
Using a Variant of Sliding Window to Reduce Event
Trace Data

Andy Zaidman, Serge Demeyer

Lab On Reengineering
University of Antwerp

Middelheimlaan 1, 2020 Antwerpen, Belgium
Andy.Zaidman@ua.ac.be, Serge.Demeyer@ua.ac.be

Abstract. Understanding how components interact with their neighboring com-
ponents is a necessary prerequisite for the evolution of legacy software systems.
Dynamic program analysis is known to provide deep insight in component in-
teraction protocols, however such techniques must all cope with a tremendous
scaleability problem. Therefore, this paper proposes a heuristic which reduces
program traces based on a frequency spectrum analysis of program events. Based
on a small case-study, we conclude that the heuristic is able to identify interest-
ing component interaction patterns in program traces that consist of one to two
million events.

1 Introduction

Software engineers who are specialized in the field of dynamic analysis often
have to contend with large amounts of trace data. This trace data is used for
regaining architectural insight, profiling an application, measuring performance
and many other purposes.
To give an idea of the amount of trace data that is generated: a well-structured
Java program consisting of 5 classes generates approximately 6000 events while
running for 1 second. Although this execution scenario lasts only one second, it
is easy to see that tracing large scale industrial applications would lead to sizes of
trace data that are very difficult to handle [1].
Moreover, for the purpose of regaining architectural insight these huge amounts
of detail of the trace are not needed: the event trace contains all the method calls
that a program makes, but for the purpose of regaining architectural insight, we
are mainly interested in the component interaction protocol. A lot of events don’t
influence this interaction protocol, so we aren’t really interested in them.
The heuristic we propose is based on a combination ofFrequency Spectrum Anal-
ysis[2] and asliding windowmechanism, well-known in the world of telecom-
munications [3]. In using both these techniques we are able to identifykey events,
events we find interesting, and mark regions where there are a lot of these key
events.
For the purpose of regaining architectural knowledge through dynamic analysis,
reducing the amount of trace data is very important to keep algorithms for detect-
ing patterns in the trace as efficient as possible. Bottom-line is that we want to
identify key events and their surrounding events and continue working with them
and not the entire trace.



2

2 Context

To give a better idea as to how much data is really involved in a trace capturing
mechanism, we look at Table 1. As you can see, the first three values in each
column show the amount of trace data involved when tracing the program.
The three following values were collected when using a primitive, but effective
reduction-scheme. Specifically, we used a filter on the trace capturing mechanism
which excluded all method-calls to methods from classes we decided we were
not interested in. For the example in Table 1 we excluded all classes from the
Java API1(Java Standard Edition, version 1.4.1). This kind of reduction operation
should not be confined to excluding low-level method calls; also method-calls
to parts of the software we’re not interested in for our reengineering or under-
standing purposes can be filtered out in a similar way, e.g. filtering out all calls
to the XML Xerces library, that’s frequently used for logging purposes in Java
programs.

Jetty 4.1.4 Jext jEdit 4.1 Tomcat 4.1.18 Fujaba 4

Classes (total) 11423 11094 10603 13258 15630
Events 948913 3215983 2071216 6582356 12522380
Unique events 2231 10038 9900 4925 858505
Classes (with filter) 3707 3835 3344 3482 4253
Events 746207 702607 182425 1076173 772872
Unique events 1128 1621 1666 2359 95 073

Table 1.Magnitude of trace data.

As Table 1 shows, the amount of reduction varies a lot: in the best case the filter-
ing mechanism reduces the trace to about 6% of the original trace (in the case of
Fujaba). Worst case we get 78% of the original trace (the Jetty case study).
This primitive filtering technique helps in keeping the volume of trace data under
control, but it also partially solves another fundamental problem when tracing
programs: theprobe effect. This can be described as the interference of the moni-
toring process of the software under consideration on the program itself [4]. This
is especially true in the case of multi-threaded programs, but also plays a crucial
role in performance critical applications.
This effect can be compared to the well-knownuncertainty principlefrom Heisen-
berg (discovered in 1927) in the field of quantumphysics that postulates that it is
impossible to know the exact place of a particle and the exact impulse at the same
time. It goes even further, because the more you know about the place of the par-
ticle, the less you know about it’s impulse, and vice versa.
What we call theprobe effectis really not that different, because the more trace
data we want to capture, the less accurate the execution patterns become (due to
the interference from the tracing process). The opposite is also true.

1 The Java API contains all the libraries for standard Java functionality, e.g. strings, math, inter
process communication, ...



3

3 Heuristic

The heuristic combines two techniques, namelyFrequency Spectrum Analysis
and a variant of asliding windowprotocol. In this section we’ll discus both and
how we can combine them.
Before we continue, perhaps now is the time to give a definition to anevent. From
our point of view an event is something like:

Class.methodname(Type of parameter 1,
Type of parameter 2, ...)

Notice that we don’t use object identifiers (OID’s). As we are interested in making
an abstraction, we aren’t interested in specific instances of classes.

3.1 Frequency Spectrum Analysis

The concept ofFrequency Spectrum Analysis(FSA) as introduced by Thomas
Ball [2] has some interesting properties:

– The use of low versus high frequencies to partition the program by levels of
abstraction.

– The use of frequency clusters to identify related computations in the pro-
gram.

– The use of specific frequencies to find computations related to the program’s
observed behavior (e.g. how much input/output)

Table 1 shows that the number of unique events is rather limited with respect to
the total number of events, which clearly means that there is a lot of repetition
in the executed methods. When we combine this knowledge with the concept of
FSA, we will try to identify ”key events”. From Figure 1 we will deduce what
we understand under key events. What we can see here, is that there is a small
number of methods which are responsible for most of the events. In the case of
Fujaba, depicted in Figure 1, 1% of the methods are responsible for 75% of the
events.
How can this knowledge help us in discerning key events?

– Frequently called methods are probably an indication of low-level function-
ality, called by many different types of methods and a such they give no real
indication of an interaction protocol pattern (they can however be part of a
pattern, but they are not necessarily an indication of a pattern). We consider
them to be non-important.

– Methods that are called infrequently also give no indication for patterns.
These are also considered non-important.

This leaves us with an interval of key events. Where the exact boundaries for
this interval are, is hard to determine. It depends on the level of granularity when
performing the trace operation, the kind of application,...

3.2 Sliding window mechanism

We were looking for a mechanism that would do three things:
– Reduce the size of the trace data.



4

0 10 20 30 40 50 60 70 80 90 100
8

8.5

9

9.5

10

10.5

11

11.5
x 10

5

Percentage of unique events (ranked from frequent to infrequent)

T
ot

al
 n

um
be

r 
of

 e
ve

nt
s

Fig. 1. FSA from Fujaba 4: a small number of methods are responsible for a large number of
events

– Retain key events that we have identified during the FSA.
– Since our ultimate goal is to find sequences of events that can be abstracted

into a pattern of execution, we are not only looking at the key events. Thus,
we’ll also be looking at the (non-key) events that surround the key events.

To try and meet these three goals, we set up a mechanism that - at first sight -
resembles a sliding window mechanism, well-known in the world of telecommu-
nications [3]. We will explain the inner-workings of the mechanism with the help
of Figure 2.

We take a window to be a small view on the huge event trace. This window moves
over the input data. When the content of the window is deemed interesting, the
contents of the window, i.e. a sequence of events, is then redirected to the output.
So, what does the algorithm do exactly? It searches forkey events, but it also
looks at the events that precede and follow the key events, i.e. it looks at the im-
mediatesurroundingof the key event. If, for example, eventi+2 is also marked as
a key event, we want toenlargethe window size, because we are more interested
in the whole sequence of events that contain these two key events, then in the
separate two sequences that can be formed, e.g. [eventi−2, eventi+2] and [eventi,
eventi+4].
The algorithm we present here has a variable window size, because of several
reasons:

– interesting parts of the trace may be very concentrated in locality. If we find
an interesting sequence> windowsize, we are now perfectly able to adapt
our windowsize to it and output the entire sequence.



5

...
eventi−3

eventi−2

eventi−1

eventi
eventi+1

eventi+2

 window

eventi+3

...

Fig. 2. Example of a window (size 5). Standard windowsize, because there is only one key event
in window.

– if we were to switch to a fixed windowsize, we would also introduce redun-
dancy in the output. If two important events lie next to each other, but both lie
in different windows, it would introduce duplication as surrounding events
would be doubled (in fact, the second key event would lie in the surrounding
of the first window, and the first key event would lie in the surrounding of
the second window).

This chaining effect causes some troubles, especially when the
predefinedWindowsize is quite large (>5): the reduction of trace data be-
comes insignificant. For this reason we’ve added a second parameter, theimpor-
tanceof a sequence (predefinedImportance in the algorithm below). This
parameter tells how many key events are expected within a sequence, in other
words it puts a lower boundary on the density of important events in a sequence.

The algorithm in pseudo-code:

// predifinedWindowsize and predefinedImportance
// are the parameters of the algorithm
distance = 0;
importance = 0;
while(still more events)
{

if(currentevent == important)
{

foundImportant = true;
distance = o;
++importance;

}
else
{

if(! foundImportant)
{



6

if(eventqueue.size() > predefinedWindowsize)
{

eventqueue.removeFirst();
}
else
{

++distance;
}

}
eventqueue.add(currentEvent);

// add current event to window
}
if((distance > predefinedWindowsize)

& (importance > predefinedImportance)
{

sequencefound = true;// write the entire
// eventqueue to output

distance = 0; // reset distance
importance = 0; // reset importance
foundImportant = false;

}
currentEvent = trace.getNext(); // get next event

}

The most important question remains however: how good is this heuristic. At this
moment, we do not have conclusive data on this. Preliminary results show that
with the right parameters for the heuristic, the reduction is considerable (up to a
factor 90 smaller). When used for the purpose of regaining architectural insight,
we do have enough data to work with. Further tests are needed to determine the
quality of the reduction operation, i.e. aren’t we throwing away too much data.

4 Conclusion

This paper presents a novel heuristic for reducing the huge amounts of trace data
that a program leaves behind. Reduction is in many cases necessary for optimal
post-mortem analysis. Further tests will verify the quality of the reduction opera-
tion.

References

[1] Smith, R., Korel, B.: Slicing event traces of large software systems. In:
Automated and Algorithmic Debugging. (2000)

[2] Ball, T.: The concept of dynamic analysis. In: ESEC / SIGSOFT FSE. (1999)
216–234

[3] Clark, D.: Window and acknowledgement strategy in tcp (1982) RFC813.
[4] Andrews, J.: Testing using log file analysis: tools, methods, and issues (1998)

Proc. 13 th IEEE International Conference on Automated Software Engineer-
ing, Oct. 1998, pp. 157-166.


