
Using Chip Multithreading to Speed Up
Scenario-Based Design Space Exploration: A Case Study

Peter van Stralen Andy D. Pimentel
Institute for Informatics, University of Amsterdam

{p.vanstralen, a.d.pimentel}@uva.nl

ABSTRACT
Early design space exploration (DSE) is a key element of system-
level design of complex embedded systems, helping designers to
make design decisions during the early design phases. For early
DSE, where the design space is vast, it is crucial that the explo-
ration process is as efficient as possible. In this paper, we describe
the implementation of our scenario-based DSE framework on a
Chip Multithreading platform, namely the SPARC T3-4 server, and
study its performance behavior in detail.
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General Terms
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Keywords
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1. INTRODUCTION
A significant amount of research has been performed on system-

level Design Space Exploration (DSE) for Multi-Processor System-
on-Chips (MPSoCs)s (e.g. [9, 5, 12, 11, 10, 6, 13]) during the last
two decades. The majority of this work is focused on the analysis
of MPSoC architectures under a single, static application workload.
The current trend, however, is that application workloads executing
on embedded systems become more and more dynamic.

Recently, we have introduced the scenario-based DSE environ-
ment [14] that exploits workload scenarios [4] to model both the
dynamism between and within the applications that are mapped
onto a MPSoC. As a basis for scenario-based DSE, a scenario-
aware version of our high level simulation framework Sesame [15,
14, 17] is used. In this scenario-aware Sesame (as illustrated in
Figure 1), the concept of separation of concerns is used, resulting
in separate models for the application(s), the architecture and the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RAPIDO’14 January 2014, Vienna, Austria.
Copyright 2014 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

mapping. In the application model the functional behavior of the
application workload is described using intra- and inter-application
scenarios. Intra-application scenarios describe the dynamic behav-
ior within an application, whereas the inter-application scenarios
describe the dynamic behavior between multiple applications (i.e.,
which applications can run concurrently). The structure of the ap-
plications themselves are described using Kahn process networks
[7]. In Figure 1, the example application workload consists of two
applications, a MP3 decoder and a Video decoder. The architecture
model describes the non-functional behavior (e.g., execution cycle
times, power consumption, etc.) of the MPSoC design. To con-
nect the application model and the architecture model, the mapping
layer maps both the processes and communication channels in the
applications onto a component in the architecture model. To this
end, the mapping layer deploys a trace-driven simulation approach
to co-simulate the application model (generating event traces) and
the architecture model (consuming the event traces) [11].

A complicating factor of embedded system design, however, is
that there is an exponential number of potential mappings. That
is why a search algorithm is required to efficiently explore the
design (i.e., mapping) space. Therefore, our scenario-based DSE
framework aims at an efficient search for (sub-)optimal mappings
of embedded systems with dynamic multi-application workloads.
As shown in Figure 2, the framework consists of two components:
the design explorer and the subset selector. The design explorer
searches for optimal MPSoC mappings. For this purpose, a ge-
netic algorithm [8, 3] is used that applies natural evolution on a
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Figure 1: High level scenario-based MPSoC simulation.
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Figure 2: The framework for scenario-based DSE.

population of mappings to identify high quality mappings. This
quality is determined by simulating each mapping in the popula-
tion. Although a Sesame simulation typically takes less than a sec-
ond, there are many mappings that need to be evaluated. On top of
that, each mapping needs to be evaluated for multiple application
scenarios. To speed up the evaluation of a single mapping, a repre-
sentative subset of application scenarios is used for the evaluation
instead of using all possible application scenarios. This represen-
tative subset of scenarios is identified by the subset selector. Based
on a set of training mappings (that is based on selected designs
from the design explorer), the subset selector dynamically selects
a representative scenario subset. Since the representativeness of a
subset of scenarios is dependent on the designs explored in the de-
sign explorer, both the design explorer and the subset selector are
executing simultaneously [16, 17].

To efficiently perform scenario-based DSE, we have implemented
it on a Chip Multithreading system, namely the SPARC T3-4 server,
and studied its performance behavior. With its 512 hardware threads,
the SPARC T3-4 server should be a suitable target for for the highly
parallel scenario-based DSE. During the search process in scenario-
based DSE, a number of worker threads are used to perform Sesame
simulations in parallel. Over time, each worker thread fires many
processes to perform simulation jobs that can be executed on the
hardware threads of the SPARC T3-4.

In the remaining sections of this paper, we first provide a more
detailed overview of the the SPARC T3-4 server. Next, Section
3 describes the unoptimized implementation of our scenario-based
DSE. The following section (Section 4) shows how the scenario-
based DSE has been profiled to optimize the final design of the
scenario-based DSE (Section 5). After that, in Section 6, a range of
experiments show both the performance and the bottlenecks of the
scenario-based DSE framework. Finally, Section 7 concludes the
paper.

2. THE SPARC T3-4
The SPARC T3 processor [1] tries to minimize the idle time of

the processor by using Chip Multithreading (CMT). CMT is a com-
bination of Chip Multiprocessor (CMP) and Fine-Grained Multi-
threading (FG-MT). With FG-MT, a processor core is capable of
quickly switching between active threads. As a result, memory la-
tency of a thread can be hidden by executing another active thread.
In this way, the processor core tries to do active work in each cycle.
A SPARC T3 processor has up to sixteen cores, each supporting
eight hardware threads per core. In our case, a SPARC T3-4 server
is used. This server is shown schematically in Figure 3. As the
name suggests, the SPARC T3-4 has four SPARC T3 processors
running at 1.65GHz. This gives a total of 64 T3 cores and a total
number of 512 hardware threads.

Within a T3 core there are two execution units, one per a set of
four hardware threads. Additionally, a single floating point / graph-
ics unit (FGU) is present for all the eight hardware threads. Level 1
caches are present in each individual core. For instructions a 16KB
instruction cache is available and data can be stored in a 8KB data
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Figure 3: A schematic view of the SPARC T3-4 processor.

cache. The level 2 cache is banked and shared between all the
cores on a single SPARC T3 processor using a crossbar switch.
The cores in the SPARC T3 processor are kept consistent using co-
herency units. Finally, each T3 core has its own memory manage-
ment unit for virtual memory management. An instruction Trans-
lation Lookaside Buffer (TLB) of 64 entries is present and the data
TLB has 128 entries.

For comparing the performance of the scenario-based DSE on
the SPARC T3-4, we have also executed the original implementa-
tion of our scenario-based DSE on a Sun Fire X4440 [2] compute
server with four quad-core AMD Opteron 8356 processors running
at 2.3GHz.

3. UNOPTIMIZED DSE IMPLEMENTATION
First, we have ported the scenario-based DSE to the SPARC T3-

4 without any optimization. As the SPARC T3 processor supports
64 bits, we had the possibility to compile for both 32 and 64 bits. In
order to see which option was best, we compared the performance
scaling of both options. In Figure 4, the performance scaling is
shown of the unmodified scenario-based DSE with default compi-
lation flags1. During this experiment, the size of the DSE workload
has been kept fixed while the number of worker threads is varied.
First, we investigated the total wall clock time of the DSE experi-
ment. The logarithmic horizontal axis shows the number of threads
that are used to simultaneously process the simulations, whereas
the left vertical axis shows the wall clock time, also using a loga-
rithmic scale. As a consequence, the ideal speedup manifests itself
with a straight line.

With 32-bit compilation, a comparison is made between the com-
piled code of gcc and compiled code of the Sun cc compiler. Up
to 128 threads, the performance of the Sun cc compiler and the gcc
compiler is similar and, therefore, we have decided to use the Sun
cc compiler for all the experiments. For this compiler, the speedup
of the code is completely linear until 64 threads. With more than
64 threads the speedup quickly decreases. At the optimal point of
512 threads, the Oracle SPARC T3-4 is 29 percent faster than our
Sun Fire X4440 server.

To identify the cause of the decrease in speedup after 64 threads,
the user and system time are also plotted in Figure 4. For these
graphs, the right vertical axis shows the accumulated processor
time in minutes. Since the amount of work is constant, the expected
1Optimization -O3 for gcc and -xO5 for the Sun cc compiler.
Other flags have been tried, but did not have any significant effect.
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Figure 4: The performance scaling of Sesame on the Oracle SPARC T3-4 for (a) the initial 32 and (b) the 64 bit compilation.

behavior is that the accumulated user time also remains constant.
This is indeed the case when the number of threads is between 1
and 64. After this point, however, the user time starts to increase.
The same is true for the system time: due to the increased number
of threads, the complexity of the coordinating tasks of the operating
system starts to increase. This can be clearly seen when the system
is overloaded with more than 512 threads.

For the user time, however, the increase is not as one would ex-
pect. The most plausible explanation is that the increase is related
to the number of physical cores. There are 64 physical cores on
the Oracle SPARC T3-4. When the number of threads is lower or
equal than the number of physical cores, then the speedup is linear.
With more than 64 threads, the hardware threads should lead to a
further improvement of the performance. Still, this improvement is
not linear anymore. Although hardware threads in a core allow for
some parallel execution due to the two execution units, a large part
of the functionality is shared with the other hardware threads on the
physical core. To gain more insight in the underlying performance
behaviour of the T3-based scenario-based DSE, we have applied a
detailed profiling study that will be described in the following two
sections.

Finally, the comparison between the 32-bit (Figure 4(a)) and the
64-bit implementation (Figure 4(b)) shows that the 32-bit version
on the SPARC is superior to the 64-bit one. In our reference system,
the x86 based Sun Fire X4440, 64-bit compilation is used, which
clearly yields a faster implementation than when 32 bit compilation
is used. In the SPARC T3-4, however, 32-bit compilation appears
to be better. In Figure 4(b), the performance scaling of the 64-bit
version of our application can be seen for the Oracle SPARC T3-4.
The graph shows exactly the same trend as for the 32-bit compila-
tion (Figure 4(a)), but the absolute performance is worse than for
the 32-bit compilation. The difference between our x86 based ref-
erence system and the SPARC T3-4 is that in the x64 architecture
64-bit compilation enables some additional architectural features.
For the SPARCV9 architecture, however, these optimizations are
already available for the 32-bit compilation. As a result, on the Or-
acle SPARC T3-4, 64-bit scenario-based DSE only suffers from the
increased memory footprint and does not benefit from additional
architectural features.

4. PROFILING THE SCENARIO-BASED DSE
To study the performance behavior in detail, we have profiled

the complete scenario-based DSE framework. Figure 5(a) shows

the function profile of the scenario-based DSE where 32 worker
threads are running simultaneously. One of the hot spots is ftimer.
This function only returns (after a short calculation) the current
simulation time. To improve the performance, we have enabled
function inlining in the Sun cc compiler for functions from exter-
nal libraries (ftimer is a function in a dynamic shared library that
is normally imported at runtime). The effect of inlining is clearly
visible in the profile of Figure 5(a), where the ftimer function
has been inlined in the 512 thread experiment. As the function
ftimer is not present anymore in this experiment, its user time
has dropped to zero. For some functions (e.g., pearlsend and
schedule), however, the relative user time increases significantly.
Due to the heavy use of inlined functions, the relative amount of
computation time increases and, as a result, also the fraction of the
total exclusive user time that is spent in these functions.

In Figure 4, we noticed that there was an increase in user and
system time for situations where the number of threads was larger
than 64. To analyze this phenomena, the breakdown of the total
processing time accumulated over all threads is shown in Figure
5(b). Apart from the absolute values, the fractions of user, user
lock and system time are more or less equal. Still, the overhead of
the scenario-based DSE seems to be unreasonably large. Although
none of the functions that are related to search process in scenario-
based DSE show up in the profile of Figure 5(a) (all functions are
related to the Sesame simulations of a single mapping), the amount
of user lock time is significant. Most likely, part of this lock time
is due to the lock-based job queue of the scenario-based DSE. To
resolve this issue, we have redesigned our scenario-based DSE to
use a lockless job queue. This design will be described in the next
section.

5. THE FINAL DESIGN
The original design of the workpool of the scenario-based DSE

used a queue based on mutexes and condition variables to enforce
that only one thread at the time retrieves a job from the job queue.
Such a lock-based design works satisfactory if the number of worker
threads is low. However, when scaling up to 512 threads the con-
tention becomes relatively large. This is substantiated by the amount
of lock time in the time breakdown in Figure 5(b).

Figure 6 shows the lockless design of the workpool. The lockless
implementation is largely based on volatile variables and atomic
operations. Additionally, synchronization is achieved using a bar-
rier. During execution, two stages can be distinguished: initializa-
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Figure 5: The (a) profile and (b) execution time breakdown (accumulated over all threads) of scenario-based DSE with 32 and 512
worker threads. In contrast to the 32 thread experiment, the 512 thread experiment uses full function inlining.

tion and the main execution. Initialization is triggered by the main
thread. The main thread creates all the worker threads one by one
and waits until the worker threads are initialized. After the worker
threads are all ready for execution, the threads are synchronized
using a barrier (BARRIER INIT).

Within the main execution, the job queue is filled and processed
by the worker threads. During the filling of the queue, all the
worker threads are blocked on a barrier (BARRIER START). The
filling of the queue is done by the main thread. This involves the
allocation of a vector with job descriptions and, next to this, the
atomic variables are initialized. There are two atomic variables: 1)
a pointer that refers to the first unprocessed job and 2) a pointer that
refers to the last job. After initializing the queue, the main thread
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Figure 6: The "lockless" implementation of the scenario-based
DSE work pool.

will also synchronize on the start barrier.
When all threads are started, the jobs will be processed. Each of

the jobs will be handled by a single worker thread that will start a
Sesame simulation in an external process. In the meanwhile, the
main thread is blocked on the final barrier (BARRIER END) until
the complete job queue is handled. To fetch a job, a worker thread
atomically increments the pointer referring to the first unprocessed
job and obtains the current value. In case the value is smaller or
equal to the pointer pointing to the last job in the queue, the specific
job will be fetched from the queue. Otherwise, the worker thread
will also synchronize on the final barrier.

Once all the threads have reached the end barrier the main thread
will wrap up. This involves the destruction of the queue and prepar-
ing it for the next batch of evaluations. In the meanwhile, the
worker threads are already waiting on the start barrier. This de-
sign allows for processing multiple batches without recreating the
workpool for each generation in the scenario-based DSE.

6. EXPERIMENTS
In this section, we will present the results of our final design

of the scenario-based DSE using a range of different experiments.
During the experiments, a fixed workload is used that consists of
1000 individual simulation jobs. The first two experiments will
analyze the influence of the type of heap allocation and the type
of scheduling used by the DSE framework. This is followed by
an experiment that explains the increase of the user time with an
increasing number of worker threads (as shown in 4). Finally, with
a final experiment, we can show the scalability of the scenario-
based DSE.

6.1 Heap Allocation
During the profiling of our scenario-based DSE framework, we

found one hot spot with respect to system time, namely the func-
tion take_deferred_signal(). When further analyzing the
function stack, we found that this function becomes hot due to mu-
tex locks in malloc and free. The default malloc library on the
Solaris OS that runs on the SPARC T3-4 uses a single heap for all
the different threads. During system calls like malloc and free,
the access to the shared heap is guarded by mutex locks. In a sys-
tem where there are many hardware threads, such as the SPARC
T3-4, this quickly can become a bottleneck.

Fortunately, Solaris provides more heap allocation strategies: be-



libmalloc libumem libmtmalloc
32
64
128
256
512
1024

1.000 1.022 1.0070

1.000 1.021 1.0023

1.000 1.024 1.0011

1.000 1.017 0.9919

1.000 1.046 0.9710

1 1.035 0.9580

libmalloc libumem libmtmalloc
32
64
128
256
512
1024

0.000 0.000 0.0002

0.001 0.001 0.0008

0.001 0.002 0.0022

0.001 0.002 0.0026

0.003 0.004 0.0016

0.002 0.002 0.0032

0.94

0.968

0.995

1.023

1.05

32 64 128 256 512 1024

Influence of Heap Allocation
N

o
rm

a
liz

e
d

 W
a
ll 

C
lo

c
k
 T

im
e

Threads

libmalloc
libumem
libmtmalloc

Figure 7: The influence of the different types of heap allocation
on the execution time of the scenario-based DSE.

sides the default strategy, a multithreaded malloc (libmtmalloc)
and a type of slab allocator (libumem). We compared the per-
formance of our scenario-based DSE framework with these three
types of heap allocation. The experiment is performed for a vari-
able number of worker threads, where each experiment has been re-
peated six times. The results of the experiment are shown in Figure
7. In the results, the wall clock time of every experiment is normal-
ized to the average wall clock time of the default heap allocation
scheme and the error bars show the standard error of the mean.
First, it is clear that our application is not suited for slab allocation.
In the case of slab allocation, the heap allocator tries to reduce the
memory fragmentation by preallocating memory slots of a certain
type. When these types are allocated frequently, this quickly pro-
vides allocated memory with hardly any fragmentation. This ap-
proach may be well suited to kernel objects (In fact, libumem is
a user space implementation of the original slab allocator inside
the kernel), but in our scenario-based DSE framework libumem
is significantly slower for all cases. It also does not solve our bot-
tleneck problem as it has the same mutex locks as the default heap
allocator.

The multithreaded heap allocator libmtmalloc, however, has
split the heap into individual segments for each separate thread.
This requires more heap space, but locally the dynamically allo-
cated data can be created concurrently for each of the different
threads without using locks. Our results show that for situations
where a modest number of threads are used, libmtmalloc is
slower. In this case, we only suffer from a larger heap space.
Increasing the number of workers, libmtmalloc is becoming
faster than the default heap allocator. The more worker threads
there are, the more lock contention is present in the default heap
allocator. This lock contention is not present in the multithreaded
heap allocator, which is especially visible when we overload the
system with 1024 worker threads.

6.2 Scheduling
Another aspect that can influence the performance is the schedul-

ing policy of the processes. Solaris allows to set the scheduling
class of a process to one of the two following classes: 1) time shar-
ing and 2) fixed priority. Time sharing periodically recalculates the
priority of a process to give each process an equal part of the pro-
cessing time, whereas in the case of fixed priority it remains equal
for the total lifetime of the process. As in our scenario-based DSE
framework separate processes are used for each individual simula-
tion, the scheduling can affect the performance. As shown in Fig-
ure 8(a), the desired behavior of the performance is that it improves
until all the 512 hardware threads of the SPARC T3-4 are utilized.
After this point, the performance should degrade very slowly. This

is the case with the fixed priority policy. For time sharing, however,
the performance of the scenario based DSE framework degrades
faster and using 1024 threads is even slower than using 256 worker
threads.

Most likely, the reason for the degraded performance of the time
sharing policy is the number of context switches. In order to quan-
tify the influence of context switches, Figure 8(b) shows the num-
ber of context switches, which indeed demonstrates a correlation
between the number of context switches and the degraded perfor-
mance. For the fixed priority policy, the number of context switches
remains constant with an increased number of worker threads. The
number of context switches for the time sharing policy, on the other
hand, increases simultaneously with the number of worker threads.

It may be beneficial that each worker process keeps the affinity
with the T3 core where it is running. In this way, a more effi-
cient cache usage can be achieved. To achieve and study effect of
(virtual) processor affinity, all the worker threads are bound to one
of the hardware threads with the system call processor_bind.
Here, we only performed this experiment for 512 and 1024 worker
threads. In this case, it is relatively easy to spread to workers over
the architecture. Looking at the performance in Figure 8(a), our
simple worker mapping scheme does not give satisfactory results.
Undoubtedly, better worker mapping schemes can be identified, but
we do not expect to obtain significant improvements.

6.3 User Time Scaling
A much larger potential improvement can be gained if we resolve

the problem related to the increase in user time. Going back to the
scalability graph in Figure 4, we identified that once the number of
worker threads is larger than 64, the total user time of the applica-
tion starts to increase. However, as the workload remains constant,
the user time should remain constant irrespective of the number of
worker threads. If we can reduce the increase in user time, the total
speedup of the application (compared to sequential execution) can
be improved significantly.

After a thorough analysis, we have found that this problem is due
to poor TLB behavior. In Figure 9, the number of TLB misses can
be seen for the instruction memory and the data memory. Clearly,
the number of TLB misses shows a high correlation with the in-
crease in user time. Up to 64 worker threads, the user time was
constant: the TLB experiment shows that in this case there are no
TLB misses. After this point, the user time is increasing and this is
reflected by a a large increase of the number of TLB misses. When
a TLB miss occurs in user mode, it is also resolved in user mode.
So, the time to resolve the TLB misses is also added to the user
time. With more than 3.3 billion TLB misses, it is to be expected
that a large increase in user time is observed.

The architecture of the SPARC T3-4 also explains why the thresh-
old is at 64 worker threads. Each worker thread uses separate pro-
cesses to perform the simulations. As a result, each worker thread
needs its own private entries in the instruction and data TLBs. Up
to 64 worker threads, each worker thread can run at a separate T3
core and therefore has its own TLB. However, when the number of
worker threads is larger than the number of T3 cores, the TLBss are
shared. In the case that all 512 hardware threads are utilized, each
hardware thread can have only 8 entries in the instruction TLB and
16 entries in the data TLB.

The problem of TLB misses is hard to resolve. First, Sesame in-
cludes a large number of shared libraries. Secondly, a large amount
of data is used during the simulation (e.g., input data, application
and architecture models, etc.). Additionally, a large amount of out-
put data is produced that is temporarily stored in memory.

A potential improvement is to incorporate Sesame in the evalu-
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Figure 8: The (a) wall clock execution time with different scheduling policies and (b) the relation to the number of context switches.
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Figure 9: The number of TLB misses in relation to the number of worker threads.

ator as a shared library instead of using Sesame works in the form
of separate processes. In this way, the simulation is a function call
instead of an externally running process. The big advantage in this
case is that shared data in simulations can be shared between all the
workers. However, this would require a serious re-implementation
effort (due to the large number of global variables) to turn Sesame
into a loadable dynamic library.

At the moment, the only possible improvement is to increase the
page size of the heap to 4MB instead of the default 8KB. This al-
ready gives a performance improvement of more than four percent
with respect to the execution time with 8KB pages.

6.4 Scalability
With all the improvements described in the previous sections,

Workers 2log w Achieved Ideal Peak

1

4

8

16

32

64

90

128

180

256

360

512

768

1024

0 1 1 184.69
2 4 4 184.69
3 7.996232144 8 184.69
4 15.96440577 16 184.69
5 31.79885333 32 184.69
6 61.53364049 64 184.69

6.491853096 81.84172011 90 184.69
7 106.6000703 128 184.69

7.491853096 130.3413344 180 184.69
8 154.2810392 256 184.69

8.491853096 168.0017067 360 184.69
9 184.6893043 512 184.69

9.584962501 184.0013894 768 184.69
10 183.2476845 1024 184.69

0 2 4 8 16 32 64 128 256 512 1024
1

10

100

1000
Final Speedup of Scenario Based DSE

S
p

ee
d

up
 (T

se
q

 /
 T

p
ar

)

Achieved
Ideal
Peak

Threads

185

Figure 10: The final scalability of scenario-based DSE on the
SPARC T3-4.

we can now show the final scalability of the DSE application. For
this experiment, we increased the size of the workload to 10, 000
jobs (i.e., Sesame simulations), to assure that a possible lack of
sufficient workload does not limit our speedup. The results are
given in Figure 10.

Linear speedup is achieved when the number of worker threads
is less or equal to the number of T3 cores. In this case, the chip
multiprocessing is exploited and most resources are private to the
worker threads. Examples of these resources are the level 1 caches,
the execution units and the TLBs.

For 128 threads, the parallelized evaluator is 107 times as fast as
the sequential version. In this case, the average number of worker
threads per T3 core is two. Each worker thread has thus its own ex-
ecution unit (as there are two in each T3 core), but other resources
like caches and TLBs need to be shared. As a consequence, the
speedup is still close to linear.

Above the 128 threads, the execution units are also shared be-
tween the worker threads. For these configurations, the perfor-
mance mostly suffers from the limited TLB size. Hence, the max-
imal obtained speedup is almost 185 times as fast as the sequential
execution. Given the fact that there are 128 functional units in the
SPARC T3-4, the chip multithreading is able to further improve the
performance of our scenario-based DSE framework.

7. CONCLUSIONS
In this paper, we have studied the implementation of our scenario-

based DSE framework on the SPARC T3-4. We have first pro-
filed the execution of a non-optimized version of the scenario-based
DSE framework, after which we have modified the design of the
scenario based DSE in which the locks in the shared job queue
have been replaced by atomic operations. The only locks left in the
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application are barrier synchronizations that are needed to ensure
that the worker threads do not access the queue when it is being
filled.

A summary of all the improvements that have performed due to
the profiling of our scenario-based DSE framework on the SPARC
T3-4 server is given in Figure 11. The largest improvement was
made during the first two optimization steps. By simply using 32-
bit instead of 64-bit compilation, a 21 percent performance im-
provement was already achieved. Secondly, the lockless queue
implementation combined with function inlining brought another
14 percent of improvement. The heap allocation scheme and the
scheduling policy, on the other hand, give moderate improvements
(2 or 3%) on the final design of the scenario-based DSE frame-
work. The largest remaining bottleneck is the high number of TLB
misses. A 4MB pagesize already gives a performance improvement
of more than 4%, but additional gains could be achieved in future
work.

Finally, the SPARC T3-4 server gives a speedup of more than
185 times as compared to sequential execution. Given the fact that
there are only 128 execution units, we can conclude that the chip
multithreading approach is already paying off. Still, the SPARC
T3-4 behaves poorly for a workload with a large number of (simi-
lar) processes. When all the hardware threads are utilized, only 8
instruction TLB entries are available and 16 data TLB entries. This
can quickly give a performance degradation due to a large number
of TLB misses.
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