap C_i \sqsubseteq \sqcap D_i \mid \text{C occurs in } \sqcap C_i\}\)
- queue of concepts to be processed for each \(A \in \text{CN}_T\), \(q(A) := \{A, \top\}\)
- subsumer list for each \(A \in \text{CN}_T\), \(S(A) := \{A, \top\}\)

\textbf{Computation}

- fetch a concept \(C\) from \(q(A)\)
- if \(C\) concept name \(\text{process} – \text{name}(C)\), else \(\text{process} – \text{existential}(C)\)
- traverse \(\text{index}[C]\), decrement the counters of those GCIs
- if \(\text{count}[A][\sqcap C_i \sqsubseteq \sqcap D_i] = 0\), extend \(q(A)\) and \(S(A)\) with new concepts in \(\sqcap D_i\)
- repeat until all queues are empty
\textbf{\(\mathcal{EL}^+ \) Classification based on LinClosure}

\textbf{Initialization}

- counter per concept name per GCI, \(\text{count}[A][\sqcap C_i \sqsubseteq \sqcap D_i] := |\sqcap C_i| \)
- index for each concept name or existential restriction
 \(\text{index}[C] := \{\sqcap C_i \sqsubseteq \sqcap D_i \mid C \text{ occurs in } \sqcap C_i\} \)
- queue of concepts to be processed for each \(A \in \text{CN}_T \), \(q(A) := \{A, \top\} \)
- subsumer list for each \(A \in \text{CN}_T \), \(S(A) := \{A, \top\} \)

\textbf{Computation}

- fetch a concept \(C \) from \(q(A) \)
- if \(C \) concept name \(\text{process} \text{ -- name}(C) \), else \(\text{process} \text{ -- existential}(C) \)
- traverse \(\text{index}[C] \), decrement the counters of those GCIs
- if \(\text{count}[A][\sqcap C_i \sqsubseteq \sqcap D_i] = 0 \), extend \(q(A) \) and \(S(A) \) with \emph{new} concepts in \(\sqcap D_i \)
- repeat until all queues are empty
\(\mathcal{EL}^+ \) Classification based on LinClosure

Initialization

- counter per concept name per GCI, \(\text{count}[A][\sqcap C_i \sqsubseteq \sqcap D_i] := |\sqcap C_i| \)
- index for each concept name or existential restriction
 \(\text{index}[C] := \{\sqcap C_i \sqsubseteq \sqcap D_i \mid C \text{ occurs in } \sqcap C_i\} \)
- queue of concepts to be processed for each \(A \in \text{CN}_T \), \(q(A) := \{A, \top\} \)
- subsumer list for each \(A \in \text{CN}_T \), \(S(A) := \{A, \top\} \)

Computation

- fetch a concept \(C \) from \(q(A) \)
- if \(C \) concept name process \(\text{name}(C) \), else process \(\text{existential}(C) \)
- traverse \(\text{index}[C] \), decrement the counters of those GCIs
- if \(\text{count}[A][\sqcap C_i \sqsubseteq \sqcap D_i] = 0 \), extend \(q(A) \) and \(S(A) \) with new concepts in \(\sqcap D_i \)
- repeat until all queues are empty
References

In Proceedings of the Methods for Modalities Workshop (M4M-05).

ACM Transactions on Database Systems 4, 30–59.