K₆-Minors in triangulations and complete quadrangulations

Raiji Mukae and Atsuhiro Nakamoto

Department of mathematics
Faculty of Education and Human Sciences
Yokohama National University
79-2 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

Abstract

In this paper, we shall prove that a projective-planar (resp., toroidal) triangulation G has K_6 as a minor if and only if G has no quadrangulation isomorphic to K_4 (resp., K_5) as a subgraph. As an application of the theorems, we can prove that Hadwiger’s conjecture is true for projective-planar and toroidal triangulations.

Keywords: triangulation, minor, quadrangulation, complete graph, torus, projective plane

1 Introduction

A triangulation on a closed surface is a simple graph embedded in the surface so that each face is triangular. A quadrangulation on a surface is a simple graph embedded in the surface with each face quadrilateral. An H-quadrangulation is a quadrangulation isomorphic to H as a graph. For a graph G on a surface and a vertex v, the link of v is the boundary closed walk of the union of all faces incident to v in G. Clearly, the link of each vertex in a triangulation must be a cycle. For a graph G, let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. A k-cycle means a cycle of length exactly k. For a graph G and $S \subset V(G)$, let $[S]$ denote the subgraph of G induced by S.

When we use symbols with subscripts, we take the subscripts with suitable modulus.

Contraction of an edge e (or contracting e) in a graph G on a surface as a local transformation in G removing e and identifying the endpoints of e. (When we apply a contraction of an edge in a triangulation, we have to replace two pairs of multiple edges by two single edges respectively after the contraction.) The inverse operation of a contraction of e is called a vertex-splitting of $[e]$, where $[e]$ is the vertex obtained from e by its contraction. A graph H is called a minor of a graph G if H can be obtained from G by a series of contractions and deletions of edges. We say that G has an H-minor if G has H as a minor.
In this paper, we consider the following problem: For a given triangulation G on a surface F^2, which complete graph K_n is contained in G as a minor?

Obviously, every triangulation G on any surface has a K_4-minor. (Observe that each vertex of G has degree at least 3. The graph consisting of a vertex and its link includes a subdivision of K_4.) For K_5-minors in graphs on surfaces, the following is well-known:

THEOREM 1 (Kuratowski-Wagner [12]) Every planar graph has no K_5 as a minor.

Though no triangulation on the sphere has a K_5-minor by Theorem 1, we can easily prove the following theorem, whose proof is put in the next section.

PROPOSITION 2 Every triangulation on any nonspherical surface has K_5 as a minor.

However, it is known that for

$$m = \left\lfloor \frac{7 + \sqrt{49 - 24\epsilon(F^2)}}{2} \right\rfloor$$

(where $\epsilon(F^2)$ is the Euler characteristic of F^2), G has no K_n-minor for any $n > m$, since K_n does not embed in F^2.

In this paper, we shall characterize triangulations on the projective plane and the torus with K_6-minors by the existence of a complete quadrangulation (i.e., a complete graph quadrangulating the surfaces). Our main theorems are the following:

THEOREM 3 Let G be a triangulation on the projective plane. Then G has K_6 as a minor if and only if G has no K_4-quadrangulation as a subgraph.

THEOREM 4 Let G be a triangulation on the torus. Then G has K_6 as a minor if and only if G has no K_5-quadrangulation as a subgraph.

Note that only the projective plane and the torus admit a quadrangulation by K_m with $m \leq 5$, and hence such theorems for K_6-minors do not hold in any other surfaces. Moreover, every nonspherical surface admits a triangulation with no K_6-minor. (Such an example can be constructed from several copies of a toroidal or a projective planar triangulation with no K_6-minor, by the operation in Lemma 9.)

The following is an immediate consequence from Theorems 3 and 4, since any triangulation containing a complete quadrangulation as a subgraph must have a separating 4-cycle.

COROLLARY 5 Every 5-connected triangulation on the projective plane and the torus has K_6 as a minor. ■

Fijavž and Mohar [4] proved that every 5-connected graph G on the projective plane with face-width at least 3 has a K_6-minor. (The *face-width* of G is the minimum number of intersecting points of G and γ, where γ ranges over all simple closed curves not bounding 2-cells on the surface. Hence every triangulation on a nonspherical surface has face-width at least 3.) This result is stronger than Corollary 5 since they do not restrict a graph to be a triangulation, but our proof is much shorter and Theorem 3 characterizes triangulations with K_6-minors.

A *k-coloring* of a graph G is a map $c : V(G) \to \{1, \ldots, k\}$ such that for any $xy \in E(G)$, $c(x) \neq c(y)$. We say that a graph G is *k-colorable* if G admits a k-coloring. The following is a well-known conjecture by Hadwiger:
Hence, every triangulation on any nonspherical surface has a this order and since the choice of any vertex v, we can find an edge $v_i v_{i+1}$ with deg$(v_i) = k \geq 4$. Let $C = v_1 \cdots v_k$ be the link of v. Observe that for any i, a contraction of $v_i v_j$ in G yields multiple edges. Therefore, for each i, there is an edge $v_i v_j$ for some $j \notin \{i - 1, i, i + 1\}$. Among all such pairs of $\{i, j\}$, choose i, j so that $|j - i|$ is minimum, where we may suppose that $1 \leq i \leq j \leq k$. Now consider a contraction of an edge $v_i v_{i+1}$. Since the contraction of $v_i v_{i+1}$ must yield multiple edges, we can find an edge $v_{i+1} v_{j'}$ with $j' \notin \{i, i + 1, i + 2\}$. By the choice of i, j, we have $j' \notin \{i, i + 1, \ldots, j\}$. (For otherwise, we would have $|j' - (i + 1)| < |j - i|$, contrary to the choice of i, j.) Therefore, since $v_i, v_{i+1}, v_j, v_{j'}$ are distinct four vertices lying on C in this order and since $v_i v_j, v_{i+1} v_{j'} \in E(G)$, we can find a subdivision of K_5 in $\{(v) \cup V(C)\}$. Hence, every triangulation on any nonspherical surface has a K_5-minor.

The above is an elementary proof of Proposition 2 using a property of irreducible triangulations, but some earlier results are known to imply the existence of K_5-minors in a wider class of graphs than triangulations on nonspherical surfaces: Wagner’s decomposition theorem [12] implies that every graph on n vertices having at least $3n - 5$ edges contains a K_5-minor, see Corollary 7.3.5 in [2]. (A more recent result of Mader [8] states that even a subdivision of K_5 exists in such a graph.) By Euler formula, every triangulation on any nonspherical surface with n vertices has at least $3n - 5$ edges.

It was proved in [1] that the projective plane admits precisely two irreducible triangulations, denoted by $P1$ and $P2$, shown in Figure 1. Note that $P1$ is isomorphic to K_6 as a graph, and that $P2$ has a K_4-quadrangulation as a subgraph. Moreover, the torus admits precisely 21 irreducible triangulations, denoted by $T1, \ldots, T21$ [6]. The complete lists of the irreducible triangulations on the sphere [10] and the Klein bottle [7, 11] have also been determined.

Lemma 7 Each of $T1, \ldots, T20$ has K_6 as a minor, and $T21$ has a K_4-quadrangulation as a subgraph.
Proof. We have checked that T_1, T_5, T_{12}, T_{19} include K_6 as a subgraph, and $T_2, T_3, T_4, T_6, T_7, T_8, T_9, T_{10}, T_{11}, T_{13}, T_{14}, T_{15}, T_{16}, T_{17}, T_{18}, T_{20}$ have K_6 as a minor. The details are added in Appendix. On the other hand, T_{21} has a K_5-quadrangulation, as shown in Figure 2.

3 Lemmas

Let G be a graph and let A, B be disjoint subgraphs of G. We say that A and B are adjacent if $ab \in E(G)$ for some $a \in V(A)$ and $b \in V(B)$. The following is obvious from the definition of a minor.

Lemma 8 A graph G has a K_n-minor if and only if G can be decomposed into n disjoint connected subgraphs A_1, \ldots, A_n so that for any distinct i, j, A_i and A_j are adjacent.

Lemma 9 Let $m \leq 4$. For $i = 1, 2$, let H_i be a graph which includes K_m with m vertices v^i_1, \ldots, v^i_m as a subgraph. Let G be the graph obtained from H_1 and H_2 by identifying v^1_j and v^2_j for $j = 1, \ldots, m$. If each of H_1 and H_2 has no K_6-minor, then neither does G.

Proof. Suppose that G contains a K_6-minor as well as a complete separator S with $|S| \leq 4$, i.e., $S \subset V(G)$ such that $G - S$ is disconnected and that $[S]$ is complete. By Lemma 8, G
can be decomposed into six pairwise adjacent disjoint connected subgraphs. We call each of the connected graphs a bag of the K_6-minor.

Since $|S| \leq 4$, at most four bags of the K_6-minor intersect S. (Such a bag is called an S-bag.) Since any two of the remaining (at least two) bags must be adjacent in G, all of such bags are contained in the same component T of $G - S$, where a bag contained in T is called a T-bag. Let H_1 be the subgraph of G induced by $S \cup \partial(T)$.

We shall prove that H_1 has six pairwise adjacent bags. Note that an S-bag in G might become smaller by the removal of all vertices of H, since any planar graph has no K_6-minor. Hence we regard it as an S-bag in H_1. Therefore, all of S-bags are pairwise adjacent in H_1 since S is complete. Moreover, any two T-bags are adjacent in T and any T-bag is adjacent to all S-bags in H_1, since G has a K_6-minor. Therefore, the proof completes. \[\Box\]

A plane triangulation G means a 2-connected plane graph with each inner face triangular, where the outer cycle might not be triangular. Let ∂G denote the outer cycle of G, and let $\bar{G} = G - V(\partial G)$. We use these notations throughout this paper.

Let us prove the necessity of Theorems 3 and 4, using Lemma 9.

Proposition 10 If a triangulation G has a K_m-quadrangulation H_0 with $m \in \{4, 5\}$ as a subgraph, then G has no K_6-minor.

Proof. Let f_1, \ldots, f_k be all quadrilateral faces of H_0. For $i = 1, \ldots, k$, let H_i denote the subgraph of G induced by the vertices contained in the interior and the boundary of f_i. Then each H_i is a simple graph obtained from a plane triangulation with outer 4-cycle $f_i = x_1x_2x_3x_4$ by adding two edges x_1x_3 and x_2x_4. Observe that H_0 has no K_6-minor since H_0 is a complete graph with at most five vertices. Moreover, for $i = 1, \ldots, k$, H_i has no K_6-minor since H_i with one edge, say x_1x_3, removed is a plane triangulation and since any planar graph has no K_5-minor by Theorem 1. Hence, by Lemma 9, $H_0 \cup H_1$ has no K_6-minor, since $[V(H_0) \cap V(H_1)] = K_4$. Similarly, $(H_0 \cup H_1) \cup H_2$ has no K_6-minor. Repeating this, we conclude that $(H_0 \cup \cdots \cup H_{k-1}) \cup H_k = G$ has no K_6-minor. \[\Box\]

Lemma 11 Let G be a plane triangulation whose outer cycle C is a 4-cycle. A 4-coloring of C using precisely four distinct colors extends to a 5-coloring of G.

Proof. We prove that G has a 5-coloring such that the four vertices of C are colored by four distinct colors. Let $C = v_1v_2v_3v_4$. By the planarity of G, we have $v_1v_3 \notin E(G)$ or $v_2v_4 \notin E(G)$, say the former. Let $G' = G \cup \{v_1v_3\}$. Since G' is planar, G' has a 4-coloring c such that $c(v_1), c(v_2)$ and $c(v_3)$ are all distinct. If $c(v_2) \neq c(v_4)$, then c is a required 5-coloring. Otherwise, color v_4 by a fifth color. Then, we can get a required 5-coloring. \[\Box\]

Let G be a plane triangulation. For distinct $x, y \in V(\partial G)$, a path P in G is called an internal (x, y)-path if $V(P) \cap V(\partial G) = \{x, y\}$ and $E(P) \cap E(\partial G) = \emptyset$. In particular, if an internal (x, y)-path has length exactly one, then it is called a diagonal of G.

Lemma 12 Let G be a plane triangulation with outer cycle C. Then, the following holds:

(i) If C has no diagonal, then $\bar{G} = G - V(C)$ is connected or empty. Moreover, each vertex on C is incident to \bar{G} if \bar{G} is non-empty.
(ii) Let \(x, y \in V(C) \) with \(xy \notin E(C) \). Then \(G \) has an internal \((x, y)\)-path if and only if there is no diagonal \(pq \) for any \(p, q \in V(C) - \{x, y\} \) such that \(x, p, y, q \) appear on \(C \) in this cyclic order.

Proof. (i) We use induction on \(|V(G)|\). If \(|V(G)| = 3\), then the lemma clearly holds since \(G \) is empty. Hence we suppose that \(|V(G)| \geq 4\). Let \(v \in V(C) \) and let \(P = v_1 \cdots v_k \) be the path of \(G \) consisting of the neighbors of \(v \), where \(v_1, v_k \in V(C) \). Since \(G \) has no diagonal, we have \(k \geq 3 \). Let \(G' = G - v \), which is a plane triangulation since \(G \) has no diagonal. Observe that \(G' \) might have diagonals incident to \(v_2, \ldots, v_{k-1} \). Let \(B_1, \ldots, B_m \) be the plane triangulations contained in \(G' \) sharing these diagonals one another, where \(m \geq 1 \). By induction hypothesis, \(B_i \) is connected or empty. Moreover, every \(B_i \) has some \(v_j \) on its boundary for \(j \in \{2, \ldots, k-1\} \), and hence the vertex \(v_j \) is incident to \(B_i \). Therefore, \(G \) is connected, since \(V(G) = \{v_2, \ldots, v_{k-1}\} \cup V(B_1) \cup \cdots \cup V(B_m) \). Clearly, every vertex on \(C \) is incident to \(G \), since \(C \) has no diagonal.

(ii) The sufficiency is obvious and hence we prove the necessity. Let \(G \) be a plane triangulation with \(x, y \in V(C) \). Since \(xy \notin E(C) \), the length of \(C \) is at least 4. If \(xy \) is a diagonal in \(G \), then we are done, and hence we suppose \(xy \notin E(G) \). If \(G \) has no diagonal, then the assertion immediately follows from (i). Even if \(G \) has several diagonals, we can get a plane triangulation \(G' \) with \(x, y \in V(\partial G') \) and no diagonals from \(G \) by cutting along diagonals, since \(G \) has no diagonal separating \(x \) and \(y \). Then apply (i) to \(G' \) to get an internal \((x, y)\)-path, which is a required one in \(G \).\(\blacksquare \)

4 Proof of the theorems

In this section, we shall prove Theorems 3 and 4.

Proof of Theorem 3. Since the necessity is proved by Proposition 10, we prove only the sufficiency. In order to get a contradiction, we assume that there exists a triangulation \(G \) with no \(K_6 \)-minor and no \(K_4 \)-quadrangulation as a subgraph. Since the projective plane admits only two irreducible triangulations \(P1 \) and \(P2 \), \(G \) is contractible to one of them. Since \(P1 \) is isomorphic to \(K_6 \) as a graph and since \(G \) has no \(K_6 \)-minor, \(G \) must be contractible to \(P2 \). Let \(G = G_0, G_1, \ldots, G_m = P2 \) be a sequence of triangulations such that \(G_{i+1} \) is obtained from \(G_i \) by a single contraction of an edge, for \(i = 0, \ldots, m-1 \). Since \(P2 \) has a \(K_4 \)-quadrangulation, there exists \(k \) such that \(G_{k+1} \) has a \(K_4 \)-quadrangulation \(H \) as a subgraph but \(G_k \) does not. Then \(G_k \) includes a subgraph \(H' \) obtained from \(K_4 \) by a single vertex-splitting. Since \(K_4 \) is 3-regular, \(H' \) is isomorphic to a \(K_4 \) with one edge subdivided by a single vertex \(x \), as shown in Figure 3, in which a contraction of \(xy \) transforms \(H' \) into \(H = K_4 \).

Let \(F_1, F_2, F_3 \) be the plane subgraphs of \(G_{k+1} \) contained in the 2-cell regions and the boundary 4-cycles of the three faces of \(H \) as in Figure 3, and let \(F_i' \) be the one of \(G_k \) corresponding to \(F_i \), for \(i = 1, 2, 3 \). Observe that each \(F_i \) has no diagonal. (For otherwise, \(G \) would have a pair of nonhomotopic parallel edges, contrary to the simpleness of \(G \).) Since \(F_1 = F_1' \) and since \(F_1' \) has no diagonal, \(F_1' \) has an internal \((r, x)\)-path, by Lemma 12 (ii). Observe that \(qy \notin E(F_2') \) and \(py \notin E(F_3') \) since each of these forms a pair of nonhomotopic parallel edges in \(G_{k+1} \) after the contraction of \(xy \). Here note that \(F_2' \) and \(F_3' \) might have edges \(py \) and \(qy \), respectively, but both of them do not appear simultaneously,
since G_k has no K_4-quadrangulation as a subgraph. Hence, by the symmetry, we may suppose that $py \notin E(F'_2)$. Observe that F'_2 has no diagonal since G has no pair of nonhomotopic parallel edges and no K_4-quadrangulation. Then, by Lemma 12 (i), we can contract F'_2 into a single vertex adjacent to all vertices of $\partial F'_2$. On the other hand, F'_3 can have only a diagonal qy. Then, by Lemma 12 (ii), we first take an internal (p, y)-path P and second take an internal (q, y)-path P' in F'_3 so that P' and P share as many vertices as possible, and then we suppose P and P' share a path between y and z, where possibly $y = z$. Therefore, contracting each edge the path, we can get a subdivision of K_6 in G_k, contrary to the choice of G_k. ■

![Figure 3: H, H' and a K_6-minor of G](image)

Proof of Theorem 4. By Proposition 10, we prove only the sufficiency. For a contradiction, we assume that there exists a triangulation G with no K_6-minor and no K_5-quadrangulation as a subgraph. By Lemma 7, G must be contractible to $T21$. Let $G = G_0, G_1, \ldots, G_m = T21$ be a sequence of toroidal triangulations such that G_{i+1} is obtained from G_i by contracting a single edge, for $i = 0, \ldots, m - 1$. Since $T21$ has a K_5-quadrangulation, there exists k such that G_{k+1} has a K_5-quadrangulation H as a subgraph but G_k does not. Then G_k has a subgraph H' obtained from H by a single vertex-splitting. In particular, let x and y be the vertices of H' obtained from a vertex of H, denoted by $[xy]$, by a single vertex-splitting. There are two possibilities:

(i) $\deg_{H'}(x) = 2$ and $\deg_{H'}(y) = 4$, and

(ii) $\deg_{H'}(x) = \deg_{H'}(y) = 3$,

which are shown in the left of Figures 4 and 5, respectively. Let F_1, F_2, F_3, F_4 be the plane subgraphs of G_{k+1} contained in the 2-cell regions and the boundaries of the four faces of H incident to $[xy]$, as in the left of Figures 4 and 5, and let F'_i be the one of G_k corresponding to F_i, for $i = 1, 2, 3, 4$.

(i) Observe that each $\partial F'_i$ has no diagonal since G_{k+1} is simple. Since $F_3 = F'_3$, F'_3 has an internal (s, y)-path P_1, by Lemma 12 (i). Observe that $rx \notin E(F'_1)$ and $px \notin E(F'_2)$ since each of these forms a pair of nonhomotopic parallel edges in G_{k+1} after the contraction of xy. Note that s and y are adjacent in neither F'_1 nor F'_2 since G_k has no K_5-quadrangulation as a subgraph. Moreover, since G is simple, F'_1 and F'_2 can have only diagonals px and qx, respectively. Similarly to the projective-planar case, using Lemma 12 (ii), we can take an internal (r, x)-path P_2 in F'_1. Then take an internal (p, x)-path P_3.
in F'_2, and next an internal (q, x)-path P_4 in F'_2 so that P_3 and P_4 share as many vertices as possible (and then we suppose they share a path between x and z, where possibly $y = z$). Then $H' \cup P_1 \cup P_2 \cup P_3 \cup P_4$ has a K_6-minor in G_k, contrary to the choice of G_k. See the right of Figure 4.

(ii) We may suppose that $sy, px \in E(F'_1)$ and $rx, qy \notin E(F'_3)$, for otherwise, the case has already dealt in (i). Moreover, we also have $rx \notin E(F'_1)$ and $sy \notin E(F'_3)$ (for otherwise, then G_{k+1} would have a pair of nonhomotopic parallel edges). Consequently, each region F'_i cannot have any diagonal, and hence, by Lemma 12 (ii), we can take required paths freely, as in the right of Figure 5, and get a K_6-minor in G_k, a contradiction. \hfill \blacksquare

The following proposition asserts that Hadwiger’s conjecture is true for triangulations on the projective plane and the torus.

Proposition 13 Let G be a triangulation on the projective plane and the torus. If G has no K_k as a minor, then G is $(k - 1)$-colorable.

Proof. As described in the introduction, every triangulation on a nonspherical surface has a K_m-minor for all $m \leq 5$, and furthermore, every projective-planar (resp., toroidal) triangulation has no K_7-minor (resp., K_8-minor). On the other hand, every projective-planar (resp., toroidal) triangulation is known to be 6-colorable (resp., 7-colorable).

By Theorem 3, if a triangulation G on the projective plane has no K_6-minor, then G has a K_4-quadrangulation H as a subgraph. By Lemma 11, a 4-coloring of H extends to a 5-coloring of G, and hence G is 5-colorable.
Now let G be a triangulation on the torus. If G has no K_6-minor, then G has a K_5-quadrangulation H as a subgraph, by Theorem 4. Similar to the above, we can conclude that G is 5-colorable. Moreover, it is proved in [3] that if G is not 6-colorable, then G has K_7 as a subgraph. Hence, if G has no K_7-minor, then G is 6-colorable. ■

5 Appendix

Figures 6 shows a subgraph isomorphic to K_6 in T_1, T_5, T_{12} and T_{19}, and Figures 7 shows K_6-minors in all others, except T_{21}. In each of the figures, vertices surrounded by a single polygon corresponds to a single vertex of K_6 after the contractions of them.

Figure 6: K_6-subgraphs in irreducible triangulations on the torus

References

Figure 7: K_6-minors in irreducible triangulations on the torus