Distributed Algorithm to Locate Critical Nodes to Network Robustness based on Spectral Analysis

Klaus Wehmuth and Artur Ziviani
National Laboratory for Scientific Computing (LNCC)
Av. Getúlio Vargas, 333 – 25651-075 – Petrópolis, RJ, Brazil
Email: {klaus,ziviani}@lncc.br

Abstract—We propose an algorithm to locate the most critical nodes to network robustness. Such critical nodes may be thought of as those most related to the notion of network centrality. Our proposal relies only on a localized spectral analysis of a limited neighborhood around each node in the network. We also present a procedure allowing the navigation from any node towards a critical node following only local information computed by the proposed algorithm. Experimental results confirm the effectiveness of our proposal considering networks of different scales and topological characteristics.

Index Terms—network connectivity; node criticality; node centrality; complex networks; network science.

I. INTRODUCTION

Currently, the study of network robustness receives a lot of attention in many domains related to network science, in particular research in complex communication networks [1]–[3]. Network robustness basically relates to the analysis of topological properties of complex networks to evaluate how well such networks are connected and how close they are to be fragmented, thus disrupting their functionality. Although many previous works evaluate network robustness in general, only fewer recent studies [4]–[6] address the particular topic of identifying and locating the most critical nodes to network robustness. Such critical nodes may be thought of as those most related to the notion of network centrality, i.e., the nodes presenting the highest impact on connectivity in the case of imminent network fragmentation or those the most important to efficient information spreading in diffusion networks.

In this paper, we propose a distributed algorithm to identify and locate critical nodes to network robustness based on spectral analysis. We also present a complementary procedure that allows one to navigate from any node towards a critical node following only local information computed by the proposed algorithm. We evaluate the proposed algorithm in different networks, ranging from synthetic generated networks to a real-world network trace. Results confirm the effectiveness of the proposed algorithm in locating the most critical nodes to network robustness in a distributed manner within networks with different characteristics and scales.

This paper is organized as follows. In Section II we review some theoretical concepts upon which we build our proposal. We introduce our proposed algorithm and navigation procedure in Section III. Experimental results are presented in Section IV. In Section V we analyze related works. Finally, in Section VI we conclude and discuss future work.

II. BACKGROUND ON SPECTRAL ANALYSIS

In this section, we provide the basic background on spectral analysis needed for our work. Consider a \(n \) node network represented as an undirected graph \(G = (V, E) \), with \(|V| = n \) vertices and \(|E| \) edges. For a node \(i \in V \) we denote as \(d_i \) the degree of node \(i \). The adjacency matrix \(A(G) \) of the graph \(G \) is defined as

\[
A_{ij} = \begin{cases}
1, & (i, j) \in E, \\
0, & \text{otherwise}.
\end{cases}
\]

The normalized Laplacian matrix of the graph \(G \) is defined as \(L_{ij}(G) = I - D^{-1/2}AD^{-1/2} \), where \(I \) is the identity matrix and \(D \) is the diagonal matrix with \(D_{ii} = d_i \), that is

\[
L_{ij}(G) = \begin{cases}
1, & i = j, \\
-\frac{1}{\sqrt{d_i d_j}}, & (i, j) \in E, \\
0, & \text{otherwise}.
\end{cases}
\]

The normalized Laplacian matrix \(L \) has some properties that are of particular interest in this work: (i) all its eigenvalues are between 0 and 2, i.e., \(0 = \lambda_1(L) \leq \lambda_2(L) \leq \cdots \leq \lambda_n(L) \leq 2 \); and (ii) for networks with a single connected component, \(\lambda_2(L) \) is the smallest non-zero eigenvalue and is less than 1 if the graph is not complete, reflecting the graph connectivity level approaching 0 as the graph tends to be less connected. This particular eigenvalue, \(\lambda_2(L) \), also known as the spectral gap, is extensively used in this work and it will be referred to simply as \(\lambda_2 \) hereafter. The property of having all eigenvalues normalized between 0 and 2 makes the normalized Laplacian matrix well suited for comparing the spectrum of graphs with different sizes.

III. PROPOSED ALGORITHM

Our goal is a distributed algorithm capable of locating the critical node(s) to network robustness. The rationale behind our proposal is that if a particular topological characteristic of the network causes the spectral gap \(\lambda_2 \) to be low, this same characteristic also causes \(\lambda_2 \) to be locally low in a relatively small neighborhood located around such characteristic. This brings up the concept of assigning a local value for each node based on \(\lambda_2 \) computed for a neighborhood of a given number \(h \) of hops around this node. By doing so in parallel for each
node in the network, every node then has itself attributed with a local value that can be compared in order to rank the nodes in terms of their relative local importance to network robustness.

A. Locating the Critical Node(s) of the Network

We observed experimentally that the locally computed λ_2 has a bias towards higher values on nodes with higher degrees, thus causing the local values in principle to be over sensitive to the presence of high degree nodes. In order to mitigate this unsuitable effect, the local value κ_v we assign to each node v is actually given by

$$\kappa_v = \begin{cases} \frac{\lambda_2^v}{\log_2(d_v)}, & d_v > 1, \\ \infty, & d_v = 1, \end{cases}$$

(3)

where λ_2^v is the spectral gap of the h-neighborhood of node v (i.e., the subnetwork composed by all nodes within h hops of node v), and d_v is the degree of node v. If $d_v = 1$ (i.e., node v is a leaf), then $\log_2(d_v) = 0$ and thus we consider $\kappa_v = \infty$ since a leaf is indeed the least critical node in the network. The same radius is used to define the h-neighborhood around every node. From this definition, we remark that each node v only requires the knowledge of local information concerning a h-neighborhood surrounding itself to compute its κ_v. Therefore, there is no need for the full network topology to be known by any particular node and κ_v can be computed in a fully distributed way for all nodes within the network.

Once each node v has its assigned κ_v value, they compare it to the corresponding values of all nodes in the h-neighborhood used to compute κ_v and identify the node with the lowest κ_v value. After identifying such a node, they indicate to that node that it has the lowest κ_v visible to them. Each node will in turn account the indications received and use it to calculate a score S_v, defined as

$$S_v = \frac{\text{NumberOfIndications}}{|h\text{-neighborhood}_v|},$$

(4)

where $\text{NumberOfIndications}$ is the total number of indications received by node v and $|h\text{-neighborhood}_v|$ is the number of nodes in its own h-neighborhood. It follows from this definition that $0 \leq S_v \leq 1$ at each node v because $\text{NumberOfIndications}$ can vary from 0 to the number of nodes within its h-neighborhood (i.e., $|h\text{-neighborhood}_v|$).

Each node v then has its own S_v score; and at least one node in the whole network has a score $S_v = 1$\footnote{There might be rare scenarios where no node in the network has $S_v = 1$ if the network is regular enough to have many h-neighborhoods that are isospectral, as for instance a ring, thus yielding equal lowest values to κ_v in different nodes composing the h-neighborhood. In these atypical cases, each node considers the node with the lowest id number as the one with the lowest κ_v it sees, thus ensuring at least one node has a score $S_v = 1$.}. This happens because in general there is a minimum κ_v value for the entire network and the node v associated to it is thus identified as the lowest κ_v by all of the elements of its h-neighborhood. The nodes with $S_v = 1$ are defined as the critical nodes of the network, i.e. the nodes that represent the most fragile points of the network robustness.

Figure 1 shows an example h-neighborhood established around the node in black with 4-hops around it. In this particular h-neighborhood, all nodes in gray perceive the central black node as the one with the lowest κ_v in this h-neighborhood. As a consequence, the black node also perceives itself as having the lowest κ_v in its h-neighborhood. This means the black node has $S_v = 1$ and therefore is the critical local node of this h-neighborhood, i.e., it is the node whose removal would cause the most impact on the robustness of this particular h-neighborhood.

![Fig. 1. h-neighborhood in which a node (in black) has $S_v = 1$.](image)

It is important to remark that the proposed algorithm can be implemented in a fully distributed way. As each node only needs local knowledge about a h-neighborhood surrounding it, the proposed algorithm can be implemented to analyze complex undirected networks (not necessarily only techno-social or communication networks) and locate the fragile points of these networks in offline mode in multi-core environments with shared or distributed memory as long as there is full knowledge of the considered networks. In the case of P2P-like networks, such as router-level or online social networks for instance, the proposed algorithm can be implemented in parallel at each node with complexity limited to the needed local knowledge and thus requiring only partial and limited knowledge of the network. Dealing with directed networks (e.g., twitter networks) is left for future work.

B. Navigating towards a Critical Node

Note that in practical networks one may navigate from any given node to a critical node (i.e., those with $S_v = 1$) using the κ_v and S_v values assigned to each node. This can be done following Procedure I. Starting from any node at the network, proceed to the node it points as having the lowest visible κ_v in its h-neighborhood (line 1), i.e. the indicated node in the process of computing S_v for a h-neighborhood (see Section III-A). At this point, two possible cases can arise at the indicated node: either (i) it points to another node as having the lowest known κ_v to it, i.e., the current node indicates another node as the critical node it sees in its h-neighborhood; or (ii) it points to itself as the node with the lowest κ_v in its h-neighborhood, i.e. the current node is the local critical node for its h-neighborhood. In case (i), the same procedure is simply repeated until case (ii) occurs (line 3). This means
one can navigate through the network following nodes with decreasing κ_v values until reaching case (ii).

Upon reaching case (ii), the current node checks its own S_v score (line 5). If $S_v = 1$, then a critical node was reached and the navigation finishes (line 6). If $S_v \neq 1$, there is at least one node in the h-neighborhood seen by the current node that knows another node with a lower κ_v than the current node. The current node knows these nodes because they belong to its h-neighborhood, but they did not indicate it as having the lowest known κ_v in their h-neighborhood. Out of these nodes that know a lower κ_v, the current node can then randomly select one node as the next node (line 8) and the navigation proceeds following nodes with decreasing κ_v values until reaching case (ii).

Two remarks about the described navigation procedure are important. First, the navigation procedure allows no loops. This is because the navigation procedure always progresses to nodes with lower κ_v than the current node or at least to a node that knows another node with lower κ_v than the current node. Second, as a consequence of the first remark and as the network is finite, from any given node one always reaches a critical node for the entire network, i.e., a node with $S_v = 1$.

IV. EXPERIMENTAL RESULTS

We evaluate the proposed algorithm in different networks, ranging from synthetic networks to real-world ones. The idea is to study the performance and behavior of the proposed algorithm when locating the critical points of networks with different characteristics and at different scales.

A. Synthetic networks

We first evaluate the proposed algorithm on synthetically generated networks following the Erdős-Rényi (ER) [7] and Barabási-Albert (BA) [8] models for random and scale-free networks, respectively. Such networks have well-known properties and behavior under certain conditions, thus allowing proper comparison and analysis of the obtained results and evaluation on how the proposed algorithm performs on them.

The proposed algorithm intends to identify and locate nodes that are critical to network robustness. Therefore, the rationale of the evaluation performed here is to use the results of the proposed algorithm as a strategy for identifying nodes for targeted attacks against the considered networks and then assess the impact of this on the network robustness as compared to classical strategic attacks, such as first removing the highest degree node. Therefore, we use the proposed algorithm to select a critical node to be removed from the original network and then from a replica of this same network we remove the highest degree node. Next, we compute and compare the changes in the spectral gap λ_2 caused by the different attack strategies against the same network. In the cases where the proposed algorithm returns more than one critical node, just one is randomly chosen for removal. Likewise, in the strategy of first removing the highest degree node, if there is more than one node with the same highest degree, just one is randomly chosen for removal.

1) Barabási-Albert (BA) networks: The BA networks we use have 1,000 nodes and are generated considering 2 connections generated for each newly attached node. This kind of scale-free networks are chosen because they are known to be particularly vulnerable to strategic attacks that first remove their highest degree node at each step [1] and therefore provide a suitable basis for comparison.

Figure 2(a) shows a scatter plot of the λ_2 variation (represented by $\Delta \lambda_2$), i.e., the negative impact on the network connectivity level represented by a decrease in the spectral gap of each network graph obtained from 50 BA networks when both attack strategies are applied at the same network. The h-neighborhood used for running the proposed algorithm in this experiment was empirically set to $h = 4$. The correlation between variations in λ_2 due to both attack strategies is quite high ($R^2 = 0.9976$), indicating that both strategies impact BA networks similarly. This is actually expected as BA networks are known to be vulnerable to strategic attacks based on first removing the highest degree nodes because they provide key network connectivity. The proposed algorithm is successful in identifying such nodes as the critical nodes in the network, thus rendering quite similar λ_2 variations as a consequence, and hence high correlation between the strategies. This result stresses the effectiveness of the proposed algorithm in identifying the critical nodes in BA networks.

2) Erdős-Rényi (ER) networks: The considered ER networks have 1,000 nodes and an attachment probability of 0.0045 for each node pair. ER networks are known to be less sensitive than BA networks to the strategic attack of first removing the highest degree node [1]. Figure 2(b) shows a scatter plot of the λ_2 variations obtained from 50 ER networks when both attack strategies are used at the same network. The h-neighborhood used for running the proposed algorithm in this experiment was empirically set to $h = 6$. ER networks are known to be less vulnerable than BA networks to strategic attacks based on first removing the highest degree node; indeed the impact in λ_2 is significantly smaller in the results of Figure 2(b) than in those of Figure 2(a). Although ER networks face a smaller degradation in network connectivity under a strategic attack of first removing the highest degree

```
Procedure 1 NAVIGATETO_CRITICAL_NODE(currentNode)

Input: currentNode
Output: criticalNode
1: lowKNode ← GETLOWESTKNODE(Viewed(currentNode))
2: if lowKNode ≠ currentNode then {This is case (i)}
3: return NAVIGATETO_CRITICAL_NODE(lowKNode)
4: else {This is case (ii)}
5: if GETVALUE(currentNode) = 1 then
6: return criticalNode {Navigation finished}
7: else
8: nextNode ← GETNODEKNOWSLOWERK(currentNode)
9: return NAVIGATETO_CRITICAL_NODE(nextNode)
10: end if
11: end if
```
node, this strategy also causes degradation on them and, for most cases, the highest degree node is rather the critical node indicated by the proposed algorithm. This is also indicated by a high correlation ($R^2 = 0.8938$)—although not as high as in the case of BA networks—between the λ_2 variations for both attack strategies. In some cases, the most critical node of the network—in the sense of the node whose removal causes the highest negative impact in the level of network connectivity measured by λ_2—was clearly not the highest degree node. These are the cases for the four dots found below the main line in Figure 2(b) that indicate critical nodes identified by the proposed algorithm in certain networks that had a more significant negative impact in network connectivity by their removal than the highest degree nodes in these same networks.

Note that the nodes identified by the proposed algorithm typically cause the most negative impact on the network connectivity level measured by λ_2 in the case of their removal, even if they are not the highest degree node as in certain networks. This leads to the conclusion that in the considered networks the algorithm correctly identifies and locates the critical node that would cause the most damage to the network connectivity in the case of its removal.

B. Fragile networks

As seen in Section IV-A, there are cases where the critical node to network connectivity is not the highest degree node. This is the case for the (sub)network topology shown in Figure 1. Clearly, the critical node is the black one as if it is removed a major network partition would happen resulting in two large components. This kind of case represents what we refer to as fragile network—a network where the removal of one node causes the fragmentation of a connected network in two or more connected components while the smaller components together represent a significant portion of the original network. In this subsection, we analyze the capacity of the proposed algorithm in locating the critical node in the case of fragile networks.

To conduct the performance evaluation for fragile networks, we first generate synthetic networks that have such points of fragility. To achieve this, we start with networks as those described in Section IV-A (both BA and ER as explained later in this subsection) and remove nodes until we get a network that has a fragility point that fragments the network by the removal of a single node. The node removal process up to this point in this case is conducted following a probability for a node to be chosen for removal proportional to its degree [9].

By analyzing the traces resulting from this process, we can identify a point where the removal of a chosen network causes the network to fragment in a significant way. Therefore, taking the network as it was right before the removal of this node, we have a fragile network. It is important to notice that this node whose removal fragments the network is usually not the highest degree node in the network. As a consequence, a deterministic attack strategy of first removing the highest degree node does not select the real critical node of the network in this case. We also remark that since the sequence of node removals that leads to the fragility point is random, although biased by the node degrees, the node found by this process is not necessarily the one that most severely fragments the network. We thus expect that the removal of the critical node identified by the proposed algorithm should partition the network in separate connected components at least as large as the ones found on the process synthetically generating the considered fragile networks.

1) Barabási-Albert (BA) fragile networks: Conducting the experiment on 10 BA fragile networks, the results obtained show that in all cases at least one critical node is located by the proposed algorithm. In every case, the removal of these critical nodes led to a fragmentation of the network that was at least as severe as the one resulting from the process of generating the fragile network.

In order to illustrate such results, we present in Table I a simplified result of 5 BA analyzed networks. Each considered BA fragile network N1 to N5 is presented in two rows explained in the following. The first row refers to the removal of the critical node chosen by the process of generating the fragile network. It is composed by the network id, the critical node identified on the process of generating the fragile network, and the set of the distinct connected components represented by their sizes resulting from removing the chosen critical node. The second row refers to the removal of the critical node identified by the proposed algorithm. It consists of the h valus used by the proposed algorithm to determine the h-neighborhoods to be considered around each node, the critical nodes located by the proposed algorithm, and the size of the connected components resulting from removing these critical nodes. In the case where more than one critical node is located by the proposed algorithm, they are all removed.

Analyzing the results presented in Table I we observe that for networks N1 and N3 both methods indicate the same nodes as critical to network connectivity. As a consequence, after removing these critical nodes, the resulting connected components in these cases are the same. In the cases for networks N2 and N5, the proposed algorithm locates critical nodes that fragment the network in a larger number of resulting components as compared to the removal of the critical node chosen by the process of generating the fragile network. Note that, for the fragmentation caused by the removal of the critical nodes located by the proposed algorithm, the fragmented resulting connected components (i.e., excluding the main largest resulting component) in these cases are also typically larger in size. This characterizes a stronger fragmentation of the network. For example, in the case of network N5, removing the critical node (#6) located by the proposed algorithm fragments the considered network composed by 475 nodes into 14 different components, effectively disconnecting 71 nodes from the network. In contrast, removing node #710 only fragments the network into 2 resulting components while excluding only 33 nodes. Clearly, the critical node pointed out by the proposed algorithm has a higher impact in the network connectivity. Note that for network N2, the proposed algorithm located an additional critical node (#84) besides the
critical node #17. This allowed a fragmentation of the network significantly higher when considering the critical nodes pointed out by the proposed algorithm. Network N4 also offers an interesting case: removing the critical node (#65) located by the proposed algorithm actually fragments the network into fewer resulting connected components. Nevertheless, the impact on the network connectivity is still higher as more nodes are disconnected in this way (12 nodes against 10).

Table I

Impact of removing the critical node(s) in fragile networks.

<table>
<thead>
<tr>
<th>Net</th>
<th>h</th>
<th>Critical</th>
<th>Resulting Connected Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA fragile networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>6</td>
<td>61</td>
<td>429, 7, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1</td>
</tr>
<tr>
<td>N2</td>
<td>6</td>
<td>17, 84</td>
<td>202, 19, 7, 4, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1</td>
</tr>
<tr>
<td>N3</td>
<td>4</td>
<td>22</td>
<td>432, 18, 10, 2, 1, 1, 1, 1, 1</td>
</tr>
<tr>
<td>N4</td>
<td>4</td>
<td>18</td>
<td>471, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1</td>
</tr>
<tr>
<td>N5</td>
<td>6</td>
<td>710</td>
<td>441, 33, 33, 43, 7, 6, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1</td>
</tr>
<tr>
<td>ER fragile networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N6</td>
<td>46</td>
<td>484</td>
<td>130, 88, 167, 60, 1</td>
</tr>
<tr>
<td>N7</td>
<td>173</td>
<td>966</td>
<td>142, 89, 140, 65, 19, 4, 1, 1</td>
</tr>
<tr>
<td>N8</td>
<td>8</td>
<td>88</td>
<td>57, 38, 12, 6</td>
</tr>
<tr>
<td>N9</td>
<td>4</td>
<td>111</td>
<td>43, 26, 5, 1, 1</td>
</tr>
<tr>
<td>N10</td>
<td>373</td>
<td>871</td>
<td>131, 21, 127, 16, 3, 3, 1, 1, 1</td>
</tr>
</tbody>
</table>

2) *Erdős-Rényi (ER) fragile networks:* A similar experiment is then repeated for 10 ER fragile networks. Table I presents a simplified result of 5 ER analyzed networks (identified as N6 to N10). The analysis of the results achieved by the proposed algorithm for ER fragile networks in Table I is similar to the one performed for the BA fragile networks. Likewise, the conclusions also suggest that the critical nodes pointed out by proposed algorithm achieve a fragmentation at least equivalent (as in the cases of network N8 and N9), if not stronger (as in the cases of networks N6, N7, and N10) than the reference for comparison.

C. Real-world network trace

In this subsection, we evaluate the proposed algorithm in locating critical nodes using a real-world network trace. The connected network extracted from this real-world trace is composed of 190,914 nodes representing a router-level network topology collected by CAIDA [1]. This network has a diameter of 26 as well as an average and maximum node degrees of 6.34 and 1071, respectively. Executing the proposed algorithm using an experimentally set $h = 4$ indicates node 40412 as the single most critical node for the whole network. The removal of this single critical node fragments the network into three relatively large connected components having 189608, 1184, and 121 nodes, characterizing a major disruption in the network.

The main point of evaluating the proposed algorithm for this real-world network trace is rather checking out the feasibility of applying it on a large scale network. Despite having over 190 thousand nodes, our proposed algorithm can locate the critical nodes considering only localized information of the h-neighborhoods around each node (here with $h = 4$) in a fully distributed way. The smallest and the largest considered h-neighborhoods have 5 and 123451 nodes, respectively. Moreover, the average size of the considered h-neighborhoods is 9023 nodes, thus limiting the complexity of computing κ_v for each node.

V. Related Work

Network robustness is an important property derived from the connectivity level that directly impacts network reliability. There are many studies investigating network robustness in general and methods to evaluate network connectivity level [1]–[3]. Nevertheless, to the best of our knowledge, only

a few recent works target the location of the most critical nodes to network robustness, thus assessing node centrality [4]–[6].

Nanda and Kotz [4] propose a new centrality metric called Localized Bridging Centrality (LBC). LBC is evaluated using only one hop neighborhood around each node for which it is calculated. The proposed use of this method is on relatively small scale wireless mesh networks. It can to a certain extent perceived as a specialization of the general method we propose, restricting the h-neighborhood to $h = 1$.

Kermarrec et al. [5] propose a new centrality measure, called second order centrality. The second order centrality is defined in terms of the standard deviation of the time between visits of a perpetual random walk to each node. This method has the same goal as ours in identifying the critical nodes in the network in a distributed way without requiring full knowledge network topology. Nevertheless, relying on perpetual random walks has a potentially long and indeterminate convergence time, while our approach offers a faster and deterministic convergence time. Dinh et al. [6] propose a new model to assess network vulnerabilities formulating it as an optimization problem that can render approximate solutions with provable performance bounding. This method uses full knowledge of network topology, hindering its applicability to large scale networks where such an information may not be available and distributed implementation is required.

VI. SUMMARY AND OUTLOOK

We propose a localized and distributed algorithm capable of locating critical nodes to network robustness based on the analysis of the spectral gap of a h-neighborhood around each node. Such critical nodes may be thought of as those the most related to the notion of network centrality. The proposed algorithm is shown to be well suited for distributed implementation and it does not require knowledge of the full network topology. We also propose a procedure that allows one to navigate from any node towards a critical node following only local information computed by the proposed algorithm. Results obtained for different kinds of networks and at different scales confirm the effectiveness of the proposed algorithm in locating the most critical nodes to network robustness.

The encouraging results obtained using the proposed algorithm lead to interesting perspectives for future work:

- h-neighborhood determination – during the experimental evaluation of the proposed algorithm we could observe that the adopted radius to build the h-neighborhoods around each node influences the obtained results. On the one hand, If the considered h is too small, the resulting h-neighborhoods can also be relatively small and might lead to critical nodes of restricted local concern, thereby not representing the topological features in terms of robustness of the whole network. On the other hand, if h is set too large, the resulting h-neighborhoods can also be too large, rendering excessively high the computational cost of determining the local value κ_v for each node v to still point out the same critical nodes that would be found using a smaller radius. Yet larger h values may eventually lead to many or all h-neighborhoods in fact comprising the whole network, thus degrading the algorithm since all these would yield the same value for their local κ_v values. For the presented results in this paper, the most suitable h value for each network has been set experimentally. To overcome this limitation, we intend as future work to address the issue of defining a solution to (at least approximatively) determining the most suitable h to be adopted in each network case.

- Other metrics to assess local robustness – in this paper, the local κ_v value representing the relative importance of each node v to the (local) network robustness is computed based on the spectral gap of a h-neighborhood around each node v. However, we understand that other metrics besides the spectral gap may be considered to determine κ_v. This would lead to different alternative ways of determining κ_v eventually being less costly than using the spectral gap or generating better results. Further, we may possibly use alternative metrics that are specific to certain kinds of networks (e.g., ad-hoc wireless networks), lending to better results for particular networks. Hence, we intend to investigate alternative metrics to determine the local κ_v value at each node.

- Network partitioning technique – considering the proposed navigation procedure, each node in the network is associated to one and only one critical node. This 1-to-1 association relationship may be thought of as creating a network partition where each critical node determines an equivalence class. Exploring the possibility of using the proposed algorithm as a network partitioning technique and studying the properties of the resulting network partitions is left for future work.

ACKNOWLEDGEMENTS

This work was partially supported by the Brazilian Funding Agencies FAPERJ, CNPq, CAPES, and by the Brazilian Ministry of Science and Technology (MCT). Authors thank Éric Fleury (ENS-Lyon/INRIA) for comments to this document.

REFERENCES

dynamics of network diameter and spectral gap under node removal.” in
Proc. of the Latin-American Workshop on Dynamic Networks – LAWDN,
2010.