Cache-aware Parallel Programming for Manycore Processors

Ashkan Tousimojarad
School of Computing Science
University of Glasgow, Glasgow, UK
a.tousimojarad.1@research.gla.ac.uk

Wim Vanderbauwhede
School of Computing Science
University of Glasgow, Glasgow, UK
wim@dcs.gla.ac.uk

ABSTRACT

With rapidly evolving technology, multicore and manycore processors have emerged as promising architectures to benefit from increasing transistor numbers. The transition towards these parallel architectures makes today an exciting time to investigate challenges in parallel computing. The TILEPro64 is a manycore accelerator, composed of 64 tiles interconnected via multiple 8×8 mesh networks. It contains per-tile caches and supports cache-coherent shared memory by default. In this paper we present a programming technique to take advantages of distributed caching facilities in manycore processors. However, unlike other work in this area, our approach does not use architecture-specific libraries. Instead, we provide the programmer with a novel technique on how to program future Non-Uniform Cache Architecture (NUCA) manycore systems, bearing in mind their caching organisation. We show that our localised programming approach can result in a significant improvement of the parallelisation efficiency (speed-up).

1. INTRODUCTION

Modern processors provide hierarchical caching. To achieve optimal performance, manycore programmers need to know about the target platform caching organisation as much as they need to know about how to parallelise their applications. Designs with larger number of cores tend towards scalable tiled architectures with physically distributed shared caches. The asymmetry in the physical distances between cores results in a design called Non-Uniform Cache Architecture (NUCA) manycore systems, bearing in mind their caching organisation. We show that our localised programming approach can result in a significant improvement of the parallelisation efficiency (speed-up).

In this paper, we present a programming technique to utilise manycores with per-core caches. We validate our approach with a parallel sorting algorithm. Sorting algorithms have attracted a great attention, due to their simple concept but complex optimisation. They are basic blocks of majority of applications, such as databases, data mining applications, and computer graphics. Furthermore, they are memory-bound, which makes them suitable candidates for investigating the effect of memory organisation on performance. Although based on their time complexity, most of them do not scale linearly with the number of threads, they can still be parallelised easily and effectively.

Merge sort is an efficient divide-and-conquer algorithm and its parallel version is a great example of parallel reduction. The average complexity of its serial version is $O(n \log n)$. We use parallel merge sort as our test case to demonstrate a programming approach that can be applied to many other parallel algorithms. We also discuss that the performance of parallel applications on manycores cannot be estimated only based on their time complexity. The memory architecture plays an important role. Moreover, as the number of cores grows, memory contention becomes increasingly significant.

For the purposes of this research, we used the TILEPro64 Tile Processor from Tilera. This manycore defines a globally shared, flat 36-bit physical address space and a 32-bit virtual address space. The global address space allows for instructions and data sharing between processes and threads. There is a large difference between the DRAM access time and the speed of the cores, which makes the cache organisation a crucial part of this architecture. Tilera’s cache organisation – called Dynamic Distributed Cache (DDC) – is flexible and software configurable. Its aim is to provide a hardware-managed, cache-coherent approach to shared memory. DDC allows a page of the shared memory to be homed on a single tile or hashed across a set of tiles. Other tiles can cache this page remotely.

2. THE TILEPRO64

The Tilera TILEPro64 Tile Processor is a manycore accelerator composed of 64 tiles interconnected via multiple 8×8 mesh networks. It provides distributed cache-coherent shared memory by default. It has 16GB of DDR memory, but in order to use the global address space shared among all tiles, addressing is limited to 32-bit, i.e. 4GB.

Each physical memory address in the TILEPro64 is associated with a home tile. Cache coherent view of the memory which is a key requirement in shared memory programming models is served through the home tile. A hardware coherency mechanism is also used to guarantee cache coherence among the tiles. Therefore, it is possible to cache read-write regions of memory in the cache of the tile running the code (local cache). The copy of each cache line can be requested from its home tile. If another tile writes new data to the cache line, the home tile is responsible to invalidate all copies, and other tiles have to refresh the newer version. This behaviour makes DDC a dynamic cache organisation. Caching the data by the home tile itself is called L3 cache, because the home tile can be thought of as a higher level

This work was presented in part at the international symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART2013), Edinburgh, Scotland, June 13-14, 2013.
3. RELATED WORK

Data locality in NUCA designs is discussed in [6]. The authors propose an on-line prediction strategy which decides whether to perform a remote access (as in traditional NUCA designs) or to migrate a thread at the instruction level. In [4], the NUCA characterisation of the TILEPro64 is explored. Based on this characterisation, a home cache aware task scheduling is developed to distribute task data on home caches. Although one of the aims of this work is to provide simple interfaces, still its memory allocation policy is a wrapper around the architecture-specific API, which makes the code dependent to the platform. A similar work to ours on sorting but with different methods and purposes is performed on the TILEPro64 [3]. They have targeted throughput and power efficiency of the radix sort algorithm employing fine-grained control and various optimisation techniques offered by the Tilera Multicore Components (TMC) API. The idea of the conventional recursive parallel merge sort in OpenMP is borrowed from [5].

In our previous work [5], we have shown how this algorithm scales on the TILEPro64 compared to the theoretical model.

4. METHODOLOGY

We introduce our localisation approach for memory-bound array computations which is based upon three building blocks: I) Local homing caching strategy, II) Static thread mapping, III) Home cache localisation. By disabling the hash for home strategy, we guarantee that all types of user memory are locally homed on the task’s current tile. The second step is to statically map each thread to a processing core (tile). We will show that leaving the decision of the thread mapping to the Tile Linux can be costly. The Tile Linux tries to migrate the threads during the execution time, and those migrations are costly not only in terms of cache misses but also because of the resulting delay. The final step is the key in our approach and its job is to localise the home caches. With the local homing strategy, the whole array is homed on the tile on which it has been created. Instead, if each working thread copies its corresponding part of the array into a new dynamic array, then every newly created array will be homed on the same tile as the one its thread is mapped to.

As mentioned above, it is possible to choose a single home cache for a given memory page rather than hash it across a set of tiles (all of the tiles, by default). Although the idea behind the hash for home policy is to decentralise the home cache and to reduce the hot spots, sequential accesses cannot benefit from this fine-grained policy. The reason is that with this policy, the sequential parts of an array are homed on different tiles, and have different access latencies.

A comprehensive discussion is provided in [4]. On the other hand, with the local homing, the array is homed on the core on which its task in running, and obviously the whole traffic on a single L2 cache makes it inefficient. Based on this background, we present our method as a set of simple steps to exploit data locality on each tile:

Algorithm 1 Localisation at a coarse granularity for parallel array computations

1. Divide the input array of size \(n \) to \(m \) parts, where \(m \) is the number of threads.
2. Assign each thread a part of the whole array, by passing pointers.
3. Map each thread to a core.
 "Localisation of the home caches occurs in the next step"
4. Copy each part to a new array of size \(n/m \).
5. Free the dynamically allocated memory as soon as each thread finishes its job.

Therefore, with this method, each dynamically created smaller array will be homed on the tile on which its corresponding thread is running.

For the rest of the paper, we call our new technique the localised approach, and call the conventional way of programming the non-localised approach. Although the first 2 steps of Algorithm 1 are common between both approaches, we have put them altogether to be employed as a programming style in any memory-bound parallel array computation. Two of the three building blocks of the localisation approach are listed in the Algorithm 1 (steps 3 and 4). The other one can be set by the system hypervisor, such that the single-tile homing becomes enabled. The 5th step is used for efficient
Algorithm 2 Localisation of the home caches in the micro-benchmark

```c
... // Each thread gets a part of the input array
// Non-localised Approach:
repetitive_copy(input1, output, size);
// **** OR *****
// Localised Approach:
// Create a local copy of each part
int* input_cpy1 = new int[size];
memcpy(input_cpy1, input1, size*sizeof(int));
repetitive_copy(input_cpy1, output, size);
free(input_cpy1);
...
```

Figure 1: Execution time of the micro-benchmark. Localised vs. Non-localised

memory management.

In order to show how these 5 steps are applied to an array computation program, we have designed a micro-benchmark that creates two arrays: one input and one output. It initialises the input array, and then inside each thread a part of the input array is copied to the corresponding part of the output array. The size of the arrays is 1 million integers. Each thread has a loop that repeats the copying operations, and the number of these repetitions is used for our evaluation. The array is distributed among 63 threads (the maximum numbers of cores available in the TILEPro64). If the number of repetitions is small, the execution time will become so short that the difference cannot be observed.

The first 3 steps of Algorithm 1 will be shown in the next section inside a parallel merge sort program. For the micro-benchmark, we only show how to localise the home caches under the Tile Linux default mapping strategy, along with the hash for home policy. For the localisation approach, we have disabled the hash for home, mapped each thread to one core, and made the changes highlighted in Algorithm 2.

The result of applying our technique to the micro-benchmark is promising (Figure 1). It shows more performance gain as the number of accesses becomes larger.

For the rest of this paper, we use an OpenMP version of a recursive parallel merge sort algorithm as a short program which can apply our method effectively. We have used it as a memory-bound parallel algorithm to investigate the effect of our programming approach on the execution time in a real world example. The corresponding C++ code for the merge sort example is shown in Algorithm 3. Although it is possible to parallelise this algorithm further by parallelising the merge operation, our purpose is not to optimise this particular algorithm.

The method is straightforward and can be generally applied to any parallelisable array computation, where each part of the array is accessed multiple times. An example of the worst situation is the merge sort algorithm itself, where the algorithm is not in-place, and in each level of the reduction tree, a double sized auxiliary array called scratch is required for the merging operation. Since we want to examine the effect of one parameter at a time, we call this issue an intermediate step and explore the effect of it separately in Section 5.2.

As shown in Algorithm 4, only some minor changes are required to apply the localisation approach to the conventional code in order to benefit from the local homing policy.

The most important feature of our approach is that we do not use architecture-specific API. The Tilera platform is an ideal exploration platform because of its fine-grained control over caching and memory, but we do not expose any architecture-specific features to the programmer. We simply advocate a different programming approach. Therefore, both the original and the localised code can be run unmodified on any Linux platform.

5. EXPERIMENTS AND DISCUSSION

We have performed experiments for the different cases listed in Table 1. Although our approach has 3 building blocks, in order to show the effect of each one independently, we move smoothly from the conventional programming approach towards our completely localised technique by changing one parameter at a time (Case 1 to Case 8 in Table 1). However, we call any technique that copies the sub-arrays into dynamically created arrays, a localised technique (Case 5 to Case 8). All cases are examined under memory striping mode, which balances the memory traffic between all of the 4 memory controllers. Once again, the default caching option of the system is to use hash for home for all types of user memory except the stack associated with each task, which is homed locally on the task’s current tile. We denote this as all but stack. Another caching policy which can be used as a Tile Linux boot argument is not to use hash for home by default at all, which is homing the data on the tile that is running the task, and is the desirable option for the localisation approach. We denote it as none [7]. We also explore the effect of 2 mapping techniques: Decision of mapping the threads to the cores can be left to the Tile Linux scheduler or can be made statically as shown in the code (STATIC_MAPPING). Static mapping is performed by pinning each thread based on its thread ID to the core with the same core ID. The efficiency of the method described in Algorithm 1 can be verified by employing these 2 different mapping techniques.

5.1 Evaluation of Speed-up

Based on Figure 2 it is evident that the native GNU/Linux
int counter = -1;
int NUM_CORES = omp_get_num_procs();
int* mergesort_serial(int* input,
int* scratch, int size)
{
 ...
 // Recursive serial merge sort
 ...
 return input;
}

int* merge(int* input1, int size1,
int* input2, int size2, int* scratch)
{
 memcpy(input1,
 scratch, (size1+size2)*sizeof(int));
 return input1;
}

int* mergesort_parallel_omp(int* input,
int* scratch, int size, int threads)
{
 if (threads == 1)
 {
 #pragma omp critical
 {
 counter++;
 // Static mapping in the ordered way
 #ifdef STATIC_MAPPING
 cpu_set_t mask;
 CPU_ZERO(&mask);
 int target=counter%NUM_CORES;
 CPU_SET(target, &mask);
 if (sched_setaffinity(0,
 sizeof(mask), &mask) != 0)
 perror("sched_setaffinity");
 #endif
 }
 int* r = mergesort_serial(input,
 scratch, size);
 return r;
 }
 else if (threads > 1) {
 #pragma omp parallel sections
 {
 #pragma omp section
 {
 mergesort_parallel_omp(input,
 scratch, size/2, threads/2);
 }
 #pragma omp section
 {
 mergesort_parallel_omp(input+size/2,
 scratch+size/2, size-size/2,
 threads-threads/2);
 }
 }
 return merge(input, size/2, input+size/2,
 size-size/2, scratch);
 }
 return (int*)0;
}

int main() {
 omp_set_nested(1);
 omp_set_num_threads(2);
 int* array0 = new int[ARRAY_SZ];
 int* scratch0 = new int[ARRAY_SZ];
 ...
 mergesort_parallel_omp(array0,
 scratch0, ARRAY_SZ, NUM_THREADS);
 free(scratch0);
 ...
 return 0;
}

Algorithm 4 Changes to code to localise the home caches
int* mergesort_serial(int* input,
int* scratch, int size)
{
 // Create local copy of the input array
 int* input_cpy = new int[size];
 memcpy(input_cpy, input, size*sizeof(int));
 ...
 // Return the local copy
 // Free its memory in the merge function
 return input_cpy;
}

int* merge(int* input1, int size1,
int* input2, int size2) {
 // Intermediate Step
 // An extra scratch array is required
 int* ext_scr = new int[size1+size2];
 ...
 // Free the memory used at the previous level
 free(input1); free(input2);
 // Return the extra scratch
 // Free its memory at the next level
 return ext_scr;
 // -----------------
}

int main() {
 ...
 int* result = mergesort_parallel_omp(array0,
 scratch0, ARRAY_SZ, NUM_THREADS);
 int* temp = array0;
 array0 = result;
 free(temp);
 ...
 return 0;
}
thread scheduling is not as efficient as static mapping policy. This means that as long as the number of threads is less than the number of cores, pinning the threads statically to the processing cores and dividing the workload between them can result in better performance. This way, high-cost thread migrations do not occur multiple times during the execution time. The speed-up for all the cases is computed against a base execution time, which is the execution time. The speed-up for all the cases is computed against a base execution time, which is the execution time with a single thread under the default hashing scheme and the default Linux scheduling policy.

Figure 2 shows that in almost all the cases, static mapping is the winning policy. Moreover, the localised approach significantly outperforms the non-localised one under the local homing policy, whereas it does not lose the competition under the hash for home policy. Therefore, the three best cases are Case 8, Case 7, and Case 3, all of them utilising the static mapping strategy. We can get the best performance for this array computation algorithm with complete localisation under the local homing policy, which serves as a validation for our approach.

5.2 Effect of Data Sizes

As mentioned before, in order to isolate the effect of changes to the conventional code, we have used an intermediate step, which is marked on Algorithm 4. This step is in fact needed for the localised style to work correctly, but as a standalone technique, can optimise the parallel merge sort algorithm by removing the need for copying back the merged array to the inputs of the merge function. In the conventional code, the inputs of the merge function are continuous parts of the initial array, whereas in the new code, they are two copies that are not allocated continuously in the memory. The only way to return the merged result of them is to create an extra local scratch (ext_scr) inside the merge function and free it at the next level of the reduction tree as the same as the input_cpy arrays are freed.

We use the Figure 3 to show that, although this technique results in slightly better performance, it does not have any considerable influence compared to the localisation method, which is the main reason for getting a better execution time. All of the cases in Figure 3 are tested with 64 threads on different input array sizes, under static mapping strategy with memory striping enabled. Case 8 in this figure is the only one that employs the local homing policy. The intermediate step has a poor performance (close to that of Case 4) for the local homing policy, and its result is not included in the graph. Unlike the input_cpy, the ext_scr cannot benefit from the local homing. The reason is that with maximum 64 threads, most of the time is still spent on the merge-sort_serial function. The input_cpy array can benefit from recursive access to its data which is cached on the local tile, while the merge operation is performed only once and the ext_scr array is freed afterward.

Figure 3 shows that when the size of the input array becomes larger, the localisation style under the local homing policy can benefit more and more from data localisation, and would show better performance than any programming style under the hash for home policy, either non-localised or localised.

5.3 Effect of Memory Striping

Memory striping, the automatic distribution of memory accesses over all memory controllers, is the default behaviour of the TILEPro64. Memory pages can be allocated either through a specific memory controller or in striping mode, where each page is striped across all memory controllers in 8KB chunks. With memory striping, Linux will boot up believing it has a single memory controller that is four times
larger than any of the actual physical memory controllers.

Static mapping might be criticised because of its poor behaviour in utilisation of the memory controllers. In this work, we deliberately mapped the threads to cores in an ordered way to show that thanks to the caches, in either striping or non-striping mode, static mapping outperforms the native GNU/Linux scheduler.

In both cases, when moving from 16 to 32 threads, striping leads to better performance. The reason is that with static mapping, all of the threads are mapped to the upper rows of the chip (cores 0 to 31). Therefore, in non-striping mode, they can only utilise 2 memory controllers. Instead, in the striping mode, they can all use 4 controllers. From 32 to 64 threads, every new thread is mapped to the lower part of the chip. Thus, with 64 threads, all 4 memory controllers are fully utilised. In comparison with 32 threads, this makes the situation better for non-striping mode, which can utilise more controllers, and worse for striping mode, which experiences higher contention on memory controllers. This behaviour is much more observable if one turns off the caches. Nonetheless, in this application, when caching is enabled, in contrast to the homing policy or mapping strategy, memory striping does not show a significant effect.

In summary, it is evident that in the traditional style, hash for home provides a much better performance. By contrast, in our approach we do not specify either the hash for home or local homing strategy of the Tilera Tile Processor to achieve better performance. Rather, we present a programming technique which performs very well in both cases. In addition, due to the localisation of the home caches at a relatively coarse granularity, its performance is significantly better when the local homing strategy is used by the system’s hypervisor. The effect of memory striping is considerable when caching is turned off across the system. However, when caching is enabled, it is mostly transparent to the user.

6. CONCLUSION

The use of a distributed shared caching hierarchy is a necessity in emerging manycore systems. Improving the data locality is key to optimising performance. It is important that the manycore programmer knows how different caching mechanisms work. There is a lot of fine-grained architecture-specific control that every new platform offer to its customers, but in general, to benefit from these features, existing codes have to be changed significantly in order to utilise the chip efficiently. In this paper, we have introduced a programming approach that is applicable to all manycore architectures with home caches.

Our preliminary results show that our novel approach can outperform the conventional programming style under the SMP Linux scheduler in multithreaded environments. We also conclude that any hash for home policy, if used at the cache line granularity is too fine-grained for parallel array computations with lots of sequential memory accesses. Considering the benefits already obtained from this early stage work, we believe that further research will lead to significant improvements in the field of manycore programming.

7. REFERENCES