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Abstract—Hybrid WLAN mesh networks use a combination of
nodes that are continuously powered and those that are powered
using an energy sustainable source such as solar power. In this
paper we consider the problem of cost-optimal placement of
the energy sustainable nodes in these types of hybrid networks.
We first introduce a cost model that takes into account the
provisioning required to operate the solar/wind powered nodes
subject to a desired node outage criterion. We then formulate
the design problem as a Mixed Integer Quadratic Problem
(MIQP). A branch and bound approach is used to obtain node
positioning solutions and is compared with a proposed algorithm
that uses optimum shortest path routes. Our results show that
there is a significant improvement in cost that can be obtained
using the proposed methodology and that the branch and bound
approach achieves the optimum assignment for a variety of
network examples.

I. INTRODUCTION

Wireless LAN mesh networks based on IEEE 802.11 are
being rapidly installed in many metropolitan areas. These
networks provide end-user Wi-Fi coverage and reduce deploy-
ment costs by performing backhaul traffic relaying between
mesh nodes. One of the major costs of many WLAN mesh
network deployments is that of providing certain mesh nodes
with electrical power. An alternative to continuous power
connections is to operate some of the mesh nodes using a
sustainable energy source such as solar or wind power. The
resulting system is a hybrid network consisting of a mixture
of nodes powered continuously, and by those powered using
renewable energy sources.

In this paper we consider cost-optimal placement of energy
sustainable nodes in a hybrid WLAN mesh network. A cost
model is first introduced that takes into account the solar
panel and battery provisioning required to operate the solar
powered nodes subject to a desired node outage criterion.
A complicating factor is that the cost of renewable energy
powered nodes is dependent on the amount of traffic for
which a given node is provisioned, and therefore the node
placement and traffic routing must be considered jointly. The
design problem is formulated as a Mixed Integer Quadratic
Problem (MIQP) and is shown to be NP-complete. A branch
and bound approach is used to obtain node positioning so-
lutions, and this is compared with a proposed algorithm that
uses optimum shortest path routes. The proposed algorithms
result in significant improvements in cost and the branch and
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Fig. 1. Solar Powered WLAN Mesh Node

bound approach achieves the optimum assignment for various
network examples which can be computed exhaustively.

II. BACKGROUND

To the best of our knowledge, optimum cost node assign-
ment for hybrid sustainable-energy infrastructure deployments
has not been dealt with in the context of wireless mesh
networks. However, there is previous work that deals with
similar problems within the context of sensor and cellular
networks.

In [1], a Base Station Positioning (BSP) problem is con-
sidered for sensor networks. It is shown that the problem is
NP-complete, and the paper describes results for greedy and
local search algorithms. In [2] a methodology is presented
for approximating the base station placement solution. The
proposed technique is guaranteed to find a solution within
a specified error bound. In [3] a two-tier sensor network is
considered which is composed of sensors and aggregating
nodes. The problem of maximizing the network lifetime of
the forwarding nodes is considered by adding energy to each
node or by adding relay nodes at new locations. In [4] a hybrid
sensor network is considered, containing resource-rich micro-
servers and resource-impoverished sensors. An investigation of
the maximum lifetime of the network and the optimal micro-
server placement is performed using a tree-based anycast
routing algorithm. Reference [5] describes an optimal access
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Load Power Phoenix, AZ. Toronto, ONT. Yellowknife, NWT.

4W { Battery, Ah. 28.25 62.45 185.12
Panel, W. 30 79 134

3W { Battery, Ah. 22.12 47.5 148
Panel, W. 22 59 96

2W { Battery, Ah. 14.2 30.5 92.6
Panel, W. 15 40 67

1W { Battery, Ah. 6.6 15.3 53.2
Panel, W. 8 20 30

0.5W { Battery, Ah. 3.4 9.8 24
Panel, W. 4 10 16

0.25W { Battery, Ah. 1.9 4.9 12
Panel, W. 2 5 8

TABLE I
MINIMUM COST SOLAR PANEL AND BATTERY SIZES

point and traffic allocation algorithm for WLANs and in [6]
a base station location optimization problem is described for
UMTS networks in which the demand node maps and the
target base station sites are known beforehand.

In [7] the cost tradeoff is considered between installing a
photo-voltaic (PV) system versus powering from the AC power
mains for Optical Network Units (ONU). The authors show
that there is a “solar cost effective distance” where the cost of
using the AC mains is higher than deploying a PV system.

III. ENERGY FLOW MODEL

A block diagram of a sustainable energy mesh node is
given in Figure 1. The solar panel and battery are connected
to the system using a charge controller which protects the
battery from under-charging and over-charging. A standard
discrete-time flow model describes the energy input/output for
this system [8]. Esource(k) is defined to be the total energy
produced by the energy source(s) over the time increment
[(k−1)∆, k∆]. In photo-voltaic (PV) systems, data collection
and modeling is done in discrete time, often using hourly ∆
increments. We also define B(k) to be the residual battery
energy stored at time k∆, and Bmax is defined to be the total
battery capacity. If we assume that L(k) is the load energy
demand over the time duration [(k − 1)∆, k∆], then we can
write that,

B(k) = min{max[B(k − 1)+
Esource(k) − L(k), Boutage], Bmax}. (1)

This equation simply states that the battery energy at time k
can be found by taking the energy at time k−1, adding in the
energy supplied by the energy source(s), and subtracting that
which what was consumed by the load over that period. In this
equation Boutage is the maximum allowed depth of battery
discharge [9]. When B(k) < Boutage, the charge controller
disconnects the load and the node will experience a radio
outage. It is also important to incorporate temperature effects
into the energy flow model since any reduction in temperature
leads to a reduced charge storage capability in the battery.

Using public solar insolation or wind data for a particular
geographic location1 and the energy flow model, the perfor-
mance of the system can be determined by simulating its
behavior over many years of meteorological history. This is
currently the most accurate way to perform system provision-
ing [10].

IV. SOLAR POWERED PROVISIONING COST MODEL

For a given geographic location, and using the procedures
described above, solar panel versus battery size contours
can be generated for an assumed traffic profile and a given
probability of node outage, POut. From these curves, the costs
of the battery and panel can be used to compute the minimum
total provisioning cost. In this paper it is assumed that the
node cost function is made up of the cost of the battery and
the solar panel only, since the rest of the node consists of
(typically much smaller) fixed costs. In Table I for example,
we show the resources required to deploy one such node at
different locations in North America for POut = 10−4 for the
power consumption cases shown.

Many of these types of node configurations have been
performed, and our simulations have shown that the solar pro-
visioning cost CSP can be approximated as a linear function of
the normalized traffic flow, L, for which the node is designed,
i.e.,

CSP (POut) � K1L + K2, (2)

where K1 and K2 are dependent on Pout. For example,
in Toronto Canada, for the case where the target outage
probability Pout is 0.1, K1 = 110 and K2 = 37.

V. PROBLEM DEFINITION

It is assumed that a target end-to-end traffic profile is
known. Since the traffic profile is long-term, we also assume
that all flows are splittable. In addition, the positions of the
mesh nodes has been determined in advance based on WLAN
coverage considerations. The problem is to decide which

1This can be obtained in the USA from the National Renewable Energy
Laboratory (NREL), U.S. Department of Energy. In Canada it can be obtained
from The Meteorological Service of Canada.
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nodes need to be solar-powered, and what the provisioning
is for those nodes so that the total cost is minimized. Since
solar powered node provisioning cost is a function of traffic
flow through them, we need to flow the smallest amount of
traffic through the assigned solar nodes. Given a traffic flow
matrix, and a set of N mesh node locations with associated
connectivity, we want to locate the positions of the solar
powered nodes such that the total solar provisioning cost is
minimized. We refer to this as the Optimum Flow/Placement
(or OFP) problem.

We introduce a binary decision variable di which will
indicate whether a location is solar (i.e., 1) or AC mains
(continuously) powered (i.e., 0). This variable is a vector with
dimension N × 1 where N is the number of nodes. We have
(K = N −P ) AC-powered nodes, and we would like to place
them such that they carry as much of the traffic as possible.

The problem can be formulated as the following Mixed
Integer Non-linear Programming (MINLP) problem,

minγij ,di
C (3)

such that

γij ≥ 0 ∀i, j ∈ N (4)

γij ≤ 1 ∀i, j ∈ N (5)

C = (N − P )CAC +
∑

i

(di)CSi i ∈ N (6)

CAC = F (7)

CSi = Λ(Li, T ) (8)

Li =
∑

l∈N

γil +
∑

h∈N

γhi (9)

∑

l∈N

γil −
∑

h∈N

γhi = Di ∀i (10)

∑

i

di = P (11)

di ∈ {0, 1}, i = 1 . . . N (12)

POuti = Φ(Li, T ) ∀i (13)

POuti ≤ T ∀i (14)

As seen in Equation 3, the objective is to minimize the total
cost over the decision variable di and γij where γij represents
the total flow on the link between nodes i and j. The constraint
in Equation 4 ensures that the direction of flows on the link
correspond to the link direction. Equation 5 represents the
link capacity condition on the total flow through a link and
Equation 6 gives the total cost as the sum of the solar and AC
powered node costs. Equations 7 and 8 represent the assumed
cost models for the AC nodes and the solar nodes. F represents
the average cost of deploying an AC node. The optimization
problem is independent of the total AC cost since it is fixed. In
Equation 8 we see that Λ(·) models the functional dependency
of the node cost, where Li represent the sum of the incoming
and outgoing flows for node i. The flow balance is shown
in Equation 9 and T is the target outage probability which
is assumed to be the same for all nodes. An additional flow
balance is shown in Equation 10, where Di represents the

traffic demand sourced or requested by the node. This has a
positive sign for sources and a negative sign for sinks, and is
zero for relay nodes. The constraint in Equation 11 guarantees
that the number of AC nodes is equal to P , while the condition
shown in Equation 12 simply ensures that di is a binary
vector. Equation 13 represents the non-linear dependency of
the outage on Li and T . Finally, Equation 14 shows that the
outage target must not be exceeded.

The constraint in Equation 13 can be removed by noticing
that the solar cost model guarantees that the target outage level
is met if the load does not exceed that used in the design, and
hence the problem can be simplified into a quadratic Mixed
Integer Quadratic Problem (MIQP).

minγij ,di

∑

i

di · CSi i ∈ N (15)

such that

γij ≥ 0 ∀i, j ∈ N (16)

γij ≤ 1 ∀i, j ∈ N (17)

CSi = K1Li + K2 (18)

Li =
∑

l∈N

γil +
∑

h∈N

γhi (19)

∑

l

γil −
∑

h

γhi = Di ∀i (20)

∑
i di = P (21)

di ∈ {0, 1} (22)

The objective is a quadratic combination of the variables while
all of the constraints are linear. In the next section we consider
the complexity of the defined problem.

VI. PROBLEM COMPLEXITY

Theorem 1: The cost-optimal joint node placement and
flow routing problem in hybrid powered wireless mesh net-
works is an NP-complete problem.

Proof: The theorem can be proven by reduction to the
well-known minimum set cover problem [11]. In the set cover
problem we are given a collection C of subsets of a finite set
S, whose union is S. A set cover for S involves selecting a
subset C ′ ⊆ C such that every element in S belongs to at
least one member of C ′. The decision version of the problem
can be described as follows. “Is there a set cover such that the
cardinality of C ′, is less than or equal to K, i.e., |C ′| ≤ K?”

Assume we are given any instance of the minimum set cover
problem, where S = {E1, E2, . . . , En−1, En}. We transform
this into an instance of the optimal flow/placement problem
from Section V as follows. A four-stage mesh network is
formed as shown in Figure 2. The first stage is a source
node, I , from which all traffic originates, and a unit traffic
flow (chosen to be much smaller than the link capacity) is to
be sent to each of the elements of the set, S. The nodes in
stage 3 each represent one of the elements in S as shown.
This traffic must be sent through stage 2 which consists of
|C ′| nodes, each representing one of the subsets of S. The
connectivity between stages 2 and 3 are defined by the entries
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Fig. 2. Network Construction for NP-completeness Proof

in the provided subsets C, an example of which is shown in
the figure. The traffic flow leaves the network via node O. The
objective in this network is to find K = N − P nodes such
that all traffic flow demands are met and there is a zero solar
provisioning cost for the P remaining nodes. In this case K
represents the number of chosen intermediate nodes for traffic
routing.

Now assume that we have a polynomial time algorithm
that can solve the optimum flow/placement problem from
Section V, and we input the network problem defined above
(in Figure 2). The algorithm will find the best solar node
placement/provisioning cost for P solar nodes. If this cost
is zero, then the algorithm has found a subset of K second-
stage nodes through which the traffic can be routed, leaving
no traffic flow for the P remaining (solar) nodes (i.e., Their
panel/battery provisioning cost is zero). It can be seen that this
node selection provides a set cover for the original problem. It
is also easy to see that if a set cover exists for the given set of
parameters, our algorithm must be able to find one, otherwise
the assumed optimality of our algorithm is violated. Running
this procedure for all values of K will provide an answer to
the decision version of the set covering problem. It follows
from this that our problem is NP-complete.

VII. SOLUTION METHODOLOGY

We now consider two different algorithms for performing
the node assignment. The first relies on solving the underlying
MIQP problem using the branch and bound approach [12].
Our experiments have shown that this achieves the optimal
provisioning and assignment in networks which can be solved
by exhaustive search. We compare the results for larger
networks to a simple heuristic that uses flow routing followed

by node type assignment.
The numerical solver in [12] relies on removing the integer

constraints and solving the relaxed version of the problem by
calling the quadratic programming solver in Matlab. The solver
then uses branch and bound in order to search through the
binary integer subspace in order to find a solution.

We also include the following design heuristic. Initially all
nodes are assumed to be AC powered. Linear programming
is then used to find the shortest path routing. Once this is
done, the P nodes carrying the least traffic are assigned as
solar nodes and the total network cost is then calculated. The
advantage of this approach is that the linear program is solved
once followed by a simple node flow ordering.

A. Performance Results

Our experiments have shown that the results obtained using
the algorithms can significantly reduce solar provisioning
costs. In the following, we show some typical examples using
a 4 × 4 mesh network shown in Figure 5. We assume the
following traffic matrix for this example. Node 16 is a gateway
to which all nodes are sending traffic, we assume 0.6 units of
flow from node 1, 0.2 from node 5 and 0.9 from node 15.

For the case where P = 8, the deployments are shown in
Figures 3 and 4. The shaded nodes are the solar nodes and
the unshaded nodes are the AC powered nodes. The flows
are labeled on the arcs and arcs labeled with an X are not
carrying traffic. We can see that the optimal routing sends as
much traffic as possible through the AC nodes as opposed to
the simple heuristic, as would be expected. For all values of P ,
the optimal placement outperforms the shortest path routing.
This is shown in Figure 5 which plots the normalized cost of
the network versus the number of solar nodes for the shortest
path heuristic versus the optimal case. The normalized cost
model used for this example assumes that the unit panel cost
is double the unit battery cost, hence all of the values here
are normalized to the unit battery cost. The cost results are
also normalized to the case where POut = 0.1. For different
outage probabilities, the costs can be easily scaled up. We
can see from Figure 5 that when the number of solar nodes
is low, the results for the branch and bound are similar to
the proposed heuristic. However, when the number of nodes
increases, the costs quickly diverge until P reaches 8. The cost
for the branch and bound solution is almost 90 units while for
the heuristic it is almost 175. The costs then start to converge
again once the value of P approaches N . This behavior of the
cost function is related to the path diversity available for the
different values of P .

We also considered the case when certain solar nodes are
pre-assigned their locations. This could occur if the nodes are
deployed at locations where it is impossible to supply them
with continuous power. For example, we consider the case
where nodes 10, 11, and 12 are pre-assigned in this way. The
optimal deployment will try to route traffic to avoid these
nodes, and the results are shown in Figure 6. We can see
that the gap between the optimal cost and the shortest path
heuristic increases. This is due to the fact that the optimal
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Fig. 3. Optimal Deployment Example for a 4 × 4 Mesh
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Fig. 4. Heuristic Deployment Example Using Shortest Path for a 4×4 Mesh

deployment must keep traffic away from these nodes. The
shortest path heuristic is oblivious to the pre-assignment of the
nodes and hence the cost of the network deployment increases
when compared to the branch and bound solution that takes
the nature of the nodes into account.

In the next set of results we introduce a second gate-
way into the network. We set Node 7 as a gateway
in addition to Node 16 and include flows shown in
the format node(flow): 1(flow=1), 2(flow=0.2), 3(flow=0.01),
4(flow=0.15) and 5(flow=0.12). The algorithm will choose
node 7 as an AC node and route traffic accordingly. The
results are shown in Figure 7. We notice that the overall
cost of the network deployment has increased. We also see
that the shortest path results are close to the optimal due to
the congestion that was already affecting this region of the
network.

We also consider the case where nodes 9, 10, 13 and 14 are
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Fig. 5. Example of Total Solar Cost Versus Number of Solar Nodes for a
4 × 4 Mesh
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Fig. 6. Cost of Optimal Deployment Example for a 4 × 4 Mesh with
Preassigned Solar Nodes

removed and the traffic matrix is 1(0.5), 4(0.3), 6 (0.6) with
destination node 16. This corresponds to a more asymmetric
case, and the normalized costs obtained are shown in Table
II. As before, the costs for both algorithms are very close
when P is high or low (when compared to N ). However,
when P is close to N/2 the shortest path heuristic does not
perform as well as the optimal solution. For example, when
P = 8 the cost rises from 119.41 to 152.53. We can see that
the divergence of the costs is not high when compared to the
previous cases since the route diversity and number of nodes
has decreased.

VIII. CONCLUSIONS

In this paper we have considered the problem of cost-
optimal solar powered node assignment in hybrid WLAN mesh
networks. The problem formulation is a binary mixed-integer
non-linear problem that can be simplified into a binary mixed-
integer quadratic problem. It has been shown that the problem
is NP-complete, and deployment results were shown using a
branch and bound and shortest path heuristic. Our results show
that there is a significant improvement in cost that can be
obtained using the proposed algorithms, and that the branch
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Fig. 7. Cost of Optimal Deployment Example for a 4 × 4 Mesh with an
Additional Gateway at 7

P Optimal Shortest Path
1 10.882 10.882
2 21.765 21.765
3 32.647 32.647
4 43.529 43.529
5 54.412 62.987
6 75.000 90.046
7 92.353 117.91
8 119.41 152.53
9 156.18 187.19
10 192.94 226.10
11 236.18 271.93
12 292.35 326.09
13 348.53 382.27
14 424.12 440.46
15 499.71 506.98

TABLE II
NORMALIZED COST FOR ASYMMETRIC NETWORK

and bound approach achieves the optimum assignment for
various network examples.
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