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Transverse multimode effects on the performance of photon-photon gates
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The multimode character of quantum fields imposes constraints on the implementation of high-fidelity quantum
gates between individual photons. So far this has only been studied for the longitudinal degree of freedom. Here
we show that effects due to the transverse degrees of freedom significantly affect quantum gate performance. We
also discuss potential solutions, in particular separating the two photons in the transverse direction.
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I. INTRODUCTION

Photons are attractive as carriers of quantum informa-
tion because they propagate quickly over long distances
and interact weakly with their environment. Their utility
for quantum information processing applications, such as
quantum repeaters [1] or quantum computing [2], would be
further enhanced if it were possible to efficiently implement
two-qubit gates between individual photons. Such two-qubit
gates can be implemented probabilistically using just linear
optics and photon detection [3], but strong photon-photon
interactions would allow much more direct and deterministic
implementations. Several approaches to the implementation
of interaction-based photon-photon gates have been proposed,
including those based on Kerr nonlinearities in fibers or
crystals [4], on electromagnetically induced transparency
(EIT) in atomic ensembles [5], and on the interaction of
both photons with an individual quantum system [6]. See
Refs. [7–11] for recent experimental progress.

In the simplest case, an ideal controlled-phase gate
performs the transformations |0〉|0〉 → |0〉|0〉,|0〉|1〉 →
|0〉|1〉,|1〉|0〉 → |1〉|0〉,|1〉|1〉 → eiφ|1〉|1〉, where |0〉 and |1〉
are zero- and one-photon states, respectively. In the present
context, the phase φ acquired by the state |1〉|1〉 is due
to the interaction of the two input photons. For quantum
information processing applications it is desirable to achieve
φ = π . In early theoretical papers the main focus was
determining how to achieve interactions that are sufficiently
strong to allow large phase shifts. The photonic pulses were
typically idealized as single mode. Later it was realized that
the (longitudinal) multimode character of the pulses impose
important constraints on the implementation of high-fidelity
quantum gates [12–19]. The phase shifts due to the interaction
depend on the relative position of the two photons, and take
different values over the pulses because the photons have
to be described as extended wave packets rather than point
particles [20]. As a consequence, an initial product state of the
two photons is mapped by the interaction onto an output state
that exhibits unwanted entanglement in the photons’ external
degrees of freedom. For large phase shifts this leads to low
fidelities for the simplest quantum gate proposals [18].

It has been suggested that this difficulty can be overcome
by more sophisticated quantum gate designs where the two
photons pass through each other. This can be achieved by
trapping one [8,13] or both [14] of the two photons, by having

a counterpropagation geometry [15,16], or by considering two
photons with different group velocities [19].

Here we show that having the photons pass through each
other is not sufficient on its own, due to the presence of
the transverse degrees of freedom. In short, the interaction-
induced phases also depend on the relative transverse position
of the two photons, which leads to fidelity limitations that
cannot be mitigated by counterpropagation. In the following
we describe these limitations in detail. We also discuss
potential solutions, in particular separating the two wave
packets in the transverse direction, which is possible for
nonlinearities based on long-range interactions.

II. INTERACTING PULSE EVOLUTION

The general picture for the photon-photon gate is the
interaction between two fields, �̂1(x,t) and �̂2(x,t), in three
spatial dimensions. The field operators at t = 0 are defined as
�̂i(x) = 1√

V

∑
k âi,ke

ik·x, where V is the quantization volume.
They might describe photons in a Kerr medium or polaritons
in an EIT medium. The field operators satisfy the equal-time
commutation relation [�̂i(x,t),�̂†

j (x′,t)] = δij δ(x − x′). This
means that photon absorption is negligible (e.g., in the EIT
case the spectra of the pulses are well inside the transparency
window), so the evolution of the interacting fields can be
regarded as unitary. Making the standard slowly varying
envelope and paraxial approximations, we have the effective
Hamiltonian [21] (where h̄ ≡ 1 is adopted hereafter)

K̂ =
∑

j

∫
d3x�̂

†
j (x,t)

(
v

1

i
∇z − v∇2

T

2k

)
�̂j (x,t), (1)

to describe their free evolution. Here, v is the group velocity
in the positive or negative z direction, k = 2π

λ
is the carrier

wave vector, and ∇2
T is the transverse Laplace operator. The

interaction for the two fields is [22]

V̂ =
∑
i,j

1

2

∫
d3x1

∫
d3x2 ˆ[�

†
i (x1,t)�̂

†
j (x2,t)�(x1 − x2)

×�̂j (x2,t)�̂i(x1,t)], (2)

where the terms i = j and i �= j in the sum correspond to
self-phase and cross-phase modulation effects, respectively.
Given the total Hamiltonian Ĥ = K̂ + V̂ , the equations of
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motion i∂t �̂i(x,t) = [�̂i(x,t),Ĥ ] for the counterpropagating
fields read as(

∂

∂t
+ v

∂

∂z1
− iv

∇2
T ,1

2k

)
�̂1(x1,t) = −iα̂(x1,t)�̂1(x1,t),

(3)(
∂

∂t
− v

∂

∂z2
− iv

∇2
T ,2

2k

)
�̂2(x2,t) = −iα̂(x2,t)�̂2(x2,t),

with the interaction potential

α̂(xi ,t) =
∫

d3x ′�(xi − x′)[Î1(x′,t) + Î2(x′,t)], (4)

where În(x) = �̂
†
n(x)�̂n(x).

A photon-photon gate is implemented by
evolving an input biphoton state |	〉 = |1〉1|1〉2 =∫

d3x1f1(x1)�̂†
1(x1)

∫
d3x2f2(x2)�̂†

2(x2)|0〉, wherefi(x) =
〈0|�̂i(x)|1〉 are the pulse profiles, under unitary time evolution

Û (t) = Te−i
∫ t

0 dt ′Ĥ (t ′) = e−i
∫ t

0 dt ′K̂e−i
∫ t

0 dt ′V̂ e−iĈ , (5)

where T denotes the time-ordering operation, and the operator
is factorized using the Baker-Campbell-Hausdorff (BCH)
formula. The first factor in Eq. (5) describes the free evolution,
including pulse propagation and pulse diffraction. The second
factor is from the interaction between pulses. The third factor
contains all commutators between the exponents of the first
two terms; they reflect the interplay between pulse motion and
pulse interaction, which generally changes the pulse profiles.

The ideal output state under a gate operation would
be eiφe−i

∫ t

0 dt ′K̂ |	〉, with φ being a homogeneous con-
trolled phase, where we take into account the free evo-
lution of the photons. The actual output state, however,
will be Û (t)|	〉 = ∫

d3x1
∫

d3x2ψ(x1,x2,t)�̂
†
1(x1)�̂†

2(x2)|0〉
[23], giving the two-particle wave function ψ(x1,x2,t) ≡
〈0|�̂1(x1,t)�̂2(x2,t)|	〉, which is generally nonfactorizable
with respect to x1 and x2. The fidelity F and the controlled
phase φ of a gate operation are determined via the overlap
between the actual output state and the freely evolved state
|	R〉 = e−i

∫ t

0 dt ′K̂ |	〉:
√

Feiφ = 〈	R|Û (t)|	〉 = 〈	|e−i
∫ t

0 dt ′V̂ e−iĈ |	〉
=

∫
d3x1d

3x2ψ
∗
0 (x1,x2,t)ψ(x1,x2,t), (6)

where ψ0(x1,x2,t) is the corresponding two-particle function
for the freely evolved state |	R〉.

The field equations (3) allow one to obtain the evolution
of ψ(x1,x2,t) by multiplying �̂2(x2,t) to the right of the first
equation of (3) and �̂1(x1,t) to the left of the second. Then,
the product with 〈0| and |	〉 takes on the addition of the
equations, yielding the following linear equation for the two-
particle function 〈0|�̂1(x1,t)�̂2(x2,t)|	〉:(

∂

∂t
+ v

∂

∂z1

)
〈0|�̂1(x1,t)�̂2(x2,t)|	〉

+
(

∂

∂t
− v

∂

∂z2

)
〈0|�̂1(x1,t)�̂2(x2,t)|	〉

−
(

iv
∇2

T ,1

2k0
+ iv

∇2
T ,2

2k0

)
〈0|�̂1(x1,t)�̂2(x2,t)|	〉

= −i�(x2 − x1)〈0|�̂1(x1,t)�̂2(x2,t)|	〉. (7)

Here we have used �i(x)|0〉 = 0, �i(x,t)�†
i (x′,t)|0〉 =

1
V

∑
k eik·(x−x′)|0〉 = δ(3)(x − x′)|0〉. With the center-of-mass

coordinate X = x1+x2
2 and x = x1 − x2, the derived equation

for ψ(x1,x2,t) = R(X,t)ξ (x,t) can be reduced to(
∂

∂t
+ 2v

∂

∂z
+ iv

∇2
T ,x

2k

)
ξ (x,t) = −i�(x)ξ (x,t), (8)

with R(X,t) being trivially evolved under the diffraction term
e−i vt

k
∇2

T ,X .
The linear equation noted above greatly simplifies the

determination of the evolution of interacting pulses. This
simplification is possible because we consider the interaction
between two single photons (as opposed to multiphoton
pulses). In the comoving coordinate, which eliminates the term
2v∂zξ (x,t) in (8), the three factors in Eq. (5) are translated
into e−i vt

2k
∇2

T ,x , e−iϕ(x,t), and e−iĈ ′
, respectively, to evolve

ξ (x,0). Now, the third factor contains the exponentials of the
commutators between vt

2k
∇2

T ,x and ϕ(x,t) as follows:

e−iĈ ′ = exp

{
− 1

2

[
ϕ,

vt

2k
∇2

T ,x

]}

× exp

{
i

3

[
ϕ,

[
ϕ,

vt

2k
∇2

T ,x

]]

+ i

6

[
vt

2k
∇2

T ,x,

[
ϕ,

vt

2k
∇2

T ,x

]]}
· · · . (9)

The commutators in the exponentials are of order l/r , where
l = vt is the medium length and r = kσ 2 is the Rayleigh
length, with σ the transverse size of the pulses at t = 0.
It is not difficult to achieve l/r 
 1 in practice, making
the effects from the third factor insignificant. For simplicity
we will not include the first and third factors in the two-
particle functions derived in the following, but the first-order
contribution from the third factor will be considered in our
numerical calculations. The second factor, e−iϕ(x,t), where
ϕ(x,t) = ∫ t

0 dt ′�[xT ,z − 2v(t − t ′)], is the main concern of
the present paper. We will explain its effects with two
examples.

III. CONTACT POTENTIAL

Our first example is a highly local interaction described by
a �-function potential, �(x1 − x2) = V0δ

(3)(x1 − x2). This is
a good model for nonlinearities that are due to the interaction
of both photons with the same atom in an atomic ensemble or
crystal, or to short-range atomic collisions [4,5,13–15]. This
interaction gives an output two-particle function of

ψ(x1,x2,t) = f1(z1 − vt,xT ,1)f2(z2 + vt,xT ,2)

× exp

(
i
V0

2v
[H (z−2vt)−H (z)]δ(2)(xT )

)
, (10)
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FIG. 1. (Color online) Qualitative plot showing the two-particle
wave function as a function of the transverse coordinates x1 and x2

of the two photons. The photons are distributed over a multitude of
transverse positions. For a contact interaction the interaction induces
a nonzero phase only if the two photons happen to be at exactly
the same position (see the diagonal line x1 = x2); see Eq. (10). The
probability of this occurring is infinitesimal. As a consequence, the
effective output phase defined by Eq. (6) is always zero, independent
of the strength of the interaction.

where H (z) is the Heaviside step function. From Eq. (10) one
sees that the interaction-induced phase is nonzero only if the
transverse coordinates of the two photons coincide, i.e., on a
subset of configuration space, xT = 0, which has a measure
of zero (see Fig. 1). As a consequence, one has F = 1 and
φ = 0. In the case of an ideal three-dimensional �-function
potential the effective output phase is exactly zero, no matter
how strong the interaction between the two photons. This is
closely related to the results of Refs. [12,17] for the one-
dimensional, but copropagating, case. One essentially finds
equivalent results for any interaction whose range is much
shorter than the transverse size of the wave packets. Note that
this result is consistent with the nonzero conditional phase for
photon-photon interactions obtained in Refs. [24,25], where
the evolution is nonunitary, as manifested by a different field
operator commutator.

IV. DIPOLE-DIPOLE INTERACTION

Related difficulties also arise for more long-range inter-
actions. This can be seen from our second example, which is
motivated by Refs. [11,16]. It concerns the interaction between
polaritons whose atomic component is in a highly excited
Rydberg state in an external electric field (cf. Fig. 2). This
induces a dipole-dipole interaction between the polaritons,

�(x1 − x2) = C(1 − 3 cos2 ϑ)/|x1 − x2|3, (11)

where C depends on the specific Rydberg states used and
ϑ is the angle between x1 − x2 and the external field (along
which the electric dipoles of the Rydberg states are aligned).
This is an attractive system because Rydberg states have large
dipole moments, leading to potentially very strong interactions
between the polaritons [26–28].

We consider the situation where the external field
is perpendicular to the direction of motion. We
assume the initial pulse profiles to be f1(x1) =
ψ0(x1)ψ0(y1)ψ0(z1) and f2(x2) = ψ0(x2)ψ0(y2)ψ0(z2 − l),

d

e

g

0.05 0.10 0.15 0.20
0.75

0.85

0.90

1.00

F

0.95

0.80

FIG. 2. (Color online) Schematic setup for a photon-photon gate
working with counterpropagating single photon pulses in a medium
under EIT conditions. The pulses interact with each other through the
dipole-dipole force between the Rydberg states |di〉. The inset shows
the relevant energy levels of the atoms. The pulses collide head-on,
but they have a transverse extent σ . This leads to a dependence of
the interaction-induced phase for the two-particle wave function on
the relative transverse position, resulting in a trade-off between the
effective phase φ of the two-photon operation and its fidelity F . Only
very small phases are compatible with high fidelities.

where ψn(x) = [ 1
σ
√

π2nn! ]
1
2 Hn( x

σ
)e− 1

2 ( x
σ

)2
with Hn( x

σ
) being the

Hermite polynomials. The evolution according to Eq. (8) gives
the output two-particle wave function

f1(z1 − l,xT ,1)f2(z2 + l,xT ,2)e−iϕ(x1,x2,l/v). (12)

The interaction-induced phase in the above is given by

ϕ(z,xT ,l/v) = C

2v

1

x2
T

{
z3 + 2zx2

T(
z2 + x2

T

) 3
2

− (z − 2l)3 + 2(z − 2l)x2
T[

(z − 2l)2 + x2
T

] 3
2

}
. (13)

By Eq. (6), the conditional phase φ and the fidelity F in this
case are determined as follows:

√
Feiφ =

∫
d3x ′

1d
3x ′

2f
2
1 (x′

1)f 2
2 (x′

2) exp

×
{

− i
C

2v

1

x′2
T

[
(z′ + l)3 + 2(z′ + l)x′2

T[
(z′ + l)2 + x′2

T

] 3
2

− (z′ − l)3 + 2(z′ − l)x′2
T[

(z′ − l)2 + x′2
T

] 3
2

]}
, (14)

where x′
1 = x1 − lêz, x′

2 = x2, and x′ = x′
1 − x′

2. In this calcu-
lation we have chosen l = 4πσ and σ = 10λ. The results are
shown in Fig. 2 . Increasing the parameter C/(2vσ 2), which
indicates the interaction strength, increases the effective output
phase φ but diminishes the output fidelity F . As a consequence,
significant phase shifts are completely out of reach if one wants
to achieve high fidelities. In the numerical calculations, we
have included the first-order correction due to the third factor of
Eq. (5). Such a correction comes from the commutators [ l∇2

T

2k
,ϕ]

and [[ l∇2
T

2k
,ϕ],ϕ]; see Eq. (9). The commutators involving
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higher powers of ϕ are shown to vanish. The exponentials
of these commutators effect a modification of the intensity
profile f 2

i (xi) and a modification of the phase profile e−iϕ(z,xT ),
respectively.

The main cause for the trade-off between φ and F is the
dependence of the interaction-induced phase ϕ(z,xT ) on the
transverse relative position xT . In fact, most of the behavior
shown in Fig. 2 can be understood by setting the phase in the
integrand of Eq. (14) as −C

v
1

x′2
T

, which is quite accurate for
l � σ . It gives rise to transverse mode mixing in the form

e−iϕ(z,xT )ψ0(x1)ψ0(y1)ψ0(x2)ψ0(y2)

=
∑

m,n,l,k

Cmnlkψm(x1)ψn(y1)ψl(x2)ψk(y2)

�=
{∑

m,n

cmnψm(x1)ψn(y1)

}{∑
l,k

dlkψl(x2)ψk(y2)

}
, (15)

leading to the deviation from the ideal output two-particle
function eiφψ0(x1)ψ0(y1)ψ0(x2)ψ0(y2).

The above analysis shows that the transverse mode mixing
(or transverse mode entanglement) will develop even if the
pulses are initially in a single transverse mode. Our analysis
also clarifies that the pulse diffraction in the transverse
direction has no direct impact on the performance of a
photon-photon gate. It influences gate performance through its
interplay with the interaction between pulses, i.e., by the third
factor in Eq. (5). Compared with the effect of the transverse
mode mixing shown in Eq. (15), such a diffraction-interaction
interplay is insignificant in the regime considered here, where
the medium length l is much smaller than the Rayleigh length
r . For example, for l/r = 0.2 (as in our calculations), it induces
corrections only at the few-percent level.

V. POTENTIAL SOLUTIONS

We have seen that the transverse multimode character of the
quantum fields, which leads to a transverse relative position
dependence of the interaction-induced phase shifts, has very
significant consequences for the fidelity and phase achievable
in photon-photon gates. We will now discuss two potential
solutions for this problem. The first is applicable only to the
case of long-range interactions. It consists of separating the
paths of the two photons by a transverse distance D which
is much greater than the transverse size σ of the pulses; i.e.,
the initial profiles of the pulses will be, for example, f1(x1) =
ψ0(x1)ψ0(y1)ψ0(z1) and f2(x2) = ψ0(x2 − D)ψ0(y2)ψ0(z2 −
l). With increasing D one will approach a situation where the
transverse degrees of freedom of the photons can effectively be
treated as pointlike. As a consequence, the effect studied here
will diminish. This is shown in Fig. 3. We have again chosen
a medium length l = 4πσ . Interaction-diffraction interplay
effects are at or below the 10−3 level in this case because they
depend on the gradients in the interaction-induced phase across
the wave packets, which decrease with increasing transverse
separation.

When adopting this solution, one has to take into account
that the interaction-induced phase decreases as the transverse
separation is increased. For example, achieving a conditional
phase shift φ = π with a fidelity F = 0.9 requires R = D

σ
=

F

E

D

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.8 R = 10

R = 20

R = 300.7

1.0

0.9

FIG. 3. (Color online) Introducing a transverse separation be-
tween the two pulses greatly relaxes the trade-off between F and
φ, such that a phase of order π becomes compatible with high F .
The dimensionless separation R is defined as D

σ
. The interaction

strength has to be increased significantly in order to compensate for
the transverse separation.

26. By comparing to Ref. [16], this means that one could
work with a principal number of the Rydberg state n � 75, a
transverse wave packet size σ = 7 µm, and a group velocity
v = 4 m/s. Achieving φ = π with a fidelity F = 0.99 requires
R = 79, which is possible provided that, for example, n can
be increased to 100, v reduced to 1 m/s, and σ reduced to 5
µm. These requirements are realistic with current technology;
in particular Rydberg states with n = 79 were already used in
the experiment of Ref. [26].

The second potential solution, which is applicable both to
short-range and long-range interactions, consists of imposing
strong transverse confinement. If the confinement energy is
much greater than the interaction energy, then excitations
to higher-order transverse modes are largely suppressed.
All that the interaction can do in this case is multiply the
lowest-order transverse mode by an almost uniform phase
factor (since a nonuniform phase would imply non-negligible
amplitudes in higher-order transverse modes), thus allowing
high-fidelity quantum gates. Sufficiently strong confinement
could be achieved for example using hollow core photonic
crystal fibers [29] or optical nanofibers [30].

VI. SUMMARY

The importance of the multimode character of quantum
fields for the implementation of photon-photon gates has been
recognized in the past, but only for the longitudinal degree
of freedom. Here we have shown that transverse degrees
of freedom also play a significant role, imposing important
constraints on the performance of potential quantum gates. For
contact interactions the effective phase is essentially always
zero, no matter how strong the interaction. For long-range
interactions the situation is more favorable, but there are still
significant trade-offs between the achievable phase and fidelity.
We discussed two potential solutions. One is to have a sig-
nificant transverse separation between the two wave packets,
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which is possible only for long-range interactions, and which
requires an even stronger interaction. The second potential
solution is to impose very strong transverse confinement,
which may be possible using hollow fibers or nanofibers. In any
case it will be essential for future implementations of photon-
photon gates to take transverse multimode effects into account.
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