PRO: a model for Parallel Resource-Optimal computation

Assefaw Hadish Gebremedhin Isabelle Guérin Lassous
Jens Gustedt Jan Arne Telle

No 4319
Novembre 2001

THÈME 1
PRO: a model for Parallel Resource-Optimal computation

Assefaw Hadish Gebremedhin* Isabelle Guérin Lassous†
Jens Gustedt‡ Jan Arne Telle§

Thème 1 — Réseaux et systèmes
Projet Résédas

Rapport de recherche 4319 — Novembre 2001 — 11 pages

Abstract: We present a new parallel computational model that enables the design of resource-optimal scalable parallel algorithms and simplifies their analysis. The model rests on the novel idea of incorporating relative optimality as an integral part of the model and measuring the quality of a parallel algorithm in terms of granularity.

Key-words: Parallel computers, Parallel models, Parallel algorithms, Complexity analysis

* Univ. of Bergen, Norway. Email: assefaw@ii.uib.no
† LIP & INRIA Rhone-Alpes, France. Email: Isabelle.Guerin-Lassous@inria.fr
‡ INRIA Lorraine / LORIA, France. Email: Jens.Gustedt@loria.fr
§ Univ. of Bergen, Norway. Email: telle@ii.uib.no

Unité de recherche INRIA Lorraine
Technopôle de Nancy-Brabois, Campus scientifique,
615 rue de Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY (France)
Téléphone : 03 83 59 30 30 - International : +33 3 83 59 30 30
Télécopie : 03 83 27 83 19 - International : +33 3 83 27 83 19
Antenne de Metz, technopôle de Metz 2000, 4 rue Marconi, 55070 METZ
Téléphone : 03 87 20 35 00 - International : +33 3 87 20 35 00
Télécopie : 03 87 76 39 77 - International : +33 3 87 76 39 77
PRO : un modèle du calcul Parallèle, Optimal dans l’utilisation des Ressources

Résumé : Nous présentons un nouveau modèle du calcul parallèle qui permet la conception et l’analyse d’algorithmes à la fois extensibles et optimaux en utilisation des ressources. Le modèle est basé sur l’idée nouvelle d’inclure comme partie intégrale du modèle l’optimalité relative et de mesurer la qualité d’un algorithme parallèle en fonction de la granularité.

Mots-clé : Ordinateurs parallèles, modèles parallèles, algorithmes parallèles, analyse de complexité
1 Introduction

One of the challenges in parallel processing is the development of a general purpose and effective model of parallel computation. Unlike the realm of sequential computation, where the Random Access Machine (RAM) has successfully served as a standard computational model, no such single unifying model exists in the field of parallel computation. From an algorithmic point of view, the performance of a sequential algorithm is adequately evaluated using its execution time making the RAM powerful enough for analysis and design. On the other hand, the performance evaluation of a parallel algorithm involves several metrics, the most important of which are speedup, optimality (or efficiency), and scalability. Speedup and optimality are relative in nature as they are expressed with respect to ‘some’ sequential algorithm. The notion of relativity is also relevant from a practical point of view. A parallel algorithm is often not designed from scratch, but rather starting from a sequential algorithm.

We believe that a parallel computational model should incorporate the most important performance evaluation metrics of parallel algorithms as the RAM does for sequential algorithms. In light of this, the objective of the current work is to develop a model that simplifies the design and analysis of resource-optimal scalable parallel algorithms.

In an interesting survey paper [21], Maggs et al. suggest that an ideal parallel computation model be designed within “the philosophy of simplicity and descriptivity balanced with prescriptivity”. The Parallel Resource-Optimal (PRO) computational model proposed here is developed within this spirit. The key features of the PRO model that distinguish it from existing parallel computation models are relativity, resource-optimality, and a new quality measure in terms of granularity.

Relativity pertains to the fact that the design and analysis of a parallel algorithm in PRO is done relative to the time and space complexity of a specific sequential algorithm. Consequently, the parameters involved in the analysis of a PRO-algorithm are the number of processors \(p \), the input size \(n \), and the time and space complexity of the reference sequential algorithm \(A \).

A PRO-algorithm is required to be both time- and space-optimal (hence resource-optimal). A parallel algorithm is said to be time- (or work-) optimal if the overall computational and communication cost involved in the algorithm is proportional to the time complexity of the sequential algorithm used as a reference. Similarly, it is said to be space-optimal if the overall memory space used by the algorithm is of the same order as the memory usage of the underlying sequential version. As a consequence of its optimality, a PRO-algorithm always yields linear speedup relative to the reference sequential algorithm.

The quality of a PRO-algorithm is measured by the range of values \(p \) can assume while linear speedup is maintained. This range is captured by an attribute of the model called the granularity function \(\text{Grain}(n) \). In other words, a PRO-algorithm is required to be fully scalable for all values of \(p \) such that \(p = O(\text{Grain}(n)) \).

The granularity function \(\text{Grain}(n) \) determines the quality of one PRO-algorithm over another relative to the same sequential time and space complexity. The higher the function value the better the algorithm. Note that since optimality (consequently linear speedup) is ‘hard-wired’ into the model, the runtime cannot be a quality measure for a PRO algorithm. However, in a sense, the time and space complexity of the reference sequential algorithm \(A \) can also be seen as a quality measure of the PRO-algorithm.

The rest of the paper is organized as follows. In Section 2 we give an overview of existing parallel computation models and highlight their limitations. In Section 3 the PRO model is presented in detail and in Section 4 it is compared with a selection of existing parallel models. In Section 5 we illustrate how the model is used in design and analysis using the matrix multiplication problem as an example. In Section 6 we give a PRO-algorithm for one-to-all broadcast, as an example of a primitive communication routine found in a potential PRO library. Finally, we conclude the paper in Section 7 with some remarks.

2 Existing models and their limitations

There exists a plethora of parallel computation models in the literature. On the theoretical end, we find the Parallel Random Access Machine (PRAM) model [8, 17] which in its simplest form posits a set of \(p \) processors,
with global shared memory, executing the same program in lockstep. In this model, every processor can access any memory location at unit cost of time regardless of the memory location. This assumption is in obvious disagreement with the reality of practical parallel computers.

However, despite its serious limitation of being an ‘idealized’ model of parallel computation, the standard PRAM model still serves as a theoretical framework for investigating the maximum possible computational parallelism in a given task. Specifically, on this model, the \(NC \) versus \(P \)-complete dichotomy [14] is used to reflect the ease/hardness of finding a parallel algorithm for a problem. Recall that \(NC \) denotes the class of problems which have PRAM-algorithms with runtime polylogarithmic in \(n \) using a polynomial in \(n \) number of processors, where \(n \) is the input size. A problem is said to be \(P \)-complete if an \(NC \)-algorithm for it would imply that all polynomial time sequential problems have \(NC \)-algorithms. Since the problem of whether or not \(P = NC \) is a long time open problem, solving such a problem in \(NC \) would be a major breakthrough.

The \(NC \) versus \(P \)-complete dichotomy has its own practical limitations. First, \(P \)-completeness does not depict a full picture of non-parallelizability since the runtime requirement for an \(NC \) parallel algorithm is so stringent that the classification is confined to the case where up to polynomial number of processors in the input size is available (fine-grained setting). For example, there are \(P \)-complete problems for which less ambitious, but still satisfactory, runtime can be obtained by parallelization in PRAM [23]. In a fine-grained setting, since the number of processors \(p \) is a function of the input size \(n \), it is customary to express speedup as a function of \(n \). Thus the speedup obtained using an \(NC \)-algorithm is sometimes referred to as exponential. In a coarse-grained setting, \(i.e., \) the case where \(n \) and \(p \) are orders of magnitude apart, speedup is expressed as a function of only \(p \) and some recent results [4, 7, 9, 15] show that this approach is practically relevant. Second, an \(NC \)-algorithm is not necessarily work-optimal, and thus not resource-optimal considering runtime and memory space as resources that one wants to use efficiently. Third, even if we restrict ourselves to work-optimal \(NC \)-algorithms and apply Brent’s scheduling principle, which says an algorithm in theory can be simulated on a machine with fewer processors by only a constant factor more work, implementations of PRAM algorithms often do not reflect this optimality in practice [6]. This is mainly because the PRAM model does not account for non-local memory access (communication), and a Brent-type simulation relies heavily on cheap communication.

To overcome the defects of the PRAM related to its failure of capturing real machine characteristics, the advocates of shared memory models propose several modifications to the standard PRAM model. In particular, they enhance the standard PRAM model by taking practical machine features such as memory access, synchronization, latency and bandwidth issues into account. Pointers to PRAM family of models can be found in [21].

Critics of shared memory models argue that the PRAM family of models fail to capture the nature of existing parallel computers with distributed memory architectures. Examples of distributed memory computational models suggested as alternatives include the Postal Model [2] and the Block Distributed Memory (BDM) model [18]. Other categories of parallel models such as low-level, hierarchical memory, and network models are briefly reviewed in [21].

A more recent category of parallel models is that of ‘bridging’ models, a notion popularized by Valiant with his introduction of the Bulk Synchronous Parallel (BSP) model [22]. The BSP model is a distributed memory coarse-grained model in which parallel computation proceeds as a sequence of barrier synchronized supersteps where local computation and communication are distinct rather than intermingled phases. Culler et al. [5] extended the BSP model by allowing asynchronous execution and better accounting for communication overhead. Their model is coined LogP, an acronym for the four parameters involved. A common feature of the BSP, LogP, and other related models is their lack of simplicity: each model involves relatively many parameters making analysis and design of algorithms cumbersome.

The Coarse Grained Multicomputer (CGM) model [4, 7] was later proposed in an effort to retain the advantages of BSP while keeping the model simple (fewer parameters). The BSP and its special case CGM have been the primary inspirations for our model. Thus, we believe that many optimal CGM and BSP algorithms can easily be adapted to PRO.

The PRO model attempts to partially address the limitations of existing parallel models highlighted in the foregoing discussion and compromises between theoretical and practical considerations. One of its advantages
from a theoretical point of view is that it is a step forward towards the identification of the class of problems for which ‘good’ parallel algorithms exist in a more realistic (practical) way than the existing NC versus P-complete classification.

The main goal of the PRO model is to enable the development of scalable and resource-optimal parallel algorithms and to simplify their analysis. The model identifies the salient features of a parallel algorithm that make its practical scalability and optimality highly likely. In this regard, it can be considered as a set of ‘guidelines’ for the algorithm designer in the quest for developing scalable and efficient parallel algorithms. Hence, PRO can be seen as a mix of a parallel computational model and a parallel algorithm design scheme which makes it biased towards the software side in its role as a bridging model.

3 The PRO model

The PRO model is an algorithm design and analysis tool used to deliver a practical optimal and scalable parallel algorithm relative to a specific sequential algorithm whenever possible. Let Time(n) and Space(n) denote the time and space complexity of a specific sequential algorithm for a given problem with input size n. The PRO model is defined to have the following attributes.

- The underlying machine is assumed to consist of p processors with \(M = O\left(\frac{\text{Space}(n)}{p}\right) \) private memory each, interconnected by some communication network (or shared memory) that can deliver messages in a point-to-point fashion.

- For any value \(p = O(\text{Grain}(n)) \), a PRO algorithm,
 - consists of \(O\left(\frac{\text{Time}(n)}{p^2}\right) \) supersteps. In each superstep, each processor
 * sends at most one message to every other processor
 * sends and receives at most \(M \) words in total, and pays a unit of time per word sent and received
 * performs local computation, and pays a unit of time per operation
 - has parallel runtime \(\text{Time}(n, p) = O\left(\frac{\text{Time}(n)}{p}\right) \)

Note that the granularity function Grain(n) is a quality measure of a PRO-algorithm.

As discussed in [5] technological factors are forcing parallel systems to converge towards systems formed by a collection of essentially complete computers connected by a robust communication network. The first assumption of the PRO model is consistent with this convergence and maps well on several existing parallel computer architectures. The memory requirement \(M = O\left(\frac{\text{Space}(n)}{p}\right) \) ensures that the space utilized by the underlying sequential algorithm is uniformly distributed among the \(p \) processors. Since we may, without loss of generality, assume that \(\text{Space}(n) = \Omega(n) \), the implication is that the private memory of each processor is enough to store its ‘share’ of the input and any additional space the sequential algorithm might require. When \(\text{Space}(n) = \Theta(n) \), note that the input data must be uniformly distributed on the \(p \) processors. In this case the first attribute of the PRO model is similar to the assumption in the CGM model [7].

As in the BSP model, a PRO-algorithm consists of a sequence of supersteps (or rounds). The time spent in a superstep on each processor is determined by the sum of the time used for communication and local computation. The length of a superstep in the parallel algorithm seen as a whole, denoted by \(\text{Time}(n, p) \), is the maximum over all processors. We can conceptually think as if the supersteps are synchronized by a barrier set at the end of the longest time span across the processors. However, note that in PRO the processors are not in reality required to synchronize at the end of each superstep. The parallel runtime \(\text{Time}(n, p) \) is the sum of the lengths of the supersteps. Notice that the hypothetical barriers result in only a constant factor more time compared with an analysis that does not assume the barriers.

In PRO, since a processor sends at most one message to every other processor in each superstep, each processor is involved in at most \(2(p - 1) \) messages per superstep. Therefore, the requirement \(\text{Steps} = O\left(\frac{\text{Time}(n)}{p}\right) \) on the number of supersteps implies that the overall time paid per processor for communication overhead (such
as message start-up cost) is \(O(\text{Time}(n)/p) \) and hence can be neglected from the analysis since our goal is to achieve an \(O(\text{Time}(n)/p) \) parallel runtime. Notice that latency (communication cost) is accounted for since each processor pays a unit of time per word sent and received.

The condition \(\text{Time}(n, p) = O\left(\frac{\text{Time}(n)}{p}\right) \) requires that a PRO-algorithm be optimal and yield linear speedup relative to the sequential algorithm used as a reference. This requirement ensures the potential practical use of the parallel algorithm.

Observation 1 A PRO algorithm relative to a sequential algorithm with runtime \(O(\text{Time}(n)) \) and space requirement \(O(\text{Space}(n)) \) has maximum granularity \(\text{Grain}(n) = O(\min\{\text{Space}(n), \sqrt{\text{Time}(n)}\}) \). A PRO algorithm that achieves this is said to have optimal grain.

Observation 1 is due to the limit on the memory size of each processor and the bound on the number of supersteps. The limit on the size of the private memory of each processor \((M = O(\frac{\text{Space}(n)}{p})) \) implies \(p = O(\text{Space}(n)) \). The fact that the number of supersteps of a PRO-algorithm should be \(\text{Steps} = O(\text{Time}(n)/p^2) \), gives \(p = O(\sqrt{\frac{\text{Time}(n)}{\text{Steps}}}) \) upon resolving and we clearly have \(\text{Steps} \geq 1 \).

Since a PRO-algorithm yields linear speedup for any \(p = O(\text{Grain}(n)) \), a result like Brent’s scheduling principle is implicit for these values of \(p \). But Observation 1 shows that we cannot start with an arbitrary number of processors and efficiently simulate on a fewer number. So Brent’s scheduling principle does not hold with full generality in the PRO model, which is in accordance with practical observations.

The design of a PRO-algorithm may sometimes involve subroutines for which there does not exist sequential counterparts. Examples of such tasks include communication primitives such as broadcasting, data (re)-distribution routines, and load balancing routines. Such routines are often required in various parallel algorithms. With a slight abuse of notation, we call such parallel routines PRO-algorithms if the overall computation and communication cost is linear in the input size to the routines.

4 Comparison with other models

In this section we compare the PRO model with PRAM, QSM, BSP, LogP, and CGM. Our tabular format for comparison is inspired by a similar presentation in [13], where the Queuing Shared Memory (QSM) model is proposed. The columns of Table 1 are labeled with the names of the selected models in our comparison and some relevant features of a model are listed along the rows.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>synch.</td>
<td>lock-step</td>
<td>bulk-synch.</td>
<td>bulk-synch.</td>
<td>asynch.</td>
<td>asynch.</td>
<td>asynch.</td>
</tr>
<tr>
<td>memory</td>
<td>sh.</td>
<td>sh.</td>
<td>dist.</td>
<td>dist.</td>
<td>priv.</td>
<td>priv.</td>
</tr>
<tr>
<td>commun.</td>
<td>SM</td>
<td>SM</td>
<td>MP</td>
<td>MP</td>
<td>MP/SM</td>
<td>MP/SM</td>
</tr>
<tr>
<td>parameters</td>
<td>n</td>
<td>p, g, n</td>
<td>p, g, l, n</td>
<td>p, g, l, o, n</td>
<td>p, n</td>
<td>p, A, n</td>
</tr>
<tr>
<td>granularity</td>
<td>fine</td>
<td>coarse</td>
<td>fine</td>
<td>coarse</td>
<td>Grain(n)</td>
<td>Grain(n)</td>
</tr>
<tr>
<td>speedup</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>(\Theta(p))</td>
</tr>
<tr>
<td>optimal</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>rel. A</td>
</tr>
<tr>
<td>quality</td>
<td>time</td>
<td>time</td>
<td>time</td>
<td>time</td>
<td>rounds</td>
<td>Grain(n)</td>
</tr>
</tbody>
</table>

Table 1: Comparison of parallel computational models

The synchrony assumption of the model is indicated in the row labeled *synch*. Lock-step indicates that the processors are fully synchronized at each step, without accounting for synchronization. Bulk-synchrony indicates that there can be asynchronous operations between synchronization barriers. The row labeled *memory* shows how the model views the memory of the parallel computer: sh. indicates globally accessible shared memory, dist. stands for distributed memory and priv. is an abstraction for the case where the only assumption is that each processor has access to private (local) memory. In the last variant the whole memory could either be distributed or shared. The row labeled *commun.* shows the type of interprocessor communication assumed by the model. Shared memory (SM) indicates that communication is effected by reading to and writing from

INRIA
a globally accessible shared memory. Message-passing (MP) denotes the situation where processors communicate by explicitly exchanging messages in a point-to-point fashion. The MP abstraction hides the details of how the message is routed through the interprocessor communication network.

The parameters involved in the model are indicated in the row labeled **parameters**. The number of processors is denoted by \(p \), and \(n \) is the input size, \(A \) is the reference sequential algorithm, \(l \) is the communication cost (latency), \(L \) is a single parameter that accounts for the sum of latency \(l \) and the cost for a barrier synchronization, \(g \) is the bandwidth gap, and \(o \) is the overhead associated with sending or receiving a message. Note that the machine characteristics \(l \) and \(o \) are taken into account in PRO, even though they are not explicitly used as parameters. Latency is taken into consideration since the length of a superstep is determined by the sum of the computational and communication cost. Communication overhead is hidden by the PRO-requirement that states \(\text{Steps} = O(\frac{\text{Time}(n)}{p^\alpha}) \).

The row labeled **granularity** indicates whether the model is fine-grained, coarse-grained or a more precise measure is used. We say that a model is coarse-grained if it applies to the case where \(n \gg p \) and call it fine-grained if it relies on using up to polynomial number of processors in the input size. In PRO granularity is exactly the quality measure \(\text{Grain}(n) \), and appears as one of the attributes of the model.

The rows labeled **speedup** and **optimal** indicate the speedup and resource optimality requirements imposed by the model. Whenever these issues are not directly addressed by the model or are not applicable, the word ‘NA’ is used. Note that these requirements are ‘hard-wired’ in the model in the case of PRO. The label ‘rel. A’ means that the algorithm is optimal relative to the time and space complexity of \(A \). We point out that the goal in the design of algorithms using the CGM model \([7, 4]\) is usually stated as that of achieving optimal algorithms, but the model per se does not impose an optimality requirement.

The last row indicates the **quality** measure of an algorithm designed using the different models. For all other models except CGM and PRO, the quality measure is running time. In CGM, the number of supersteps (rounds) is usually presented as a quality measure. In PRO the quality measure is granularity, one of the features that make PRO fundamentally different from all existing parallel computation models.

5 Algorithm example: matrix multiplication

In this section we illustrate how the PRO model is used, by starting from a given sequential algorithm and then designing and analyzing a parallel algorithm relative to it. We use the standard matrix multiplication algorithm with triple nested for-loops as an example.

Consider the problem of computing the product \(C \) of two \(m \times m \) matrices \(A \) and \(B \) (input size \(n = m^2 \)). We want to design a PRO-algorithm relative to the standard sequential matrix multiplication algorithm which has \(\text{Time}(n) = O(n^2) \) and \(\text{Space}(n) = O(n) \).

We assume that the input matrices \(A \) and \(B \) are distributed among the \(p \) processors \(P_0, ..., P_{p-1} \) so that processor \(P_i \) stores rows (respectively columns) \(\frac{m}{p} \cdot (i) + 1 \) to \(\frac{m}{p} \cdot (i+1) \) of \(A \) (respectively \(B \)). The output matrix \(C \) will be row-partitioned among the \(p \) processors in a similar fashion. Notice that with this data distribution each processor can, without communication, compute a block of \(\left(\frac{m}{p} \right)^2 \) of the \(\frac{m^2}{p} \) entries of \(C \) expected to reside on it. In order to compute the next block of \(\left(\frac{m}{p} \right)^2 \) entries, processor \(P_i \) needs the columns of matrix \(B \) that reside on processor \(P_{i+1} \). In each superstep the processors in the PRO algorithm will therefore exchange columns in a round-robin fashion and then each will compute a new block of results. Note that the initial distribution of the rows of matrix \(A \) remains unchanged. We can organize this sequence of computation and communication steps in a manner that meets the requirements of the PRO model as given in Algorithm 1.

Algorithm 1 has \(p \) supersteps (Steps = \(p \)). In each superstep, the time spent in locally computing each of the \(\left(\frac{m}{p} \right)^2 \) entries is \(\Theta(m) \) resulting in local computing time \(\Theta(n^3 / p^2) = \Theta(n^2 / p^2) \) per superstep. Likewise, the total size of data (words) exchanged by each processor in a superstep is \(\Theta(n^2 / p) = \Theta(n / p) \). Thus, the length of a superstep is \(\text{Time}_s(n, p) = \Theta(n^2 / p^2 + n / p) \). For \(p \leq \sqrt{n} \), \(\text{Time}_s(n, p) = \Theta(n^2 / p^2) \). Hence, the overall
Algorithm 1: Matrix multiplication

Input: Two \(m \times m \) matrices \(A \) and \(B \). The rows (columns) of \(A \) (\(B \)) are divided into \(m/p \) contiguous blocks, and stored on processors \(P_0, P_1, \ldots, P_{p-1} \) respectively.

Output: The product matrix \(C \) where the rows are stored in contiguous blocks across the \(p \) processors.

for superstep \(s = 1 \) to \(p \) do
 foreach processor \(P_i \) do
 \(P_i \) computes the local sub-matrix product of its rows and current columns;
 \(P_i \) sends its current block of columns to \(P_{i + 1} \mod p \);
 \(P_i \) receives a new current block of columns from \(P_{i + 1} \mod p \);

parallel runtime of the algorithm is

\[
\text{Time}(n, p) = \sum_{\text{Steps}} \Theta(n^2 / p^2) = \Theta(n^2 / p) = \Theta(\text{Time}(n) / p). \tag{1}
\]

Noting that \(\text{Space}(n) = \Theta(n) \), we see that the memory restriction of the PRO model is respected, i.e., each processor has enough memory size to handle the transactions. In order to be able to neglect communication overhead, the condition on the number of supersteps, which in this case is just \(p \), should be met. In other words, we need \(p = O(\text{Time}(n) / p^2) = O(n^2 / p^2) \), which is true for \(p = O(\sqrt{n}) \). Thus the granularity function of the PRO-algorithm is \(\text{Grain}(n) = \sqrt{n} \).

In summary,

Lemma 1 Multiplication of two \(m \) by \(m \) matrices has a PRO-algorithm with \(\text{Grain}(n) = m \) relative to a sequential algorithm with \(\text{Time}(n) = m^3 \) and \(\text{Space}(n) = m^2 \) (input size \(n = m^2 \)).

From Observation 1, we note that Algorithm 1 does not have the optimal granularity \(\text{Grain}(n) = m\sqrt{m} \). Developing the corresponding optimal grain PRO-algorithm for matrix multiplication is an interesting direction to pursue.

6 Communication primitive example: one-to-all broadcast

A good parallel computation model should have a selection of algorithms for primitive communication tasks available in its algorithm design tool-box. The PRO model is intended to meet this demand, but for lack of space we give only an example.

In this section we illustrate how the PRO model allows optimal one-to-all broadcasting among its processors. Since there is no sequential basis algorithm in this case, we want an algorithm whose overall communication and computation cost is linear in the input and output sizes. More precisely, we consider the situation where the input consists of a vector of size \(m \) on a single processor and the output should be a copy of this vector on each of the \(p \) processors, and we want an algorithm that achieves this in \(O(m) \) time using \(O(m) \) memory on each processor. See Algorithm 2.

Lemma 2 PRO Algorithm 2 implements a one-to-all broadcast of \(m \) memory words in two supersteps using \(O(m) \) time and \(O(m) \) space per processor, for any number of processors \(p \leq m \).

Proof: First, we note that the algorithm correctly broadcasts the desired vector \(A \), while observing the space restriction, in two supersteps. We turn to the timing. In step “divide” processor \(P_0 \) in total sends out the whole vector \(A \) and each of the other processors receives a message of size \(m/p \). In step “provide” processor \(P_i \) in total sends out \(\frac{m-1}{p} m \) words. Processor \(P_j, j \neq 0 \), in total receives \(\frac{m-1}{p} m \) words.
Algorithm 2: One-to-All Broadcast

Input: A vector A of size m on processor P_0

Output: A copy of A on each processor

divide P_0 divides A into p equal sized parts;

P_0 sends the i^{th} part of A to processor P_i, for each $0 < i \leq p$;

for each processor P_i, $i > 0$ do

processor P_i receives the i^{th} part from P_0;

provide

foreach processor P_i do

P_i sends out the i^{th} part to P_j, for each $j \neq i$ and $0 < j \leq p$.

foreach processor P_j, $j \neq 0$ do

P_j receives the i^{th} part from P_i, for each $i \neq j$ and $0 < i \leq p$.

The total time is dominated by the communication which is

$$m + m/p + \frac{p-2}{p}m + \frac{p-1}{p}m = m(p+1+p-2+p-1)/p < 3m$$

for total time $O(m)$ as claimed.

\[\square\]

7 Conclusion

We have introduced a new parallel computation model (called PRO) that enables the development of efficient scalable parallel algorithms and simplifies the complexity analysis of such algorithms.

The distinguishing feature of the PRO model is the novel focus on relativity, resource-optimality, and a new quality measure (granularity). In particular, the model requires a parallel algorithm to be both time- and space-optimal relative to an underlying sequential algorithm. Having optimality as a built-in requirement, the quality of a PRO-algorithm is measured by the maximum number of processors that could be used while the optimality of the algorithm is maintained.

The focus on relativity has theoretical as well as practical justifications. From a theoretical point of view, the performance evaluation metrics of a parallel algorithm includes speedup and optimality, both of which are always expressed relative to some sequential algorithm. Moreover, there is an inherent asymmetry between sequential and parallel computation. A parallel algorithm would always imply a sequential algorithm, whereas the converse is usually not true. Thus, in a sense, it is natural to think of an underlying sequential algorithm whenever one speaks of a parallel algorithm. From a practical point of view, one notes that the development of a parallel algorithm is often built on some known sequential algorithm.

The fact that optimality is incorporated as a requirement in the PRO model enables one to concentrate only on parallel algorithms that are practically useful.

However, the PRO model is not just a collection of some ‘ideal’ features of parallel algorithms, it is also a means to achieve these features. In particular, the attributes of the model capture the salient characteristics of a parallel algorithm that make its practical optimality and scalability highly likely. In this sense, it can also be seen as a parallel algorithm design scheme. Moreover, the simplicity of the model eases analysis.

We believe that the PRO model is a step forward towards the identification of problems for which ‘practically good’ parallel algorithms exist.
References

