PREPRINT VERSION - © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any

copyrighted components of this work in other works.

1

Pose Estimation and Trajectory Derivation from
Underwater Imagery

Anuj Sehgal*, Daniel Cerneaf, Milena Makaveeva?
*Computer Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
s.anuj @jacobs-university.de
TUniversity of Kaiserslautern, Computer Graphics and HCI Group, 67653 Kaiserslautern, Germany
cernea@cs.uni-kl.de
Hndian Underwater Robotics Society, E-118 Nar Vihar Part-I, Sector 34, 201301 Noida, India
milena@iurs.org

Abstract—Obtaining underwater imagery is normally a costly
affair since expensive equipment such as multi-beam sonar
scanners need to be utilized. Even though such scanners provide
imagery in form of 3D point clouds, the tasks of locating
accurate and dependable correspondences between point clouds
and registration can be quite slow. Registered 3D point clouds
can provide pose estimation and trajectory information vital to
the navigation of a robot, however, the slow speed of point
cloud registration normally means that maps are generated
offline for later use. Furthermore, any algorithm must be
robust against artifacts in 3D range data as sensor motion,
reflection and refraction are commonplace. In our work we
describe the use of the SIFT feature detector on scaled images
based on point clouds captured by sonar in order to register
them in real-time. This online registration approach is used to
derive navigational information vital to underwater vehicles. The
algorithm utilizes the known point correspondence registration
algorithm in order to achieve real-time registration of point
clouds, thereby generating 3D maps in real-time and providing
3D pose estimation and trajectory information.

I. INTRODUCTION

Underwater imaging and mapping is a complicated and
expensive task due to the high accuracy sonar devices require.
However, data acquired from such devices can not only
benefit underwater robotics, since it can be used to generate
navigational maps, but various fields such as archaeology
and geology also stand to benefit from such data. Typically,
in all these application domains it is rare to get a single
representation of the data [1] and as such multiple frames of
point clouds have to be obtained and registered with respect to
each other in order to construct a composite map or scene. This
composite data can be then further utilized for localization,
analysis or visualization purposes. Such registered data can
also be used to obtain pose-estimation and further derive a
trajectory of a vehicle.

Full automation of the registration process of point clouds
obtained from sonar imagery is a topic of active research and
most systems still rely upon user input in order to determine
the initial transformation. Additionally, the algorithms are
highly processor intensive [3] making real-time registration of
these point clouds a non-trivial effort. As such, when sonar
devices are deployed for navigation tasks, they are mostly
used to collect data and then register the point clouds offline

Figure 1. The point cloud representation returned from a Tritech Eclipse
Multi-beam Sonar, as seen in the user interface [2]. Blue is weaker intensity,
whereas red is strong. As can be seen, the data is pretty noisy due to the
multiple acoustic reflections of the wall, albeit these are not strong in intensity.

for future use [4]. Furthermore, point clouds provide another
challenge as compared to images in the form of noise that
may be present within the returned data, causing false artifacts
to appear in the point clouds or making the point cloud too
sparse, with not enough usable information within it [5]. For
example, point cloud data obtained from a multi-beam sonar
such as the Tritech Eclipse normally suffers from a high degree
of noise due to ambient conditions, reflections and refractions
of the acoustic sonar beams. An example of such noisy data
can be seen in in Figures 1 and 2, where a Tritech Eclipse
multi-beam sonar was used to obtain point clouds of a wall.
Such noise in point cloud data means that it is extremely
important for the correspondence detection algorithm to be
able to successfully function despite the existence of noise
[6], and this makes most such algorithms processor intensive.

However, fully automated online registration can be
achieved in case 2D images are used. As such, our approach
depends upon locating robust features, invariant to scale,
rotation and point of view within 2D images derived from
the point clouds by utilizing a square-root scaling approach
to convert the euclidean distances to each individual point or
using acoustic intensities associated with these points. These
robust features can then be used with a high certainty to
locate correspondences between the point clouds, by matching

Anuj Sehgal
PREPRINT VERSION - © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

Anuj Sehgal

Anuj Sehgal

(b) scan 4, perspective view

(c) scan 17, top view (d) scan 17, perspective view

Figure 2. Multiple perspective views of the point cloud obtained from the
data returned by the Tritech Eclipse [2], based on the data seen in Figure 1.
It is quite clear that the data is pretty noisy.

these features within two sets of voxels. However, to reduce
the effect of the possible noise in range data, it is necessary
to select a feature descriptor that is very robust and, more
importantly, invariant to scale and rotation changes.

To meet our goals of locating a high number of features
with a high degree of certainty and repeatability from
multiple poses, and in data with high noise, an algorithm
utilizing features based upon the Scale Invariant Feature
Transform (SIFT) descriptor model [7] was developed to find
correspondences between the point clouds. The SIFT features
are highly robust, in that they are orientation invariant and
are applicable at multiple scales. The algorithm is able to
generate a large number of localized features with a relatively
low computational cost. It was applied to point clouds by
utilizing a square-root scaling approach on the euclidean
distance from origin to each point in the point cloud or by
using acoustic intensities associated with these points [8]. The
detected SIFT features in these intensity or range images can
be matched to their corresponding voxels in the point clouds
in a straightforward fashion.

Registration of the two point clouds is then carried out
using a known point correspondences algorithm. The resulting
rotation and translation matrices combined with the scaling
factor provide for the pose estimation and can also be used to
derive a trajectory based purely on sonar imagery.

The following sections of the paper present information
related to the SIFT algorithm and then proceed to describe
the approach used to find SIFT features in 3D point clouds.
The correspondence detection algorithm and the registration
method used are also discussed. Some results, test and
performance data obtained using the approach are presented
and discussed along with the conclusions that are drawn from
the results.

II. THE SIFT FEATURE DETECTOR

Robust detection of features in a scene is necessary in
order to find correspondences within a point cloud so as

Figure 3. A 3D point cloud, representing the reflected acoustic intensity
of each point in greyscale, of an underwater arch produced by the Tritech
Eclipse Multi-beam Sonar.

to expedite the registration process, which normally can be
computationally expensive. The features provided by the SIFT
algorithm are local and invariant to image scale and rotation,
thereby making them quite robust [9]. The SIFT algorithm
is implemented in four stages that provide a result in form
of multiple feature descriptors that are represented as a
128-element vector to achieve scale and rotational invariance.

The first stage of the algorithm is where all possible points
of interest, known as key-points, are detected. In order to
achieve this, the input data is successively convolved with
Gaussian filters at different scales, and then the difference
of successive Gaussian-blurred images are taken. The local
extremum points that exist within the Difference of Gaussians
(DoG), an approximation to the Laplacian, at multiple scales
are then accepted as the key points. Once the initial set of
candidate key points is obtained from the DoG images, they
are analyzed within their own neighborhood and adjacent
scales, to determine whether they are a local maxima or
minima. Furthermore, the second step discards the key-point
coordinates that are located in noisy space. This is achieved
by eliminating candidates that lie in a region of low contrast
or on the edges.

The third step achieves invariance to rotation by assigning
each key-point one or more orientations. To compute the
orientation of a point in a scale-invariant manner, the
Gaussian-smoothed image corresponding to the scale from
which the key-point was originally derived is taken and an
orientation and gradient magnitude assigned to it. Magnitude
and direction calculations for the key-points are performed for
every pixel in the neighborhood and an orientation histogram is
generated with 36 bins, each bin covering 10 degrees. Once the
histogram is fully populated the orientations with the highest
peaks and those that are within 80% of the highest peaks are
assigned to the key point.

The final step in the SIFT algorithm actually computes the
descriptor vector that can be used to identify and further match
each key point. This step is extremely similar to the orientation
assignment method. The feature descriptor is computed as
a set of orientation histograms on a pixel neighborhood of

Figure 4. An example of a square-root scaled image of a point cloud as
obtained from a terrestrial Swiss ranger. Acoustic intensity images were used
in our experimentation due to the ease of filtering out noise from it.

size 4 times 4. The histograms are relative to the key point
orientation and the orientation data is derived from the image
that corresponds to the key point’s scale. The representations
now contain 8 bins, each leading to the derivation of a SIFT
feature vector that contains 128 elements. This vector may be
used to perform image matching or pattern recognition.

III. REGISTERING 3D SONAR IMAGERY

The aim of the work presented is to be able to enable
automatic real-time registration of the 3D point clouds for
underwater imagery. Currently, the most popular method for
registration is the Iterative Closest Point (ICP) algorithm or
some derivative of the same [1]. The ICP algorithm and
most of its derivatives are computationally expensive, giving
rise to the necessity of being able to perform registration
based upon pre-located correspondences from a fewer set of
points, in order to speed up the overall performance of the
registration process. However, this approach requires that the
pre-computed correspondences between the point clouds be
calculated quickly, while also ensuring their accuracy between
frames that could have changing rotation, translation and
scaling. In order to achieve this goal a three-step algorithm
that uses the SIFT feature descriptor to describe key points
in point clouds is designed. The three steps of the algorithm
(data preprocessing; SIFT descriptor generation and feature
matching to locate correspondences; and registration of point
clouds) are discussed in the following subsections.

A. Data Preprocessing

The SIFT feature detector is designed to function only
with 2D datasets and as such, the point clouds need to be
converted to images before features can be located within
them. Considering that most sonar devices provide range data
along with acoustic intensity information, there are two options
available in order to convert the point clouds to 2D images.

The most straightforward approach creates a greyscale
image based on the acoustic intensities associated with each
point in the point cloud. An advantage of using such an image
is that it can be easier to filter some of the noise out. For
example, low-intensities can be completely ignored in order
to filter out the reflections that arrive at the receiver; this
will work in most scenarios since reflections always travel

Figure 5. SIFT descriptor based matches for two frames from a set of
underwater images captured by a waterproofed camera. The red lines show
the SIFT feature correspondences discovered.

longer leading to lower intensities. A point cloud based on
this intensity data can be seen in Figure 3.

The second approach involves calculating the Euclidean
distance to each individual (x,y,z) coordinates within the
point cloud from the origin (0,0, 0) and scaling using square
root scaling, i.e. taking the square root of this distance. An
image representation of range data square root scaling can
be seen in Figure 4. This data was derived from a Swiss IR
Ranger mounted on a mobile robot. A sonar based range image
is not pictured here since we utilized acoustic intensities,
provided by the Tritech Eclipse, to construct images for the
SIFT feature detector.

Upon obtaining the 2D image data, it is passed through
a PNG converter in order to obtain images to which the
SIFT operator is applied. The SIFT feature detector requires
continuous points in the neighborhood of a pixel to function.
Voxels in a 3D range point-cloud are not densely located, and
as such the SIFT detector cannot be extended to 3D range
point-clouds directly. This necessiates the preprocessing step
to convert point clouds to images which can then be used with
the SIFT feature detector.

B. SIFT Feature Detector and Matching

The SIFT feature detector is built using OpenCV [10]
to follow closely the SIFT algorithm from [7], [9]. The
SIFT algorithm takes as input a PNG image corresponding
to the representation of the point cloud and computes the
128-element vectors for every identified feature key point.

Upon obtaining the SIFT feature descriptors from the square
root scaled images for the two point clouds to be registered,
correspondences between the (x,y, z) coordinates in the point
clouds is obtained by searching for matching SIFT descriptors,
using the RANSAC algorithm [11]. The RANSAC algorithm
selects a set of feature pairs randomly and computes the set
of all feature pairs conforming to the implied transformation.
A support set is rejected if it results in a size that is below a
certain threshold. Figure 5 shows matches found between two
underwater images taken from a waterproofed camera, as a
proof that the SIFT feature detector functions on underwater
imagery.

Once the matches are found on the basis of the RANSAC
algorithm, correspondences between the 3D point clouds are
easily derivable since the corresponding location of each key
point in the scaled image data is known within the point cloud

as well. The set of resultant correspondences can now be
further used with the chosen registration algorithm.

C. Point Cloud Registration

Registration is necessary in order to be able to compare
or integrate the data from different measurements. This step
provides the relative rotation, translation and scale of the two
3D point clouds being compared. The popular ICP algorithm
is memory and processor intensive, thereby being unsuitable
for real-time applications [12]. However, if a known points
correspondence algorithm is used, this can considerably speed
up the registration performance.

As such, for the purpose of speeding up the registration
step and owing to the robustness of the SIFT features, the
known points correspondence registration algorithm based on
quaternions is utilized in our approach. Every corresponding
point in the range point clouds can represent a quaternion
with ¢ = 0 and z,y and z coordinates given by the respective
coordinates of the point in the 3D point cloud.

By comparing data from two consecutive point clouds, we
are able to retrieve the quaternion of the rotation matrix o*
from the eigenvector corresponding to the maximum positive
eigenvalue of the 4x4 matrix N shown below:

N => T(7:) T () (1)
=1

Further, the rotation matrix can be obtained from the
rotation quaternion by,

R=T(@")"T(a"))

Having obtained the rotation matrix R, the translation
quaternion and scale factor are calculated using,

Tl*/r =7, + SR,./l(fl) 3)

(LT R, (],
8* _ Zz-l(7‘77,) /12(l,z) (4)

S|

The matrix calculations required for the registration step
were performed using the GSL library [13] and several
extensions were written in order to calculate the eigenvectors,
eigenvalues, vector normalization and etc.

We also further extended our work in order to utilize
registration to derive the roll, pitch and yaw between the
consecutive frames. This can be extremely useful in robotics
since it provides a method to derive odometry by using
only range sensor data. After obtaining the rotation matrix,
calculation of the respective roll, pitch and yaw is a
straightforward task of selecting the appropriate row/column
pairs from the rotation matrix. The change of attitude between
the two point clouds can be computed from the least-square
rotation matrix, R = {r; ;} fori =1,2,3 and j = 1,2, 3 by:

!
LR

¥ = atan2(rog, —711)
0 = atan2(rsg, —rizsiny + rag cos) 5)
¢ = atan2(ri3cost + rogsinw, r11 cosy + rop sin)

Gl i
»
&
£ 5r]
;]
X
g4 7
G
2
z
o 3r 1
S
5
3 2r .
1 F -
0 ‘ . . \ . \ . : .
u] 045 1 15 2 25 3 345 4 445 |3
X-Axis lraversal Distance (m)
Figure 6. Motion of the robot as predicted by the odometry derived from

the SIFT based registration procedure vs. robot motion as obtained from
navigational sensors (IMU, gyroscope and compass). Red line is from point
clouds matching, while blue is the recorded robot odometry.

Here, we use the Euler angles (roll ¢, pitch 6, yaw 1) to
describe the attitude. Having obtained translation and the yaw,
pitch and roll the robot odometry is available. This can be
used in localization and mapping tasks commonly performed
by robots. It can also be used to estimate the pose of the robot,
given that the original pose is known. This is so, because a
registration based approach such as this can only be used to
obtain the change in attitude and position, rather than absolute
position or attitude. As such, as long as the original position
is known, the changed pose and trajectory, in relation to the
original, can be obtained.

IV. TESTING AND RESULTS

The dataset consists of 120 frames of point clouds obtained
by moving a Tritech Eclipse mounted on a frame within a pool.
The (z,y,z) location within the point cloud corresponds to
the measured distance in meters. This data is retrieved frame
by frame and supplied to the software running on a Linux
platform in order to register the two point clouds. The test
system used was an Ubuntu Linux installation on a platform
with 1 GB RAM and a 2 GHz Intel Core 2 Duo CPU.

The robustness of the SIFT features and their ability to have
more than a single orientation at a particular point can cause
the RANSAC algorithm to successfully find more than one
correspondence of a feature in the adjacent frame. This is
especially useful since the approach requires that at least 3
correspondences be found between adjacent frames in order
to successfully register them.

We ran an experiment to derive odometry based on the point
cloud set. In order to do so, each consecutive point cloud was
registered with the previous one and a rotation, translation and
scaling were derived, which also provided us with the yaw,
pitch and roll. The obtained yaw, pitch, roll, and translation
values were compared with those provided by IMU, gyroscope
and compass sensors attached to the rig by plotting a route map
for the robot as predicted by both data sources and also plotting

the yaw, pitch and roll in a similar fashion. The odometry
derived from the point clouds closely matched that provided
by the other sensors, however, a drift error was noticed. We
also noticed that there were certain frames where not enough
features would be found and this led to sudden jumps in the
data, which further increased the drift error.

Figure 6 shows the path taken by our test rig. While
the shape of the positional odometry derived from the 3D
point cloud data is similar to the actual path, there is
quite a lot of deviation between the two. Besides a lack of
correspondences between some frames, this deviation can also
be explained by the fact that in some frame-pairs, certain
points had multiple correspondences; for simplicity, these were
not considered in the final result since the multiple locations
of the correspondences led to errors. These results could
further be improved by applying some filtering, however, they
clearly demonstrate the effectiveness of using point cloud data
for obtaining odometry information as well. The obtained
results can at least be used as a basis for understanding
robot trajectory or assisting a vehicle in localization while
information from other sensors like the IMU or USBL might
be unavailable.

Lastly, the other important performance criterion is the
run-time performance of the algorithm in finding the
correspondences between point clouds and then performing the
corresponding registration. In our tests, the software was able
to achieve an average frame rate of 12.58 fps. We are confident
that this could further be improved by adding optimizations
methods, which were omitted in this version for the sake of
simplicity and testing. For example, each step in the processing
pipeline is current a separate program that writes files to a disk
and then launches another program to continue the processing.
It is safe to say that this adds considerable overhead. However,
the obtained frame rate is within the range for real-time
performance since most sonar devices themselves take a few
moments to return data.

V. CONCLUSION

In our work we proposed a method to obtain trajectory and
pose information using point clouds obtained from underwater
sonar data. Our approach applies the SIFT feature detector
to point clouds by scaling the data sets into images, which
the SIFT descriptor can work with. The point clouds are
then registered based upon the correspondences of the feature
points. This implementation makes it clear that the SIFT
descriptor retains its robustness even when utilized with range
data. Moreover, even in highly noisy sonar range data, multiple
correspondences are successfully found.

The algorithm performs quite well in locating
correspondences between point clouds and registering
them with near real time performance. Furthermore, the
preliminary experimental results suggest that even odometry
data derived from calculating the relative translation, rotation
and scaling between successive point clouds is close to being
accurate, however, it may need further filtering to have the
error component removed and the drift error minimized.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

REFERENCES

G. Bendels, P. Degener, R. Wahl, M. Koertgen, and R. Klein,
“Image-based registration of 3d-range data using feature surface
elements,” in Proceedings of The 5th International Symposium of Virtual
Reality, Archaeology and Cultural Heritage (VAST 2004), 2004.

H. Biilow and A. Birk, “Spectral registration of noisy sonar data
for underwater 3d mapping,” Autonomous Robots, vol. 30, no. 3, pp.
307-331, Apr. 2011.

M. Callieri, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, and
R. Scopigno, “Vclab’s tools for 3d range data processing,” in
Proceedings of the 1st EURO-GRAPHICS Workshop on Graphics and
Cultural Heritage, Brighton, UK, November 2003.

N. Gracias and J. Santos-victor, “Trajectory reconstruction with
uncertainty estimation using mosaic registration,” Robotics and
Autonomous Systems, vol. 35, pp. 163-177, 2001.

D. Cernea, “Graphical methods for online surface fitting on 3d
range sensor point clouds,” Master’s thesis, Jacobs University Bremen,
Germany, August 2009.

O. Schall, A. Belyaev, and H.-P. Seidel,
noisy scattered point data,” in
Eurographics/IEEE VGTC Symposium Proceedings,
pp. 71-144.

D. Lowe, “Distinctive image features from scale- invariant keypoints,”
International Journal of Computer Vision (Springer Netherlands),
vol. 60, no. 2, November 2004.

A. Sehgal, D. Cernea, and M. Makaveeva, “Real-time scale invariant
3d range point cloud registration,” in Image Analysis and Recognition,
ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2010, vol. 6111, pp. 220-229.

D. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of International Conference on Computer Vision, Corfu,
Greece, September 1999.

V. Pisarevsky and et al, “Opencv, the open computer vision library,”
2008, http://mloss.org/software/view/68/.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381-395, 1981.

Z. Zhang, “Iterative point matching for registration of free-form curves
and surfaces,” Int. J. Comput. Vision, vol. 13, no. 2, pp. 119-152, 1994.
B. Gough, Ed., GNU Scientific Library Reference Manual - Second
Edition. Network Theory Ltd., 2003.

“Robust filtering of
Point-Based Graphics, 2005.
June 2005,

