
A New Method for Hardware Design of Multi-Layer
Perceptron Neural Networks with Online Training

R. Rezvani*, M. Katiraee**, A. H. Jamalian*, SH. Mehrabi* and A. Vezvaei***
* Sama Technical and Vocational Training College, Islamic Azad University, Andisheh Branch, Andisheh, IRAN

** Department of Computer Engineering, Islamic Azad University, South Tehran Branch, Tehran, IRAN
*** Department of Computer Engineering, Amirkabir University of Technology, Tehran, IRAN

{rezvani, jamalian, mehrabi}@andisheh-samacollege.ir, m_katiraee@azad.ac.ir, vezvayee@aut.ac.ir

Abstract—In this paper, a Multi-Layer Perceptron (MLP) has
been simulated using synthesizable VHDL code. This is a well-
known artificial neural network tool which is widely used for
classification and function approximation problems. Our
proposed model has special flexibilities and user can determine
his/her proper parameters such as number of layers and number
of neurons in each layer. The learning phase in this network
model is online and after this phase, the network starts the
operational phase immediately. Unlike some other similar
models, in this hardware model there is no restriction on weights
of the network. Weights can define as floating point type and
synthesize easily. We have implemented the simulation of
network described above, in two, three and four layer structure
for a problem of numeric patterns recognition. The simulation
results show that the network has been properly trained and can
differentiate input patterns from each other with a negligible
error.

Keywords—Artificial Neural Network; Multi-Layer Perceptron
(MLP); Hardware Implementation; VHDL.

I. INTRODUCTION

An Artificial Neural Network (ANN) is a tool with parallel
architecture in large scale which is able to solve complicated
problems in many fields such as Modeling, optimization,
classification and etc. Some of most important applications of
ANNs are pattern recognition, detection and identification of
human speech, converting black and white images to color
images [1].

Since far past time, most of simulations of various
artificial neural networks were done using software simulators
and high level programming languages; but due to parallel
structure of artificial neural networks, their hardware
implementation maybe faster and more efficient than software
simulations. Hence to achieve an optimal performance in real-
world applications (especially in cases where continuous and
real-time training is essential) hardware implementation is
strongly recommended.

Since past two decades, many researchers work on
hardware implementation of ANNs on various hardware
modules such as FPGA and CPLD [2-10]. For instance, many
researchers have focused on hardware implementation of a
simple neuron [11, 12]. On the other hand, some hardware

implementations are so complicated [13, 14] and need
complex processor structures that SIMD processor structure is
one of them [15].

In many hardware implementations of neural networks,
training of the network is offline. It means that first the
network will be trained using a software training algorithm,
then using the tuned weights obtained from training phase, the
network will be implemented on hardware for operational
phase. On the other hand, in some other researches, training
phase of the network is implemented on hardware [13, 15]. Of
course, in such implementations, usually more than one FPGA
is used which is not efficient from point of view of hardware
resources, power consumption and cost. Although some
researches have done in field of hardware implementation of
MLP, they were costly and didn’t have generality and were
mostly used for special purpose applications.

Besides, in many applications, using floating point
numbers for presentation of neuron weights and inputs of the
network is inevitable. However up to this moment, no
successful implementation of floating point numbers in neural
networks is reported and usually some constraints for the
weights and inputs are considered.

In this paper, a new method for hardware implementation
of general purpose multi-layer perceptron neural networks is
presented. This system is able to receive the number of
network layers and neurons in each layer from the user. Also,
network data, especially neuron weights and inputs can be in
floating point form and all the arithmetic operations inside the
network, including summation, multiplication, calculation of
excitation function and its first order derivative are
implemented using floating point algorithms.

Rest of the paper is organized as follows: in section II,
preliminary concepts of artificial neural networks including
multi-layer perceptron networks, training of network and
Back-Propagation (BP) training algorithm are described.
Section III is devoted to description of proposed structure and
performance of the proposed method. In section IV, the
simulation results are presented and finally conclusions are
covered in section V.

II. PRELIMINARY CONCEPTS

In this section, main concepts and basic definitions of the
proposed structure will be reviewed. This section contains
three subsections: A. Introducing ANN, B. Multi-layer
Perceptron networks and finally C. Back-Propagation training
algorithm.

A. Artificial Neural Networks (ANN)

Neural networks are common tools for knowledge of
learning. In practice, a neural network is a dynamic non-linear
system with high complexity. Artificial neural networks
consist of simple elements named neurons that work parallel
together and are inspired from biological nervous systems.
Although structure and functionality of a single neuron is so
simple, but the behavior of a neural network system composed
of to many neurons, could be so complicated.

Like nature, the operation of the network is largely
determined by connections between its elements. By adjusting
the weights of connections between neurons, a neural network
could be trained to perform a particular operation. Generally,
artificial neural networks are large scale parallel structures
that are able to solve complicated problems in many fields
such as modeling, optimization, classification and etc.

Nowadays, artificial neural networks are used in many
applications due to their learning ability from input patterns
that give them the necessary knowledge for generating
appropriate response to the new input patterns.

Some of main applications of artificial neural networks are
signal processing, pattern recognition, pattern classification
and robot control systems.

Neural networks have different types. The most important
types of artificial neural networks are as follow:

 Multi-layer perceptron neural networks (MLP)

 Spiking Neural Networks (SNN)

 Hopfield Neural Networks (HNN)

 Radial Basis Function Neural Networks (RBF)

 Probabilistic Neural Networks (PNN)

 General Regression Neural Networks (GRNN)

Since the Multi-layer perceptron neural networks are more
common than the other types of neural networks, and most of
the hardware implementations are based on this type of neural
networks, so in this research, Multi-layer perceptron neural
networks are used for simulations and finally hardware
implementation. In next subsection, MLP is discussed more.

B. Multi-Layer Perceptron Networks (MLP)

These types of networks that are known as MLP are most
widely used neural networks. The structure of a MLP is
layered and consists of an input layer, an output layer and one
or more hidden layers between these two layers; however, a
MLP could have no hidden layer. The structure of a 3 layer
MLP is shown in Figure 1. In MLP, the input layer neurons

act like buffers and their main task is feeding the network
inputs to next layer neurons in training phase and also
operational phase.

But for neurons in hidden or output layers, the output value
of each neuron is calculated using the following formula:

Bi:iWOnet
Aj

jiji 


 (1)

Where A means set of neurons in a layer, B means set of
neurons in the next layer, Oj is the output of neuron j, and Wji
is the connection weight between neurons j and i. Indeed, Eq.
1 calculates the sum of products of a neuron’s inputs in
corresponding weight of that input neuron. Finally using Eq. 2
neuron’s output will be calculated:

 
inetii

e1

1
netfO 

 (2)

The excitation function used in formula 2 is known as
sigmoid function. This function could be in another form. But
normally in simulations and implementations, sigmoid
function or Hyperbolic Tangent function are used. In MLP,
output of a neuron goes to all the neurons in next layer, until
the final outputs of the network would be generated.

C. Back-Propagation (BP) Training Algorithm

In most cases, initial weights of MLP, aren’t accurate and
the network should be able to correct them in order to generate
appropriate output values. So, each neural network needs an
algorithm for correction of initial weights. This algorithm is
known as Learning Algorithm of Neural networks.

Many algorithms have been proposed for learning of a
MLP neural network. One of the most widely used of these
algorithms is Back-Propagation (BP) learning algorithm.

BP algorithm is a good solution for training a MLP feed-
forward neural network with several layers. This algorithm
begins with feeding input data through the network from input
layer to hidden and output layers using Eq. 1 and 2. Eq. 1 takes
the output values of a layer and feeds them to the next layer.
This action will be done for each neuron in next layer and a
weighted sum of all the neuron’s output values in previous

Input 1

Input 2

Input 3

Output 1

Output 2

Input
layer

Neurons

Output
layer

Figure 1. The structure of a 3 layer MLP

Hidden layer

layer will be generated. Then, this weighted sum will be feed
to Eq. 2 named sigmoid function of neuron in order to
calculate each neuron’s output value.

After calculating output values for all neurons for an input
pattern (except input neurons), the algorithm continues with
finding error values for each non-input neuron; this process
begins with calculation of error values for all neurons in
output layer using the following equation:

   Ci:iOT.netf iiii  (3)

In this formula, C is set of output neurons, iT is the

expected output value for neuron i,  f  is the first order

derivative of Eq. 2 and i is the error value of neuron i. Then,

the error values calculated for output neurons should be
propagated to previous layer in order to calculate error values
for hidden neurons using Eq. 4.

  Di:iW.netf
Ej

ijjii  


 (4)

In this formula, D is set of neurons of a non-input layer
and E is set of neurons of the next layer. This formula will be
calculated for the entire hidden layers inside the network.
After calculating the output and error values for all the non-
input neurons, the weights of neurons could be corrected. The
amount that each weight should vary will be calculated using
formula 5;

Bj,Ai:j,i.O.W jiij  (5)

In above formula,  is the learning parameter and controls

the amount of weight variations in each step of training
process. Finally, new values for weights in step t+1 will be
calculated using formula 6;

ijijij WWW
t1t




 (6)

III. THE PROPOSED METHOD

In this part, first we will describe the proposed structure, in
subsection A and then the operation and performance of our
structure will be studied in details in subsections B and C.

A. Structure

Figure 2 shows the structural view of the proposed method
in this paper for implementation of a multi-layer perceptron

neural network. The modular structure shown in Figure 2
could be implemented on FPGA simply. This block diagram
shown in Figure 2 consists of two input ports and one output
port and the user can communicate with the network using
these ports.

Most of problems solvable using multi-layer perceptron
neural networks need maximum 2 hidden layers for generating
appropriate outputs, therefore in this research; we have
considered maximum 2 hidden layers for our network. In this
modular structure, the control unit receives the initial data
(including number of layers needed and number of neurons in
each layer, the train dataset and initial weights for all neurons
in hidden and output layers) via an input port and feed them to
existing neurons in all layers. Also, coordinating between
different layers is another task of control unit; when a layer
prepares some data for the other layer in both training and
operational phases, sends a signal to control unit. Then this
unit sends signals to all the neurons in destination layer and
these neurons will start their operations simultaneously.

In the proposed structure, the coordination between all the
layers is controlled by control unit using the above method.
Also during the run of Back-Propagation algorithm, when a
layer prepares its error values for the previous layer, informs
neurons of the destination layer via signals generated by
control unit.

B. Functionality and Performance Evaluation

The proposed network in this research consists of two
phases: training phase and operational phase. Since the
training phase is online, the user should be able to deliver the
basic information (such as number of layers, number of
neurons in each layer and initial weights of neurons) with the
train dataset to the network. Also, after completion of the
training phase and at the start of operational phase, the user
should be able to feed the operational input data (that
sometimes are impregnated with perturbation) to the network
so that the network could generate the appropriate responses
for each input dataset.

Since the user should communicate with the network
module, we have considered two input ports for the network
that are visible in Figure 2. The user stores the basic
information and necessary data for train phase in an EEPROM
which this memory is connected to the network via the first
port. Also after completion of the training phase, the user
should deliver the operational data to the network; for this
purpose the operational data will be stored on another

Control Unit

Input
layer

First hidden
layer

Second
hidden layer

Output
layer

Input for train dataset Input for operational data

Figure 2: Block diagram of proposed structure for a 4 layer multi-layer perceptron neural network

EEPROM memory that is connected to the network via second
port.

In operational phase, the network receives its input data
from the second EEPROM and produces appropriate
responses for each operational dataset. The final outputs could
be sent to a display screen or any suitable output device via
the output port. The block diagram of these modules is shown
in Figure 3.

Because choosing the number of layers is one of user’s
authorities and the maximum of hidden layers allowed in this
network is 2, the user could choose 0, 1 or 2 hidden layers and
therefore, could have a MLP network with 2, 3 or 4 layers.

In addition the network user is able to decide number of
neurons for each layer. Obviously the maximum number of
neurons for whole the network in final implementation is
constrained to the FPGA device used and couldn’t be infinite.
So the user should select a number between 1 and the
maximum neurons considered for each layer.

The precision of output values depends on number of
hidden layers, number of neurons in each layer, learning
parameter and number of iterations in training phase.

According to what was said, the operation of the proposed
system in this paper could be summarized in steps below:

1. Deciding number of layers and also number of
neurons for each layer.

2. Determining initial weights of the neurons and
number of iterations for learning phase by the user.

3. Defining train set data by the user.
4. Storing prepared data in steps 1 to 3 on first

EEPROM by the user.
5. Running training phase by the network.
6. Defining Operational data set and also noisy data and

storing them on second EEPROM by the user.
7. Running operational phase for each operational data

by the network and showing the final results on
display screen.

C. Performing Floating Point Data Type

In many applications using floating point numbers is
something common and inevitable. Also, neural networks

usually use floating point weights and inputs. Yet, fewer
efforts have been done for implementing artificial neural
networks using floating point numbers on hardware platforms
,specially FPGA, and based on this study, no Successful
results have been observed up to this moment.

Of course, in some researches some constraints have been
applied on weights and data of the network; For instance,
some researches claim that the learning of artificial neural
networks could be performed using integer weights and a
common solution for simplifying the design is converting real
numbers to integer numbers that is used in some researches.

Obviously, limiting network data and weights would
reduce the generality of neural networks in solving different
kinds of problems.

In this study, floating point algorithms have been designed
and used for implementing arithmetic operations needed in
multi-layer perceptron neural networks in order to solve the
problem of working with floating point data.

These operations are: summation, subtraction,
multiplication, calculating excitation function of neurons and
its first order derivative.

It should be noted that for expression of weights and
network inputs, single precision floating numbers based on
IEEE754 standard have been used.

Implementing Excitation Function of Neurons: Implementing
summation, subtraction and multiplication operations using
floating point algorithms is simple, but implementing
excitation functions that are mainly nonlinear, would be very
costly. Therefore, in most implementations, piece linear
approximation methods or lookup tables have been used
instead.

As mentioned in the first, in this study we have used
sigmoid function for generating neural outputs. Due to the
wide range of floating point numbers, implementing floating
point numbers using lookup tables was nearly impossible; so
we interpolated the sigmoid function using polynomials and
approximated the sigmoid function using polynomials of
degree 3 with relatively good precision. The function
interpolation is shown in Eq. 7:


























51

55/15131/03064/00643/00466/0

5/15/15/0249/00166/0

5/155131/03064/00643/00466/0

50

)(
23

3

23

n

nnnn

nnn

nnnn

n

nS

 (7)

Implementing First Order Derivative of Excitation Function:
If we directly used polynomials obtained for interpolating
sigmoid function to calculate the first order derivative of the
function, the calculation errors could be high. So we
performed some arithmetic operations on sigmoid function and
Succeeded to express the first derivative based on the function,
itself. The steps of these operations are shown in formula 8. In
this formula, F(x) is the sigmoid function.

EEPROM
1

Storing train
phase data and
initial weights

Multi-layer
perceptron neural

network
implemented on

FPGA

Display for
showing output

values in
operational phase

EEPROM
2

Storing
operational
phase data

Figure 3: Connection method for connecting MLP neural
network to EEPROMs and I/Os for receiving data from
user and displaying the results

Using formulas 7 and 8 and also floating point algorithms,
the sigmoid function and its first order derivative are easily
synthesizable and ready for hardware implementations of
multi-layer perceptron neural networks.

4

1
)

2

1
)x(F(

4

1
)

2

1

)e1(

1
(

4

1
)

4

1

)e1(

1

)e1(

1
(

)e1(

1

)e1(

1

)e1(

11e

)e1(

e

dx

)x(dF

2

2
xx2x

2xx2x

x

2x

x







































 (8)

IV. SIMULATION RESULTS

The Program used for simulating the proposed network
structure in previous subsection has been written in VHDL
language and the simulator software is ModelSim SE.
Simulation stages in this study, has been done for multi-layer
perceptron neural networks with 2, 3 and 4 layers. In this
section the simulation results will be surveyed.

In order to check the accuracy and efficiency of our model,
we have tried to solve the pattern recognition problem for
digits 0 to 9 by our MLP network. Figure 4 shows how each
digit is demonstrated. As you see, each digit is designed and
displayed by 35 dots. Therefore, it’s obvious that for receiving
inputs proportional to each of these numeric patterns requires
a MLP network with 35 neurons in its input layer. Also,
separating 10 distinctive numeric patterns in network output
requires 10 neurons in output layer. In other words, each
output neuron determines one of digits and whenever the input
pattern conforms to one of digits 0 to 9, the appropriate output
value will be created.

We have performed the simulation of mentioned network
for MLP with 0, 1 or 2 hidden layers and each time, we have
changed number of neurons in hidden layers. On the other
hand, initial network weights of hidden and output neurons
have been chosen completely random in range -1 to 1 and
training phase has started with these values. It is necessary to

say that in all cases number of neurons in output layer is 10
and each neuron corresponds to one of digits 0 to 9.

A. Network Learning Parameters

The proposed MLP neural network has been simulated
with different layers between 2 and 4. In each step of
simulation, number of iterations in train phase was different
and as the results will be seen in the table, by increasing
number of iterations in train phase, the generated errors in
output neurons have been reduced.

On the other hand, the network structure is able to be
trained with both fixed and variable learning parameter. It
should be noted that the learning parameter varies with the
number of iterations passed, and its variation in each repetition
of train phase is calculated using Eq. 9:

)iteration*1(

_Old
_New




 (9)

In above equation,  is train coefficient of network, iteration

is iteration counter and is variation coefficient of learning
parameter.

B. Analyzing the results

In this subsection, first some instances of output neuron
waveforms in our simulations will be shown. Then a summary
of simulation results for different layers, neurons and iterations
in train phase will be listed in Table I. Note that in all the
figures below, index 0 in data_out array relates to digit 1 in
output layer, and index 9 in data_out array relates to digit 0 in
output layer and so on.

As a first example, Figures 5 to 14 show the output values
generated in a 3 layer MLP for input patterns of digits 0 to 9

0011000
0101000
0001000
0001000
0001000

0011100
1000001
0000100
0010000
1111111

0011100
1000001
0000110
1000001
0011100

0000010
0000110
0010010
1111111
0000010

1111111
1000000
1111110
0000001
0011100

0011100
0100000
1001110
1000001
0011100

1111110
0000100
0001000
0010000
1000000

0011100
1000001
0011100
1000001
0011100

0011100
1000001
0111001
0000010
0011100

0111110
1000001
1000001
1000001
0111110

Figure 4: Numeric patterns, top row represent digits 1, 2, 3, 4, 5 from
left to right and bottom row represent digits 6, 7, 8, 9, 0 from left to
right

TABLE I. SIMULATION RESULTS

Network Type
Number of

Input Neurons

Number of
Neurons in

First Hidden
Layer

Number of
Neurons in

Second Hidden
Layer

Number of
Neurons in

Output Layer
Number of
Iterations

Output Error
Values

2 layer 35 - - 10 200 5 %
2 layer 35 - - 10 500 3 %
3 layer 35 5 - 10 500 8 %
3 layer 35 5 - 10 1000 5 %
3 layer 35 10 - 10 500 5 %
3 layer 35 10 - 10 1000 3 %
4 layer 35 10 10 10 500 5 %
4 layer 35 10 10 10 1000 3 %
4 layer 35 5 5 10 1000 7 %
4 layer 35 5 5 10 2000 4 %

with 1000 iterations in train phase. As you see, the error rate

of output values in this case is about 3%.

As the second example, Figures 15 to 19 show the output
values generated in a 2 layer MLP for input patterns of digits
1 to 5 with 100 iterations in train phase. As you see, due to

relatively small number of iterations in train phase, the error
rate of output values is variable and between 5% and 8%.

V. CONCLUSION

Figure 5: A 3 layer MLP network output for input pattern 0

Figure 6: A 3 layer MLP network output for input pattern 1

Figure 7: A 3 layer MLP network output for input pattern 2

Figure 8: A 3 layer MLP network output for input pattern 3

Figure 9: A 3 layer MLP network output for input pattern 4

Figure 10: A 3 layer MLP network output for input pattern 5

Figure 11: A 3 layer MLP network output for input pattern 6

Figure 12: A 3 layer MLP network output for input pattern 7

In this paper a multi-layer perceptron neural network was
implemented using VHDL hardware description language.
The main advantages of this study are as below.

First, number of layers and also number of neurons in each
layer are determined by the user; second, the train phase is
online and is done on hardware; third, neural weights could be
in floating point from.

Running both train and operational phases on hardware is
much faster than software implementations; because, in
hardware implementations the neurons are interacting together
in parallel.

And finally as future work, other types of artificial neural
networks could be implemented using hardware description
languages and their speedup and advantages could be surveyed
and analyzed.

REFERENCES
[1] S. Haykin, “Neural Networks: A Comprehensive Foundation”, New York:

Macmillan Collage Publishing Company, 1994.
[2] do A , Ferreira A.P , da S Barros E.N , "A high performance full pipelined

arquitecture of MLP Neural Networks in FPGA ", 17th IEEE International
Conference on Electronics, Circuits, and Systems (ICECS), PP : 742 -
745 , 2010.

[3] Andres A , Carlos A.P , Eduardo S , "An FPGA platform for on-line
topology exploration of spiking neural networks ", Conference on
Microprocessors and Microsystems, Vol 29 , PP: 211 - 223 , June 2007.

[4] Pearson M.J , Melhuish.C , et al. "Design and FPGA implementation of an
embedded real-time biologically plausible spiking neural network

Figure 13: A 3 layer MLP network output for input pattern 8

Figure 14: A 3 layer MLP network output for input pattern 9

Figure 15: A 2 layer MLP network output for input pattern 1

Figure 16: A 2 layer MLP network output for input pattern 2

Figure 17: A 2 layer MLP network output for input pattern 3

Figure 18: A 2 layer MLP network output for input pattern 4

Figure 19: A 2 layer MLP network output for input pattern 5

processor", Conference on Field Programmable Logic and Applications ,
PP: 582 - 585 , Aug 2006.

[5] B. Glackin , et al. "A Novel Approach for the Implementation of Large
Scale Spiking Neural Networks on FPGA Hardware", LNCS:
Computational Intelligence and Bioinspired Systems, Vol 3512 , PP: 552
- 563 , 2005.

[6] Pedro F , Pedro R , Ana A , Fernando M.D , "Artificial Neural Networks
Processor – A Hardware Implementation Using a FPGA", LNCS: Field
Programmable Logic and Applications, Vol 3203 , PP: 1084 - 1086 ,
2004.

[7] Bellis S , et al. "FPGA implementation of spiking neural networks - an
initial step towards building tangible collaborative autonomous agents",
Proceedings of IEEE International Conference on Field-Programmable
Technology, PP: 449 - 452 , 2004.

[8] Wang Q , Yi B , Xie Y , Liu B , "The hardware structure design of
perceptron with FPGA implementation", IEEE International Conference
on Man and Cybernetics Systems, Vol 1 , PP: 762 - 767 , Oct 2003.

[9] Jihan Z , Peter S , "FPGA Implementations of Neural Networks - A
Survey of a Decade of Progress", LNCS: Field Programmable Logic and
Applications, Vol 2778 , PP: 1062 - 1066 , 2003.

 [10] Eva M.O , Antonio C , Eduardo R , Richard R.C , "FPGA
Implementation of a Perceptron-Like Neural Network for Embedded
Applications", LNCS: Artificial Neural Nets Problem Solving Methods,
Vol 2687 , PP: 1 - 8 , 2003.

[11] Noory B , Groza V , "A reconfigurable approach to hardware
implementation of neural networks ", Conference on Electrical and
Computer Engineering , Vol 3 , PP: 1861 - 1864 , May 2003.

[12] Chujo N., Kuroyanagi S., Doki S., Okuma S., “An iterative calculation
method of the neuron model for hardware implementation”, IEEE
IECON, Vol. 1, pp. 664-671, 2000.

[13] Eldredge J. G., Hutchings B. L., “RRANN: a hardware implementation
of the backpropagation algorithm using reconfigurable FPGAs”, IEEE
International conference on neural networks, Vol. 4, pp. 2097-2102,
1994.

[14] Girau, B.; Tisserand, A.; “On-line arithmetic-based reprogrammable
hardware implementation of multilayer perceptron back-propagation”,
Microelectronics for Neural Networks, 1996., Proceedings of Fifth
International Conference on
12-14 Feb. 1996 Page(s):168 – 175.

[15] Seok B.Y , Young J.K , Sung S.D , Chong H.L , "Hardware
implementation of neural network with expansible and reconfigurable
architecture", Proceedings of the 9th International Conference on Neural
Information, Vol 2 , PP: 970 - 975 , Nov 2002.

