Challenging SMT solvers to verify neural networks

Luca Pulina1 and Armando Tacchella2

1 DEIS, Università di Sassari, Piazza Università 11, Sassari, Italy. lpulina@uniss.it
2 DIST, Università di Genova, Viale Causa 13, Genova, Italy. Armando.Tacchella@unige.it

Abstract. In this paper we evaluate state-of-the-art SMT solvers on encodings of verification problems involving Multi-Layer Perceptrons (MLPs), a widely used type of neural network. Verification is a key technology to foster adoption of MLPs in safety-related applications, where stringent requirements about performance and robustness must be ensured and demonstrated. In previous contributions, we have shown that safety problems for MLPs can be attacked by solving Boolean combinations of linear arithmetic constraints. However, the generated encodings are hard for current state-of-the-art SMT solvers, limiting our ability to verify MLPs in practice. The experimental results herewith presented are meant to provide the community with a precise picture of current achievements and standing open challenges in this intriguing application domain.

1 Introduction

SMT solvers \cite{DBLP:journals/corr/abs-1802-00672} have enjoyed a recent widespread adoption to provide reasoning services in various applications, including interactive theorem provers like Isabelle \cite{DBLP:conf/cav/BcoverF09}, static checkers like Boogie \cite{DBLP:conf/cav/AkhshemseddineVVS12}, verification systems, e.g., ACL2 \cite{DBLP:journals/lmcs/BradleyS11}, Caduceus \cite{DBLP:journals/tc/CoelhoG12}, software model checkers like SMT-CBMC \cite{DBLP:conf/cav/AndreiDI12}, and unit test generators like CREST \cite{DBLP:journals/josb/RosuS13}. Research and development of SMT algorithms and tools is a very active research area, as witnessed by the annual competition, see e.g. \cite{DBLP:journals/corr/abs-1802-05744}. It is fair to say that SMT solvers are the tool of choice in automated reasoning tasks involving Boolean combinations of constraints expressed in decidable background theories.

This paper is motivated by the fact that SMT solvers can also be used to solve formal verification problems involving neural networks \cite{DBLP:journals/corr/abs-1802-00672}. Verification is indeed a standing challenge for neural networks which, in spite of some exceptions (see e.g., \cite{DBLP:journals/corr/abs-1802-00672}), are confined to non-safety related equipment. The main reason is the lack of general, automated, yet effective safety assurance methods for neural-based systems, whereas existing mathematical methods require manual effort and ad-hoc arguments to justify safety claims \cite{DBLP:journals/corr/abs-1802-00672}. In our previous contributions \cite{DBLP:conf/ijcai/PulinaT14,DBLP:conf/ijcai/PulinaT15} we considered the problem of

* This research has received funding from the European Community’s Information and Communication Technologies Seventh Framework Programme [FP7/2007-2013] under grant agreement N. 215805, the CHRIS project.
Proceedings of the 18th RCRA workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion (RCRA 2011).
In conjunction with IJCAI 2011, Barcelona, Spain, July 17-18, 2011.
verifying a specific kind of neural network known as Multi-Layer Perceptron (MLP). The main feature of MLPs is that, even with a fairly simple topology, they can in principle approximate any non-linear mapping \(f : \mathbb{R}^n \to \mathbb{R}^m \) with \(n, m \geq 1 \) – see [16]. In [20] we proposed a first step towards MLP verification, checking that the output of an MLP always ranges within stated safety thresholds – a “global” safety bound. Our technique, that we defined Counter-Example Triggered Abstraction-Refinement (CETAR), computes an overapproximation of the concrete MLP (the abstract MLP) and checks it by solving a satisfiability problem in Quantifier Free Linear Arithmetic over Reals (QF_LRA in [7]) using the solver HySAT [12]. Conservative abstraction guarantees that safety of the abstract MLP implies safety of the concrete one. On the other hand, realizable counterexamples demonstrate that the concrete MLP is unsafe, whereas spurious counterexamples trigger a refinement of the abstraction. This approach is closely related to recent works in inductive synthesis of concurrent programs – see, e.g., [24, 25]. More recently, in [21] we extended the CETAR approach to verify that an MLP is guaranteed to satisfy also “local” safety bounds. Informally speaking, this is about guaranteeing that the MLP output is close to some known value – or range of values – modulo the expected error variance. In [21] we showed that also local safety can be checked with abstraction-refinement techniques based on QF_LRA encodings.

The goal of this paper is to compare state-of-the-art SMT solvers on challenging test cases derived from verification problems involving MLPs – see Section 3. In particular, we consider HySAT [12], our solver of choice in [20, 21]; MathSAT [6], the winner of SMTCOMP 2010 in the QF_LRA category; and Yices [9] the winner of SMTCOMP 2009 in the same category. We also consider CVC [4] as a baseline in the comparison. All the solvers above are tested extensively on different families of instances related to satisfiability checks in QF_LRA. These instances are obtained considering neural-based estimation of internal forces in the arm of the humanoid James [18] – see Section 2. Such estimation is used in [13] to compute external forces and to detect, e.g., contact of the arm with obstacles or humans. In order to ensure safe actions in dynamic unstructured environments such estimates must be guaranteed against misbehaviors in all possible working configurations. In particular, in Section 4 we describe three groups of experiments on the selected solvers. The first is a competition-style evaluation considering different safety flavours (local and global), different types and sizes of MLPs, and different degrees of abstraction “grain”. The second is an analysis of scalability considering satisfiable and unsatisfiable encodings and varying the parameters which mostly influence performances in this regard. The last one is verification of the MLPs proposed in [13] using our system NEVer [20] with different solvers as back-ends. This experimental analysis shows that current state-of-the-art SMT solvers have the capability of attacking several non-trivial (sub)problems in the MLP verification arena. However, the overall verification process, particularly for networks of realistic size and fine grained abstractions, remains a standing open challenge.

2 Verification of MLPs: case study and basic concepts

All the encodings used in our analysis are obtained considering verification problems related to a control subsystem in the humanoid James [18]. James is a torso composed
of a seven degrees-of-freedom (DOF) head, a seven DOF left arm with an eight DOF hand. In [13] James was extended to detect potentially unsafe situations, e.g., contact with obstacles or humans, by measuring external forces using a single force/torque sensor placed along the kinematic chain of the arm. The problem is that measuring external forces requires compensation of the manipulator dynamic, i.e., the contribution of internal forces must be subtracted from sensor readings. In [13] neural networks are suggested as a possible solution to estimate internal forces. The actual network used to provide such estimation has to be considered safety-related equipment: An “incorrect” approximation of internal forces, may lead to either undercompensation — the robot is lured to believe that an obstacle exists — or overcompensation — the robot keeps moving even when an obstacle is hit. Both conditions represent potential hazards, e.g., in contexts characterized by close physical human-robot interaction. Internal forces estimation in [13] relies on a Multi-Layer Perceptron [14] (MLP). In the following, we introduce the main technical aspects of MLPs and their usage to estimate internal forces in James’ arm.

MLPs are usually represented as a system of interconnected computing units (neurons), which are organized in layers. Figure 1 (left) shows an MLP consisting of three layers. The input layer serves to pass the input vector to the network, the hidden layer provides a first stage of computation, the output layer provides the final output. Operationally, MLPs implement the pseudo-code shown in Figure 1 (right). Given the network \(\nu : \mathbb{R}^n \rightarrow \mathbb{R}^m \). The total input received by a neuron is called induced local field (ILF). With \(n \) neurons in the input layer and \(h \) neurons in the hidden layer the ILF of the \(j \)-th
hidden neuron is defined as

\[r_j = \sum_{i=1}^{n} a_{ji} x_i + b_j \quad j = \{1, \ldots, h\} \tag{1} \]

where \(a_{ji}\) is the weight of the connection from the \(i\)-th neuron in the input layer to the \(j\)-th neuron in the hidden layer, and the constant \(b_j\) is the bias of the \(j\)-th neuron. The output of a neuron \(j\) in the hidden layer is a monotonic non-linear function of its ILF, the activation function \(\sigma_h\). As long as the activation function is differentiable everywhere, MLPs with only one hidden layer can, in principle, approximate any real-valued function with \(n\) real-valued inputs [16]. Commonly used activation functions (see, e.g., [5]) are sigmoidal non-linearities such as the hyperbolic tangent (tanh) and the logistic (logi) functions defined as follows:

\[\text{tanh}(r) = \frac{e^r - e^{-r}}{e^r + e^{-r}} \quad \text{logi}(r) = \frac{1}{1+e^{-r}} \tag{2} \]

where \(\text{tanh} : \mathbb{R} \to (-1, 1)\) and \(\text{logi} : \mathbb{R} \to (0, 1)\). The MLP suggested in [13] uses hyperbolic tangents, but our encodings are obtained using the logistic function instead.\(^3\)

With \(m\) neurons in the output layer the ILF of an output neuron is

\[s_k = \sum_{j=1}^{h} c_{kj} \sigma_h(r_j) + d_k \quad k = \{1, \ldots, m\} \tag{3} \]

where \(c_{kj}\) denotes the weight of the connection from the \(j\)-th neuron in the hidden layer to the \(k\)-th neuron in the output layer, while \(d_k\) represents the bias of the \(k\)-th output neuron. Therefore, the output of the MLP is a vector \(\nu(\vec{x}) = \{\sigma_o(s_1), \ldots, \sigma_o(s_m)\}\).

The activation function \(\sigma_o\) can be either the identity function, i.e., \(\nu(\vec{x}) = \{s_1, \ldots, s_m\}\), or a sigmoidal non-linearity as in (2). Notice that in the latter case, each output of \(\nu\) is constrained to range within a known interval by construction. In applications where this is feasible, e.g., by rescaling input domains, this choice of \(\sigma\) effectively mitigates the risk of exceedingly low or high output values. In [13] tanh is used as activation function in the output neurons for this reason, and all inputs are rescaled in the range \([-1, 1]\).

Using MLPs for estimation amounts to choose appropriate weights \(a, b, c\) and \(d\). Technically, this is a regression problem, i.e., we are given a set of patterns – input vectors \(X = \{\vec{x}_1, \ldots, \vec{x}_t\}\) with \(\vec{x}_i \in \mathbb{R}^n\) – and a corresponding set of labels – output vectors \(Y = \{\vec{y}_1, \ldots, \vec{y}_t\}\) with \(\vec{y}_i \in \mathbb{R}^m\). We think of the labels as generated by some unknown function \(\varphi : \mathbb{R}^n \to \mathbb{R}^m\) applied to the patterns, i.e., \(\varphi(\vec{x}_i) = \vec{y}_i\) for \(i \in \{1, \ldots, t\}\). The task of \(\nu\) is thus to extrapolate \(\varphi\), i.e., construct \(\nu\) from \(X\) and \(Y\) so that given some \(\vec{x}^* \notin X\) we ensure that \(\nu(\vec{x}^*)\) is “as close as possible” to \(\varphi(\vec{x}^*)\). In [13] internal forces in James’ arm are estimated considering angular positions and velocities of two shoulder and two elbow joints, i.e., for each \(\vec{x} \in X\), we have \(\vec{x} = (q_1, \ldots, q_4, \dot{q}_1, \ldots, \dot{q}_4)\).\(^4\) Labels \(\vec{y} \in Y\) are corresponding values of internal forces and torques – denoted by \(f\) and \(\tau\), respectively – in a Cartesian space, i.e.,

\(^3\) From a practical standpoint, the impact of our choice is negligible, since the logistic function has the same “shape” of the hyperbolic tangent, and they are often used interchangeably.

\(^4\) This is standard control-theory notation, where \(q\) represents the angular position of the joint, and \(\dot{q}\) the angular velocity, i.e., the derivative of \(q\) with respect to time.
The unknown relation \(\varphi : \mathbb{R}^8 \to \mathbb{R}^6 \) is the one tying joint positions and velocities to internal forces, and takes into account components from gravity, Coriolis forces, and manipulator inertia.

Given a set of patterns \(X \) and a corresponding set of labels \(Y \) the process of tuning weights of an MLP \(\nu \) in order to extrapolate \(\varphi \) – manipulator dynamic in our case – is called training, and the pair \((X, Y) \) is called the training set – see [14] for details about the process. Even assuming that a training set is sufficient to learn \(\varphi \), it is still the case that different sets may yield different MLP weights. The problem is that the resulting MLP may underfit the unknown target \(\varphi \), i.e., consistently deviate from \(\varphi \), or overfit \(\varphi \), i.e., be very close to \(\varphi \) only when the input pattern is in the training set. These phenomena lead to poor generalization performances, i.e., the MLP largely fails to predict \(\varphi(x^*) \) on inputs \(x^* \notin X \).

In our experiments, we use a leave-one-out estimate of the generalization error of an MLP as follows. Given the set \((X, Y) \), the MLP \(\nu_{(i)} \) is obtained by training on the patterns \(X_{(i)} = \{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_t\} \) and corresponding set labels \(Y_{(i)} \). If we repeat the process \(t \) times, then we have \(t \) different MLPs and we obtain the estimate

\[
\hat{\epsilon}_k = \frac{1}{t} \sum_{i=1}^{t} (y_{ki} - \nu_{(i)}(x_i))^2 \quad k \in \{1, \ldots, m\}
\]

where \(m \) is the number of outputs of each \(\nu_{(i)} \). Notice that \(\hat{\epsilon}_k \) is the mean squared error (MSE) among all the predictions made by each \(\nu_{(i)} \) when tested on input \(x_i \). Clearly, \(\hat{\epsilon}_k \) should be kept at a minimum to ensure good generalization properties, but, as we show in the next Section, there is also an interplay between certain kinds of safety conditions and the standard deviation of \(\hat{\epsilon}_k \).

3 SMT encodings to verify MLPs

We consider two verification problems involving MLPs, and an approach to solve them using SMT encodings – more precisely, encodings in Quantifier Free Linear Arithmetic over Reals (QF_LRA) as defined in [7]. Both problems have been originally introduced in two previous contributions of ours [20, 21], and can be viewed as a way to ensure a safe behaviour of MLPs. In [20] we introduced global safety, i.e., checking that the response of the MLP ranges within a stated interval for all acceptable inputs, whereas in [21] we introduced local safety, i.e., checking that the response of the MLP is “close to” some training label as long as the input is “close to” the corresponding training input pattern. Both notions of safety can be useful to ensure that the response of an MLP does not behave unpredictably to the point of disrupting the functionality of control systems relying on it. In the following we will always consider MLPs with \(n \geq 1 \) inputs and \(m \geq 1 \) outputs in which the input domain is a Cartesian product \(\mathcal{I} = D_1 \times \ldots \times D_n \) where \(D_i = [a_i, b_i] \) is a closed interval bounded by \(a_i, b_i \in \mathbb{R} \) for all \(1 \leq i \leq n \); analogously, the output domain is a Cartesian product \(\mathcal{O} = E_1 \times \ldots \times E_m \) where \(E_i = [c_i, d_i] \) is a closed interval bounded by \(c_i, d_i \in \mathbb{R} \) for all \(1 \leq i \leq m \).

\(^5\) In the definitions above, and throughout the rest of the paper, a closed interval \([a, b]\) bounded by \(a, b \in \mathbb{R} \) is the set of real numbers comprised between \(a \) and \(b \), i.e., \([a, b] = \{x \mid a \leq x \leq b\}\) with \(a \leq b \).
3.1 Global safety

Checking for global safety of an MLP $\nu : \mathcal{I} \to \mathcal{O}$ amounts to prove that

$$\forall \bar{x} \in \mathcal{I}, \forall k \in \{1, \ldots, m\} : \nu_k(\bar{x}) \in [l_k, h_k]$$

(5)

where $\nu_k(\bar{x})$ denotes the k-th output of ν, and $l_k, h_k \in E_k$ are safety thresholds, i.e., constants defining an interval wherein the k-th component of the MLP output is to range, given all acceptable input values. In [20] we proposed to verify a consistent abstraction of ν, i.e., a function $\tilde{\nu}$ such that if the property corresponding to (5) is satisfied by $\tilde{\nu}$ in a suitable abstract domain, then it must hold also for ν. The key point is that verifying condition (5) in the abstract domain can be encoded to a satisfiability check in QF_{LRA}. Clearly, abstraction is not sufficient per se, because of spurious counterexamples, i.e., abstract counterexamples that do not correspond to concrete ones. A spurious counterexample calls for a refinement of the abstraction which, in turn, generates a new satisfiability check in QF_{LRA}. Therefore, a global safety check for a single output of ν may generate several logical queries to the underlying SMT solver. In practice, we hope to be able to either verify ν or exhibit a counterexample within a reasonable number of refinements.

In the following, we briefly sketch how to construct consistent abstractions and related refinements to check for property (5). The proof that the proposed abstraction is consistent and further details about the construction can be found in [20]. Given a concrete domain $D = [a, b]$, the corresponding abstract domain is $[D] = \{[x, y] \mid a \leq x \leq y \leq b\}$, i.e., the set of intervals inside D, where $[x]$ is a generic element. We can naturally extend the abstraction to Cartesian products of domains, i.e., given $\mathcal{I} = D_1 \times \ldots \times D_n$, we define $[\mathcal{I}] = [D_1] \times \ldots \times [D_n]$, and we denote with $[\bar{x}] = \langle[x_1], \ldots, [x_n]\rangle$ the elements of $[\mathcal{I}]$ that we call interval vectors. Given a generic MLP ν – the concrete MLP – we construct the corresponding abstract MLP by assuming that σ_b is the logistic function $\logi : \mathbb{R} \to (0, 1)$ as defined in (2), and that σ_o is the identity function. Since no ambiguity can arise between σ_b and σ_o, we denote σ_b with σ for the sake of simplicity. Given an abstraction parameter $p \in \mathbb{R}^+$, the abstract activation function $\tilde{\sigma}^p$ can be obtained by considering the maximum increment of σ over intervals of length p. Since σ is a monotonically increasing function, and the tangent to σ reaches a maximum slope of 1/4 we have that

$$\forall x \in \mathbb{R} : 0 \leq \sigma(x + p) - \sigma(x) \leq \frac{p}{4}$$

(6)

for any choice of the parameter $p \in \mathbb{R}^+$. Now let x_0 and x_1 be the values that satisfy $\sigma(x_0) = p/4$ and $\sigma(x_1) = 1 - p/4$, respectively, and let $p \in (0, 1)$. We define $\tilde{\sigma}^p : [\mathbb{R}] \to [0, 1]$ as follows

$$\tilde{\sigma}^p([x_a, x_b]) = \begin{cases}
[0, p/4] & \text{if } x_b \leq x_0 \\
[0, \sigma(p(\frac{x_a}{p})) + \frac{p}{4}] & \text{if } x_a \leq x_0 \text{ and } x_b < x_1 \\
[\sigma(p(\frac{x_a}{p})), \sigma(\frac{p}{2}) + \frac{p}{4}] & \text{if } x_0 < x_a \text{ and } x_b < x_1 \\
[\sigma(p(\frac{x_a}{p})), 1] & \text{if } x_0 < x_a \text{ and } x_1 \leq x_b \\
[1 - p/4, 1] & \text{if } x_a \geq x_1 \\
[0, 1] & \text{if } x_a \leq x_0 \text{ and } x_1 \leq x_b
\end{cases}$$

(7)
Figure 2 gives a pictorial representation of the above definition. According to (7) we can control how much \(\tilde{\sigma}^p \) over-approximates \(\sigma \), since large values of \(p \) correspond to coarse-grained abstractions, whereas small values of \(p \) correspond to fine-grained ones. We can now define \(\tilde{\nu}^p \): \([I] \rightarrow [O]\) as

\[
\tilde{\nu}^p_k([x]) = \sum_{j=1}^{h} c_{kj} \tilde{\sigma}^p(\tilde{r}_j([x])) + d_k \quad k = \{1, \ldots, m\}
\]

where \(\tilde{r}_j([x]) = \sum_{i=1}^{n} a_{ji} [x_i] + b_j \) for all \(j = \{1, \ldots, h\} \), and we overload the standard symbols to denote products and sums among interval vectors, e.g., we write \(x + y \) to mean \(x + y \in \mathbb{R} \). Since \(\tilde{\sigma}^p \) is a consistent abstraction of \(\sigma \), and products and sums on intervals are consistent abstractions of the corresponding operations on real numbers, defining \(\tilde{\nu}^p \) as in (8) provides a consistent abstraction of \(\nu \) – see [20] for details. This means that our original goal of proving the safety of \(\nu \) according to (5) can be now recast, modulo refinements, to the goal of proving its abstract counterpart

\[
\forall [x] \in [I], \forall k \in \{1, \ldots, m\} : \tilde{\nu}^p_k([x]) \subseteq [l_k, h_k]
\]

where “\(\subseteq \)” stands for the usual containment relation between intervals, i.e., given two intervals \([a, b] \in \mathbb{R} \) and \([c, d] \in \mathbb{R} \) we have that \([a, b] \subseteq [c, d] \) exactly when \(a \geq c \) and \(b \leq d \), i.e., \([a, b] \) is a subinterval of \([c, d] \) or it coincides with \([c, d] \).

3.2 Local safety

As we mentioned in Section 2, in James’ test case the need to check for global safety is somewhat mitigated using sigmoidal non-linearities in the output neurons to “squash” the response of the MLP within an acceptable range, modulo rescaling. A more stringent, yet necessary, requirement is represented by local safety. Informally speaking, we can say that an MLP \(\nu \) trained on a dataset \((X, Y)\) of \(t \) patterns is “locally safe” whenever given an input pattern \(x^* \) it turns out that \(\nu(x^*) \) is “close” to \(y_j \in Y \) as long as \(x^* \).
is “close” to \(x_j \in X\) for some \(j \in \{1, \ldots, t\}\). As we argue in [21], local safety cannot be guaranteed by design, because the range of acceptable values varies from point to point. Moreover, it ensures that the error of an MLP never exceeds a given bound on yet-to-be-seen inputs, and it ensures that the response of an MLP is relatively stable with respect to small perturbations in its input.

To formalize local safety, given an MLP \(\nu : \mathcal{I} \to \mathcal{O}\), and a training set \((X, Y)\) consisting of \(t\) elements, we introduced the following concepts.

- Given two patterns \(x, x' \in X\) their distance along the \(i\)-th dimension is defined as \(\delta_i(x, x') = |x'_i - x_i|\).
- Given some \(x \in X\), the function \(N^q_i : X \to 2^X\) maps \(x\) to the set of \(q\)-nearest-neighbours along the \(i\)-th dimension, i.e., the first \(q\) elements of the list \(\{x' \in X \mid x' \neq x\}\) sorted in ascending order according to \(\delta_i(x, x')\).
- Given some \(x \in X\), the function \(\delta^q_i : X \to \mathbb{R}\) maps \(x\) to the \(q\)-nearest-distance along the \(i\)-th dimension, i.e.,

\[
\delta^q_i(x) = \max_{x' \in N^q_i(x)} \delta_i(x, x')
\]

- The \(q\)-n-polytope \(\mathcal{X}^q_j\) corresponding to \(x_j \in X\) for some \(j \in \{1, \ldots, t\}\) is the region of space comprised within all the \(2n\) hyper-planes obtained by considering, for each dimension \(i\), the two hyper-planes perpendicular to the \(i\)-th axis and intersecting it in \((x_i - \delta^q_i(x))\) and \((x_i + \delta^q_i(x))\), respectively.

The above definitions can be repeated for labels, and thus \(\mathcal{Y}^q_j\) denotes a \(q\)-n-polytope associated to \(y_j \in Y\) for some \(j \in \{1, \ldots, t\}\). In the following, when the dimensionality is understood from the context, we use \(\mathcal{X}\) to denote \(1\)-n-polytopes, and \(\mathcal{Y}\) to denote \(1\)-m-polytopes. In the following, we refer to \(q\) as the neighborhood size.

Given an MLP \(\nu : \mathcal{I} \to \mathcal{O}\) with training set \((X, Y)\) consisting of \(t\) patterns we consider, for all \(j \in \{1, \ldots, t\}\), the set of input polytopes \(\{\mathcal{X}_1, \ldots, \mathcal{X}_t\}\) associated with each pattern \(x_j \in X\), and the set of output polytopes \(\{\mathcal{Y}_1, \ldots, \mathcal{Y}_t\}\) associated with each label \(y_j \in Y\), for a fixed value of \(q\). We say that \(\nu\) is locally safe if the following condition is satisfied

\[
\forall x^* \in \mathcal{I}, \exists j \in \{1, \ldots, t\} : x^* \in \mathcal{X}_j \to \nu(x^*) \in \mathcal{Y}^q_j \tag{10}
\]

Notice that this condition is trivially satisfied by all the input patterns \(x^*\) such that \(x^* \in \mathcal{I}\) but \(x^* \notin \mathcal{X}_j\) for all \(j \in \{1, \ldots, t\}\). Indeed, these are patterns which are "too far" from known patterns in the training set, and for which we simply do not have enough information in terms of local (un)safety. Also, we always consider \(1\)-n-polytopes on the input side of \(\nu\) whereas we can vary the size of neighbourhoods on the output side by increasing \(q\). Clearly, the larger is \(q\), the larger is the neighbourhood considered in the output, and the less stringent condition (10) becomes. As we show in [21], this additional degree of freedom is important in order to “tune” the safety condition according to the expected variance in the network error. Intuitively, assuming that we obtained a network whose expected error mean and variance is satisfactory, if we try to certify such network on safety bounds which imply a smaller error variance, we will invariably generate feasible counterexamples.
Table 1. Evaluation results at a glance. We report the number of encodings solved within the time limit (“#”) and the total CPU time (“Time”) spend on the solved encodings. Total number of formulas solved (“Total”) is also split in satisfiable and unsatisfiable formulas (“Sat”) and (“Unsat”), respectively. Solvers are sorted according to the number of encodings solved. A dash means that a solver did not solve any encoding in the related group.

<table>
<thead>
<tr>
<th>Solver</th>
<th>Total</th>
<th>Sat</th>
<th>Unsat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># time</td>
<td># time</td>
<td># time</td>
</tr>
<tr>
<td>YICES</td>
<td>809</td>
<td>27531.90</td>
<td>639</td>
</tr>
<tr>
<td>HYSAT</td>
<td>698</td>
<td>17641.61</td>
<td>561</td>
</tr>
<tr>
<td>MATHSAT</td>
<td>683</td>
<td>41975.01</td>
<td>544</td>
</tr>
<tr>
<td>CVC</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

The abstraction-refinement approach to check local safety is similar to the one described for global safety. In particular, the abstract network $\tilde{\nu}$ is obtained as shown previously, i.e., by abstracting the activation function and thus the whole network to compute interval vectors. The only difference is that in [21], and according to the usage pattern in James’ test case, we consider networks whose output neurons compute logistic functions instead of identity. The abstract local safety condition corresponding to (10), for any fixed value of q, is

$$\forall [x^*] \in [I], \exists i \in \{1, \ldots, t\} : [x^*] \in X_i \rightarrow \tilde{\nu}(\tilde{x}^*) \subseteq \mathcal{Y}_i^q$$

It can be shown (see [21]) that the above condition implies local safety of the concrete network ν, and, as in the case of (9), verifying it can be encoded into a QF_LRA satisfiability check.

4 Challenging SMT solvers to verify MLPs

The experiments detailed in this section are carried out on a family of identical Linux workstations comprised of 10 Intel Core 2 Duo 2.13 GHz PCs with 4GB of RAM. Unless otherwise specified, the resources granted to the solvers are 600s of CPU time and 2GB of memory. The solvers involved in the evaluation are CVC [4] (version 3.2.3, default options), HYSAT [12] (version 0.8.6, $\varepsilon = 10^{-5}$ and $\delta = 10^6$ options), MATHSAT [6] (version 4, -no_random_decisions option), and YICES [9] (version 2, default options).

To compare the solvers we use encodings considering both global and local safety, different types and sizes of MLPs, and different degrees of abstraction grain. We classify the encodings in “Suites” and “Families”. The former distinction is about global vs. local safety, from which we obtain two suites, namely GLOBAL and LOCAL. For each suite, we group encodings in families differing for the number of hidden neurons and the numbers of output neurons. The family HN-XX_ON-YY denotes encodings with XX hidden and YY output neurons, respectively. We vary the number of hidden neurons in the range $\{5, 10, 20\}$ and we consider either one or six output neurons. For each suite, we produce all possible encodings obtained combining different values of these parameters. Finally, for each family, we encode formulas from $p = 0.5$, and decreasing it by
a rate $r = 1.3$ in order to simulate the refinement procedure proposed in [20]. We stop when we obtain 20 encodings for each family. Moreover, in the case of LOCAL, we compute encodings with different neighborhood sizes, i.e. $q = \{1, 10, 20, 50, 100, 199\}$.

In Table 1 we report a global picture of the evaluation results. In the following, when we say that “solver A dominates solver B” we mean that the set of problems solved by B is a subset of those solved by A. Looking at the result, we can see that all solvers but CVC, were able to solve at least 70% of the test set. CVC exhausts memory resources before reaching the time limit, and it is able to solve no encodings, thus we drop it from the analysis. Still looking at Table 1, we can see that YICES outperforms the other solvers conquering 96% of the test set, while HYSAT and MATHSAT were able to solve 83% and 81%, respectively. Despite the very similar performance of HYSAT and MATHSAT – only 15 encodings separate them – we can see that HYSAT spends about 42% of the CPU time spent by MATHSAT. We also report that HYSAT, has the best average time per encoding (about 25s) with respect to both YICES (about 34s) and MATHSAT (about 61s). Finally, we report no discrepancies in the satisfiability result of the evaluated solvers.

Table 2 shows the results of the evaluation dividing the encodings by suites and families. As we can see, in terms of number of encodings solved, YICES is the strongest solver. Concerning the suite GLOBAL, it leads the count with 109 solved encoding (91% of the test set), while concerning the LOCAL suite, it solves 700 encodings (97% of the test set). Focusing on the suite GLOBAL, 10 encodings separate the strongest solver from the weakest one – HYSAT, that solves 99 encodings (82% of the test set). If we consider the problems that are uniquely solved, then we see that no solver is dominated by the others. Now focusing on the suite LOCAL, the first thing to observe is that the difference between the strongest and the weakest solver is increased: 101 encodings separate YICES and MATHSAT, the was able to solve 580 encodings (about 80% of the test set). We also report that MATHSAT is dominated by YICES.

In Table 3 we show the classification of encodings included in the test set. In the table, the number of encodings solved and the cumulative time taken for each family is computed considering the “SOTA solver”, i.e., the ideal solver that always fares the best time among all considered solvers. An encoding is thus solved if at least one of the solvers solves it, and the time taken is the best among all times of the solvers that solved the encoding. The encodings are classified according to their hardness with the following criteria: easy encodings are those solved by all the solvers, medium encodings are those non easy encodings that could still be solved by at least two solvers, medium-hard encodings are those solved by one reasoner only, and hard encodings are those that remained unsolved.

According to the data summarized in Table 3, the test set consisted in 840 encodings, 821 of which have been solved, resulting in 636 easy, 97 medium, 88 medium-hard, and 19 hard encodings. Focusing on families comprised in the suite GLOBAL, we report that all 120 encodings were solved, resulting in 80 easy, 31 medium, and 9 medium-hard encodings. Considering the families in LOCAL, we report that 821 encodings (out of 840) were solved, resulting in 636 easy, 97 medium, and 88 medium-hard encodings.

Finally, we report the contribution of each solver to the composition of the SOTA solver. Focusing on the suite GLOBAL, YICES contributed to the SOTA solver 77 times
<table>
<thead>
<tr>
<th>Suite</th>
<th>Family</th>
<th>Solver</th>
<th>Total</th>
<th>Sat</th>
<th>Unsat</th>
<th>Unique</th>
</tr>
</thead>
<tbody>
<tr>
<td>HN-5-on-1 (20)</td>
<td>MATHSAT</td>
<td>20</td>
<td>23.889</td>
<td>–</td>
<td>23.889</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>HYSAT</td>
<td>20</td>
<td>281.56</td>
<td>20</td>
<td>281.56</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>HYSAT</td>
<td>12</td>
<td>288.91</td>
<td>12</td>
<td>288.91</td>
<td>–</td>
</tr>
<tr>
<td>HN-5-on-6 (20)</td>
<td>MATHSAT</td>
<td>20</td>
<td>28.90</td>
<td>20</td>
<td>28.90</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>HYSAT</td>
<td>20</td>
<td>712.30</td>
<td>20</td>
<td>712.30</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>HYSISAT</td>
<td>19</td>
<td>548.96</td>
<td>19</td>
<td>548.96</td>
<td>–</td>
</tr>
<tr>
<td>HN-10-on-1 (20)</td>
<td>MATHSAT</td>
<td>19</td>
<td>493.71</td>
<td>19</td>
<td>493.71</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>HYSAT</td>
<td>17</td>
<td>816.59</td>
<td>17</td>
<td>816.59</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>HYSISAT</td>
<td>9</td>
<td>731.21</td>
<td>9</td>
<td>731.21</td>
<td>–</td>
</tr>
<tr>
<td>HN-10-on-6 (20)</td>
<td>MATHSAT</td>
<td>19</td>
<td>902.85</td>
<td>19</td>
<td>902.85</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>HYSAT</td>
<td>19</td>
<td>1188.10</td>
<td>19</td>
<td>1188.10</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>HYSISAT</td>
<td>15</td>
<td>1112.26</td>
<td>15</td>
<td>1112.26</td>
<td>–</td>
</tr>
<tr>
<td>HN-20-on-1 (20)</td>
<td>MATHSAT</td>
<td>20</td>
<td>1178.89</td>
<td>20</td>
<td>1178.89</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>HYSAT</td>
<td>18</td>
<td>1637.82</td>
<td>18</td>
<td>1637.82</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>HYSISAT</td>
<td>17</td>
<td>1066.20</td>
<td>17</td>
<td>1066.20</td>
<td>–</td>
</tr>
<tr>
<td>HN-20-on-6 (20)</td>
<td>MATHSAT</td>
<td>20</td>
<td>1054.77</td>
<td>20</td>
<td>1054.77</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>HYSAT</td>
<td>14</td>
<td>961.40</td>
<td>14</td>
<td>961.40</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>HYSISAT</td>
<td>13</td>
<td>2633.74</td>
<td>13</td>
<td>2633.74</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 2. Solver-centric view of the results. Columns “Suite” and “Family” report suite and family name of the encodings, respectively. The remainder of the table is organized similarly to Table 1, with the exception of column (“Unique”), that shows data about uniquely solved encodings.

<table>
<thead>
<tr>
<th>Family</th>
<th>Overall</th>
<th>N</th>
<th>Time</th>
<th>Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>HN-5-on-1</td>
<td>20</td>
<td>20</td>
<td>23.89</td>
<td>12</td>
</tr>
<tr>
<td>HN-5-on-6</td>
<td>20</td>
<td>20</td>
<td>281.56</td>
<td>12</td>
</tr>
<tr>
<td>HN-10-on-1</td>
<td>20</td>
<td>20</td>
<td>493.71</td>
<td>12</td>
</tr>
<tr>
<td>HN-10-on-6</td>
<td>20</td>
<td>20</td>
<td>902.85</td>
<td>12</td>
</tr>
<tr>
<td>HN-20-on-1</td>
<td>20</td>
<td>20</td>
<td>1178.89</td>
<td>12</td>
</tr>
<tr>
<td>HN-20-on-6</td>
<td>20</td>
<td>20</td>
<td>1054.77</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 3. Encoding-centric view of the results. The table consists of seven columns where for each family of encodings we report the name of the family in alphabetical order (column “Family”), the number of encodings included in the family, and the number of encodings solved (group “Overall”), columns “N”, “#”, respectively), the CPU time taken to solve the encodings (column “Time”), the number of easy, medium and medium-hard encodings (group “Hardness”, columns “EA”, “ME”, “MH”).
Fig. 3. Scalability test on the evaluated solvers. For each plot, in x axis is shown the refinement step, while in the y axis (in logarithmic scale) the related CPU time (in seconds). HySAT performance is depicted by blue diamonds, while MATHSAT and YICES results are denoted by red boxes and green triangles, respectively. Plots in the same column are related to encodings having the same satisfiability result, i.e. SAT (left-most column) and UNSAT (right-most column). Plots in the same row are related to encodings having the same MLP architecture, i.e. HN-5_ON-1 (top) and HN-20_ON-6 (bottom).

(out of 120), while MATHSAT and HySAT 29 and 14 times, respectively. If we consider now the suite LOCAL, the picture is quite different: HySAT contributed 509 times, while YICES and MATHSAT 188 and 4 times, respectively. Considering all 821 solved encodings, we report that HySAT was the main contributor (64%), despite the fact that it is not the best solver in terms of total amount of solved encodings.

Our next experiment aims to draw some conclusions about the scalability of the evaluated solvers. In order to do that, we compute a pool of encodings satisfying the following desiderata:

1. Consider values of the abstraction parameter p which correspond to increasingly fine-grained abstractions.
2. Consider different MLP size in terms of hidden neurons.
3. Consider the satisfiability result of the computed encodings.

To cope with (1), we generate encodings related to 30 refinement steps. To take care the potentially increasing difficulty of such encodings, we set the time limit to 4 CPU hours.

In order to satisfy desiderata (2), we compute encodings both considering HN-5_ON-1 and HN-20_ON-6 MLP architectures. Finally, in order to cover (3), we focus on the suite LOCAL, selecting the encodings related to $q = 1$, and $q = 199$. The former encodings are almost always satisfiable, i.e., an abstract counterexamples is easily found, and, conversely, the latter encodings are almost always unsatisfiable.
As a result of the selection above, we obtain 4 groups of encodings, and Figure 3 shows the results of experimenting with them. Looking at Figure 3 (top-left), we can see that HYSAT is the best solver along the first 17 refinement steps. After this point, its performance is comparable to YICES, but with the noticeable difference that the latter is able to solve all the encodings, while HYSAT exhausts CPU time resources trying to solve the two encodings having the smallest value of \(p \). The CPU time spent by MATHSAT on each of the first 24 refinement steps is at least one order of magnitude higher than HYSAT and YICES. Considering now the same safety problem, but related to a larger MLP architecture, we can see a different picture. From Figure 3 (bottom-left), we can see that no solver is able to solve all the encodings within 4 CPU hours. In particular, MATHSAT stops at the 21st step (out of 30), while YICES is able to solve all encodings but the last two. While the performances of MATHSAT and YICES seems to have a smooth increasing trend, HYSAT is less predictable: In the first 22 refinement steps it is up to one order of magnitude faster than YICES – with the noticeable exception of four “peaks” – and for the following two steps it is two order of magnitude slower than YICES.

Considering now the plots in Figure 3 (right), we can see that the trend in solver’s performance is much smoother than the plots in Figure 3 (left). Looking at Figure 3 (top-right), we can see that, excluding the last encoding, HYSAT is one order of magnitude faster than YICES, that in turn is one order of magnitude faster that MATHSAT. Looking now at the last plot, we can see that we have two main differences with respect to the picture resulting from the previous plot. First, the encodings are more challenging, because no solver was able to solve all the pool within the CPU time limit. Second, there is no noticeable difference – excluding the last two solved encodings – between MATHSAT and YICES.

Our last experiment concerns the analysis of the performance of our tool NE\text{VER} [20] equipped with the various solvers back-ends. We experiment with a local safety problem with \(k = 75, p = 0.5, \) and \(r = 1.1 \) about an MLP having a HN-20_ON-6 architecture. In Figure 4 we report the results of such experiment. Also if NE\text{VER} was not able
to conclude about the safety of the considered MLP because all solvers exhaust their memory resources, looking at the figure we can see that YICES clearly outperforms both MATHSAT and HY SAT. YICES allowed NEVER to refine 54 times, while MATHSAT and HY SAT stopped to 32 and 21 refinements, respectively. Concerning the cumulative CPU time, performances of MATHSAT and YICES are in the same ballpark until the 12th step, and they increase smoothly until the end of the computation. On the other hand, if we look at HY SAT performance, we can see that it is very close to be constant, with the noticeable exception of two peaks: The first one (between step 3 and 4) is small, and the second one (between step 9 and 10) implies a two orders of magnitude jump in the cumulative CPU time. In this problem, HY SAT shows the same behaviour shown in Figure 3 (bottom-left).

Summing up, our experiments show that such encodings are challenging for SMT solvers, in particular from a scalability point of view. Despite this fact, we can conclude that YICES seems the “best candidate” to be used as back-engine of our tool NEVER, mainly because it scales better for encodings related to small values of \(p \). As future work, we plan to investigate two main directions. The first one is a deep investigation about the parameters of the SMT solvers, in particular referring to some recent work about Automated Configuration – see, e.g. [17]. The second one, motivated by the fact that there is no clear “winner” among the solvers, especially for not-so-small values of \(p \), is to characterize SMT instances using quantitative features and try a multi-engine approach in the spirit of [19].

References

