Time Travel in Column Stores

Martin Kaufmann #*, 1, Amin A. Manjili #*, 2, Stefan Hildenbrand #*, 3, Donald Kossmann #*, 4, Andreas Tonder #*, 5

#Systems Group
ETH Zurich, Switzerland
1martinka@ethz.ch 2amamin@ethz.ch 3stefanhi@ethz.ch 4donaldk@ethz.ch

*SAP AG
Walldorf, Germany
5andreas.tonder@sap.com

Abstract—Recent studies have shown that column stores can outperform row stores significantly. This paper explores alternative approaches to extend column stores with versioning, i.e., time travel queries and the maintenance of historic data. On the one hand, adding versioning can actually simplify the design of a column store because it provides a solution for the implementation of updates, traditionally a weak point in the design of column stores. On the other hand, implementing a versioned column store is challenging because it imposes a two dimensional clustering problem: should the data be clustered by row or by version? This paper devises the details of three memory layouts: clustering by row, clustering by version, and hybrid clustering. Performance experiments demonstrate that all three approaches outperform a (traditional) versioned row store. The efficiency of these three memory layouts depends on the query and update workload. Furthermore, the performance experiments analyze the time-space tradeoff that can be made in the implementation of versioned column stores.

I. INTRODUCTION

In one of his last talks, Jim Gray postulated that “update in place” was dead [1]. Storage is becoming so abundant that it is cheaper to keep all data, rather than thinking about which data to delete. Instead of overwriting updated data, it is better to create a new version of the data.

There are a number of database products that support versioning. Correspondingly, these systems also support so-called time travel queries that allow the navigation to old versions of the data. Oracle has pioneered these ideas with its Flashback feature [2], which is integrated into the Oracle database product. Flashback extends SQL’s FROM clause with an optional AS OF construct assigned to each table: AS OF specifies a version number or a timestamp that indicates which version of the table should be used. By default and in the absence of an AS OF, the latest version is accessed. In such a system, updates can only be applied to the latest version so that all historic versions are immutable. PostgreSQL had a similar feature based on the append-only design of the PostgreSQL storage manager [3]. ImmortalDB by Microsoft Research is a row store system that supports versioning and time travel queries [4].

So far, most work on versioning and time travel has been carried out in the context of a row store. Lately, however, it has become clear in numerous studies [5], [6] that column stores outperform row stores. In particular, column stores show superior performance for read-mostly and OLAP workloads.

Support for time travel queries is particularly crucial in OLAP applications. For example, an analyst might be interested in the value of his portfolio today if he had left it unchanged since the beginning of the financial crisis in September 2008. This query involves a time travel to the state of the portfolio as of September 2008 and a reassessment of the value of that portfolio with current prices and stock quotes.

This paper presents alternative approaches to implementing versioning and time travel queries in a main memory column store. The work was motivated by the time travel feature of the in-memory column store database system SAP HANA [7], which is designed to accelerate OLAP queries. The goal of this work was to find the best design for the time travel component of this system.

Implementing versioning and time travel in a column store is not trivial. The state-of-the-art implementation of versioning in row stores is based on chaining the versions of a record using pointers [4]. If versions are held in the granularity of individual fields as part of a column store, then the storage overhead of keeping such pointers can be prohibitive. Furthermore, a lot of optimizations carried out for column stores are based on a predictable sequential access pattern during the processing of the data; this optimization may become less effective if pointers are chased.

Another issue is the organization of the column store. Typically, the relative positions of the attributes of a row are identical in all columns in order to make inner joins of columns within the same table fast. The question is how different versions of an attribute can be stored and which memory layout is most attractive for time travel queries.

The main contribution of this paper is to study alternative approaches to represent temporal data physically in a main memory column store. We present three memory layouts which differ in the way they encode versioning information and how they cluster the data. The first approach clusters by row (as in traditional column stores). The second approach clusters by version-ID. The third approach is a hybrid between the first two approaches. For each layout, the basic data structures, query processing and update algorithms are shown. Furthermore, this paper presents the results of a comprehensive performance study that assesses the tradeoffs of the alternative approaches and compares them to a state-of-the-art row store implementation. These experiments also give insight into the
fundamental space-time tradeoffs of versioned column stores.

In this paper we focus on the physical storage of temporal data and scan-based approaches rather than index data structures. Many traditional index data structures do not work well on modern hardware and in-memory database systems as they are designed for efficient operations on hard disks, optimizing the number of I/O operations for updates and queries. For instance, tree based approaches show a poor performance as they lead to a high synchronization overhead on many-core systems and contention of the memory.

For this paper we assume that all temporal data fits into main memory, which is legitimate because a real-world main memory column store such as HANA can be operated in a distributed environment. For instance, the biggest installation in our lab so far (including several hundred nodes) supports up to 1 PB of raw data.

The remainder of this paper is structured as follows: Section 2 discusses related work. Section 3 presents use cases which are relevant for accessing historic data. Section 4 sketches which update granularities can be implemented in a column store. Sections 5-7 describe the three alternative approaches to implementing time travel in column stores. Section 8 discusses the results of the performance experiments. Section 9 contains conclusions and possible avenues for future work. The Appendix gives a more formal description of the algorithms and presents additional experiments.

II. RELATED WORK

Temporal and versioned databases have been subject to extensive research. A survey on the fundamental work on temporal databases is given by [8]. More recent related work and an overview of indexing techniques on temporal databases is presented in [9].

Management of historic data has been implemented in well known DBMS: [3] describes the implementation of an archive in PostgreSQL. Oracle provides a similar feature called Flashback [2], [10] that allows going back in time. This Flashback feature comes in different variants: a) short time row level restore using UNDO information, b) restoring deleted tables using a recycle bin and c) restoring a state of the whole database by storing previous images of entire data blocks. The newest variant of Flashback introduced in version 11g called Flashback Data Archive stores the entire data augmented with the required meta-data in a dedicated archive using background processes.

Another database system that manages historical data is Vertica [13] is a commercial disk-based column store database system, which (similar to C-Store) provides a limited support for versioning by means of snapshot isolation. In the area of processing historical data there have been surveys like [14] and [15] which present the foundations of temporal data management and access methods. As in [14], we will discuss physical layouts where the data is clustered by row (called key-only in [14]), by version-ID (called time-only) and one approach that combines the two (called time-key).

We investigate the area of processing historical data in the context of column stores: The idea of storing data in columns instead of rows dates back to [16]. The advantage is clear: Only the required columns are brought to the CPU via the memory hierarchy. However, the data needs to be reconstructed from the different columns in order to return the resulting row. This can usually be done quite efficiently if the data in the different columns is stored in the same order. Adding historical data to a column store imposes the following design problem: Either we supplement the storage with data that is not required to answer the query (if we insert an entry in every column for each update), or we cannot have simple offset access to all columns as they might have received a different number of updates. This leads to the question to what extent versioning affects the advantages of a column store. To the best of our knowledge, this question has not been answered yet.

Furthermore, the high similarity of adjacently located data in a column store can be exploited for compression, which both reduces memory consumption and improves query performance. An overview of different compression schemes in column stores is presented in [17].

III. USE CASES

In this section we describe the use cases we are considering when designing our implementation. There are basically two dimensions relevant to a relation that contains historic data: the time dimension (i.e., slice the relation to show the state at a given point in time) and the row dimension (i.e. slice the relation to show the changes made to a certain row) as shown in Figure 1. In addition, combinations and aggregations are possible. The data can be clustered along no more than one of these two dimensions. Depending on this decision, different costs have to be paid for different access patterns. The use cases presented in this section are selected to expose these tradeoffs.

In general, a version-ID represents a unique transaction time stamp in the database. In the remainder of this paper, we will focus on transaction time only. For simplicity, we will not distinguish a version-ID from a date in real-world. We will explain the use cases and our proposed memory layouts in examples based on versioned tables from the TPC-H schema.
A. Time Travel

One application of historic data is the possibility to travel in time: The recording of historic data enables the user to see the database at a certain point in time. An example query could be: “What was the maximum ordered quantity in all lineitems at the end of last year?” This can be formulated as an SQL query. The SQL syntax is along the lines of the temporal features of SQL 2011 [18]:

```sql
SELECT MAX(l_quantity) FROM lineitem FOR SYSTEM_TIME AS OF '2012-12-31'
```

B. Evolution of Data (Audit)

The other application of historic data slices the data along the other dimension, meaning that we query the changes of a specific value over time. An example for such a query is “What was the maximum quantity of a specific lineitem over the last five years?” This type of query is important to satisfy audit requirements (e.g. showing that the data was always within a certain range). BETWEEN returns a row for each version of the specified data item:

```sql
SELECT MAX(l_quantity) FROM lineitem FOR SYSTEM_TIME BETWEEN '2008-01-01' AND '2012-12-31' WHERE l_linenumber='3' AND l_orderkey = '1'
```

The attributes linenumber and orderkey are the compound primary key for lineitem.

C. Record Reconstruction

Since accessing multiple attributes is different in row and column stores, we consider a query which returns the value of different attributes of a table at a certain time. In addition, a condition is defined. Thus, only a subset of all rows which existed in the database at that time is retrieved. The following SQL code gives an example of such a query:

```sql
SELECT availqty, supplycost FROM partsupp FOR SYSTEM_TIME AS OF '2012-12-01' WHERE suppkey < 10
```

D. Processing Inserts and Updates

There are three relevant additional use cases which are related to changing the information that is stored in the database. An insert operation adds an additional record (e.g., a new lineitem record). An update modifies an existing record and adds a new version without removing the old information from the storage. The delete operation is special in this scenario since the database is required to keep track of the history of the deleted rows in order to answer queries about the past consistently.

With the objective of supporting the use cases shown in this section, Sections V, VI and VII present different approaches to store a table in main memory with versioning-support in the granularity of a single column (attribute). Our design space for the memory layouts contains several dimensions. First, the data can be clustered either by row or by version. Second, replication of data improves query response time, but introduces a tradeoff between query execution time, update costs and memory consumption. Third, depending on the storage layout, different compression methods can be applied. In addition, dictionary encoding [17] and dictionary compression [19] are general compression methods which work both in row and column stores. Compression not only reduces the consumed amount of memory but can also improve the execution time of queries which are executed over compressed data [17]. Furthermore, in case of archiving (moving old versions to harddisk), compressed data reduces the required space on harddisk and increases the speed of transferring data from main memory to disk and vice versa.

IV. UPDATE GRANULARITY

This section investigates in which granularity updates of single attributes can be applied to a versioned table. As in such a temporal table an update is implemented as an insert of a new version, the question is whether the entire affected row should be stored as a new version or if only the modified attributes should be preserved.

A. Asynchronous Columns

In this approach, updates are only applied to the columns where the value has changed. Thus, the relative position of values for a given row and version is independent in different columns. For example, if in a row of the customer table only the address is updated, a new version is only written to the address column, and the other columns are not affected. The asynchronous columns approach is described in [20] and referred to as Temporal Decomposition Storage Model (TDSM).
The advantage of asynchronous columns is the efficient memory consumption. Because no data has to be replicated, read operations are fast for single columns. In addition, updates can be executed very quickly by simply inserting a new version.

On the negative side, performance of tuple reconstruction decreases with the number of columns which have to be joined. Since different columns have different sizes (due to the different number of updates modifying them), it is not trivial how to efficiently find the corresponding value for a row in all columns.

B. Synchronous Columns

In this approach, each version of a row is stored at the same relative position synchronously in all columns. In the case of an update, the previous value is replicated for unchanged columns, and therefore the relative position of a value for a given row and version is identical in all columns, which results in an efficient tuple reconstruction. The synchronous columns approach has been chosen in most commercial systems so far.

Very fast record reconstruction is the main advantage of synchronized columns. This benefit can be achieved by preserving the same relative position of all values for a given row and version in all columns. In addition, the version-ID has to be stored only once for one tuple because all columns are always updated at the same time.

On the negative side, synchronous columns lead to an increased update execution time and memory consumption due to replication of data. However, compression can be applied; this benefits from the high similarity of values in columns which are not updated frequently.

V. CLUSTERING BY ROW

This section introduces a memory layout in which the data is clustered by row-ID.

A. Storage Layout

In the clustering by row approach, space for a fixed number of versions is reserved for each row. The memory layout contains a base array of segments. Each position in the base array corresponds to a row in the table. A segment contains \(width_{row} \) pairs of \((val_{im}, ver_{m})\) as a payload rather than an atomic value as it is the case in a traditional column store. \(val_{im} \) is the value of row \(i \) which has been valid since version \(ver_{m} \). If the number of updates of one row in the base array exceeds \(width_{row} \), the data of the segment is copied to the next available position in an overflow array and a reference is stored. Within this overflow array, the segments of each row are chained and referenced by their array position.

In the example shown in Figure 2 we consider a versioned customer table with two attributes. If the account balance of customer \(s \) decreases to \'$3.00' \) at version number \('9' \) a new \((val_{sm}, ver_{m})\) pair with \(val_{sm} = '3.00' \) and \(ver_{m} = '9' \) is prepended to the segment of this customer. The former value is moved to the next available position in this segment.

B. Query and Update Processing

In this subsection we describe the operators needed to support the use cases which were introduced in Section III-D. We show how these operators can be implemented efficiently for this layout. First, we describe operators to alter the stored data. Next, we will continue with operators to retrieve data from memory.

Insert. For insertion of a new row to a column, we append a segment to the base array. If the current number of segments exceeds the maximum number of rows \(MaxSize_{byrow} \), space for a new column with size \(2 \times MaxSize_{byrow} \) has to be allocated and the data from the old column is copied. Next, a new segment is appended and the new \((val_{im}, ver_{m})\) pair is written to the leftmost position of the segment.

Update. As already shown in the motivation of this paper, in temporal tables old versions are never modified. Therefore, an update operation in a temporal database can be translated to inserting a new version.

If there is space for a new version in the corresponding segment of a row, the previous \((val, ver)\) pair is moved from the leftmost position to the next unoccupied position within the segment and the new pair is written to the leftmost position. Thus, the highest version in each segment is always on the left and the remaining pairs are in ascending order starting from the second position. By this means, shifting all previous versions can be prevented. If the segment is full, the content of this segment has to be copied to an available position in the overflow array. The position within the overflow array is used as a reference to chain the segments as shown in Figure 2. Thus, references to previous segments never have to be updated because the position within the overflow array remains unchanged. Again, allocated space for the overflow array is doubled if the maximum size \(MaxOv \) is exceeded.

![Fig. 2: Clustering by Row with 2 Versions per Row Segment](image-url)
In the clustering by row layout, the implementation of synchronous columns is difficult because for referencing \((val, ver)\) pairs, it is necessary to add the information if the pair is located in the base or overflow array.

Delete Operation. For simplification, we assume that a deleted row is never re-inserted again with the same ID. In order to keep track of deleted rows, we choose a similar approach as the one presented in [12]. We introduce a bitmap in which a true bit at position \(i\) indicates that row \(i\) has been deleted. In this case, the last entry is a dummy update used to keep track of the version in which this row was deleted.

Next, to efficiently access data in memory, we define a set of scan operators retrieving values which fulfill a given condition. Optimal performance of each scan operator can be achieved by exploiting the clustering characteristics of the underlying layout. In the following, we describe how the value for a specific version can be retrieved. We will continue with describing how an aggregation over a subset of versions for a row can be implemented.

Select Value for a Given Version and Row-ID. This operator retrieves a single value for a given row \(i\) and version \(ver\). In this layout, the data is primarily clustered by row and secondarily clustered by version. Thus, the position of the row has to be determined in the array of segments first, which can easily be achieved by a simple array-lookup based on row-ID \(i\). In a second step, the value which is valid for a given version \(ver\) has to be retrieved by sequentially scanning the \((val_{im}, ver_{m})\) pairs. If \(ver\) in located in an overflow segment, preceding segments can be skipped by looking at the smallest version per segment first. A value \(val_{im}\) is valid for \(ver\), if \(ver_{m} \leq ver\) and no other \(ver_{q}\) exists with \(ver_{m} < ver_{q} \leq ver\). A pseudo code representation for this algorithm is given in Appendix A.

Select Value for a Given Version and a Group of Rows. This operator repeats the above mentioned operation for all rows in a given group.

Aggregation over a Version-Interval for a Single Row. This operation reads the values of a given row for all versions in a time interval \([ver_{start}, ver_{stop}]\) and calculates a single aggregated value. In a first step, the row segment for the given row-ID has to be located. Secondly, all values for versions within the time interval have to be read in the segment to calculate the aggregated result. For this purpose, all segments connected to this row in the overflow array have to be traversed successively. Scanning \((val, ver)\) pairs can be stopped when it holds \(ver < ver_{stop}\) as \(ver\) decreases steadily for one row.

C. Uncompressed Memory Consumption

Let \(size(T)\) be the size of data type \(T\) (e.g., 4 bytes for Integer), \(size(ver)\) the size of the version number (e.g., 8 bytes for Long), \(size(pos)\) (e.g., 4 bytes for Unsigned Integer) the size of position of the next segment in the array. Then the size of a segment is given by

\[
size_{segment} = width_{row} * (size(ver) + size(T)) + size(pos)
\]

Correspondingly, the total size of a column with MaxSizebyrow rows and MaxOv overflow segments is

\[
size_{total, byrow} = (MaxSizebyrow + MaxOv) * size_{segment}
\]

The most important parameter for this layout is the width of a segment \(width_{row}\). On the one hand, a larger number of versions per segment provides faster access to historic data because fewer jumps in memory are required. On the other hand, a lot of memory is wasted if only a few rows are updated frequently. For the experiments, 10 versions per segment were chosen as a reasonable compromise.

D. Archiving

An archive allows storing parts of the table on harddisk, e.g., in case not all data fits in main memory. To create an archive, a version \(ver_{archive}\) is chosen as a threshold. All versions which are older than \(ver_{archive}\) are stored on harddisk, newer versions are kept in main-memory. Archiving can be implemented for the clustering by row approach by moving all segments to harddisk for which the validity interval of all \((val, ver)\) pairs is strictly smaller than \(ver_{archive}\). Yet, the segment containing the value valid at \(ver_{archive}\) must reside in the main memory to reconstruct the value for this version without accessing the harddisk. The space of the released segments within the overflow array can be re-used for future overflow segments.

E. Compression

The clustering by row layout is a compact representation of updates per row. Therefore, it is hard to achieve an additional reduction of memory consumption. However, dictionary encoding [17] and dictionary compression [19] can be applied to exploit the characteristics of the stored values.

F. Discussion

The clustering by row layout performs best for queries which access a large number of versions of the same row. This is the case for the evolution of data use case in subsection III-B. It is, however, expensive to retrieve a very early version of a row if it has been updated many times because a large number of positions of overflow pages has to be accessed. Memory consumption is optimal only if all segments are fully occupied, which is the case when the number of updates per row corresponds to the width of a segment. A lot of space is wasted if rows are never updated.

VI. CLUSTERING BY VERSION

In this layout the data is clustered by insertion-order, i.e., by version-ID.
A. Storage Layout

In the clustering by version approach visualized by Figure 3, for each version of a row four values are stored in an array: The row-ID i, the value val and a version interval given by the version ver_{from} for which this value becomes valid and the version ver_{to} when it is invalidated. The version interval simplifies determining if a value is valid for a given version without having to scan all data to check if it has been invalidated within another update.

For example, the fact that the customer with row-ID #r had a balance of "$8.13" from '7' to '8' can be represented by (#r, '8.13', '7', '8').

B. Query and Update Processing

Insert. In the clustering by version approach, if a new tuple with row-ID i is inserted at version ver, the tuple (i, val, ver, ∞) is appended to the array. If the number of tuples in the column exceeds its maximum size $MaxSize_{byversion}$, space is doubled and values are copied as in the previous approach.

Update. As we have to store a version interval for each update, the end interval of the previous version of this row has to be set first. Finding the latest version can be done in constant time by looking up the position in a latest version array. This array of size $count_{row}$ stores the position of the latest tuple for each row-ID. An alternative to the latest version array is a backwards-scan to retrieve the latest value which is valid for a given row-ID.

In the next step, the new version is appended similarly to the insert operation described in the previous section. This results in all tuples being sorted by ver_{from}.

The clustering by version layout can support both the asynchronous and synchronous columns update granularities introduced in Section IV, because it is possible to reference a tuple efficiently by its array position.

Delete Operation. We give two alternative implementations of the delete operation.

First, the latest version can be invalidated with ver_{to} being set to the deletion time and no new tuple being inserted.

Second, a bitmap marking deleted rows can be kept within the latest version array.

Select Value for a Given Version and Row-ID. As the data is clustered by version in this layout, the operator is implemented as a scan with the version as the primary search criteria. In a first step, the position has to be found for which the values are valid with respect to the given version ver. This is the case when it holds $ver_{from} \leq ver < ver_{to}$. Next, for each valid tuple the ID has to be compared to the given row-ID and the value is read and returned as a result when the ID matches. Note that a backward scan would be more efficient if ver was closer to the latest version. A pseudo code representation of this algorithm is given in Appendix B.

The latest version can be found more efficiently with the first occurrence of a given row-ID i in a backwards-scan. Alternatively, the position of the latest value for each row-ID can be retrieved in constant time from the latest version array without having to scan the whole column.

Select Value for a Given Version and a Group of Rows. In contrast to the previous layout, in this layout there is no need to repeat the above operation for each row. One scan is enough to retrieve values for a group of rows.

Aggregation over a Version-Interval for a Single Row. This operation has to be implemented with a linear table scan. For each tuple, the ID is compared to the given row-ID i. If the IDs are equal, the time intervals are compared, the corresponding value is read, and the aggregation can be calculated. As the data is sorted by ver_{from}, the calculation can be aborted when it holds $ver_{stop} < ver_{from}$.

C. Uncompressed Memory Consumption

For this memory layout, the size of one $(rowID, val, ver_{from}, ver_{to})$ tuple can be calculated by

$$size_{tuple} = size(rowID) + size(T) + 2 \times size(ver)$$

The total size of the column is

$$size_{total, byversion} = MaxSize_{byversion} \times size_{tuple}$$

The total memory consumption $size_{total, byrow}$ of the clustering by row approach is higher than $size_{total, byversion}$ if a lot of segments are left unoccupied. This depends on the workload and number of updates for each row.

D. Archiving

In order to archive previous versions on harddisk which are older than $ver_{archive}$, a scan of the column is necessary. A tuple can be moved from the column to disk if its validity interval is completed before $ver_{archive}$ which is fulfilled when it holds $ver_{to} < ver_{archive}$. After transferring the old tuples to the harddisk, the column has to be rewritten in order to free the memory of the tuples which have been moved to the archive.
E. Compression

In this layout the representation of data is very similar to a traditional column store layout. Therefore, almost all the compression schemes for column stores presented in [17] can be applied for this layout as well.

F. Discussion

In the clustering by version approach, both time travel and evolution of data queries are expected to be expensive for a large number of updates because a lot of tuples have to be scanned. Yet, insert, update and delete operations are simple look-ups and appends and therefore very efficient (constant time).

VII. HYBRID

This section describes a layout representing a hybrid approach with two different types of clustering. The goal of this layout is to limit the amount of data which needs to be scanned to retrieve a given version.

A. Storage Layout

The layout of the hybrid approach illustrated by Figure 4 is similar to clustering by version layout in Section VI, but it includes additional checkpoints, each containing the latest version for all rows at the time that the checkpoint has been computed.

Again, if a row with ID i is inserted or updated at version ver, the tuple (i, val, ver, ∞) is appended to a data structure called delta array according to the clustering by version approach in Section VI. The tuples are therefore clustered by version. After a fixed number of updates (defined by the checkpoint interval parameter delta max) a consistent view of the entire column for the current version is serialized and stored in a checkpoint. In such a checkpoint, the value val and the latest version ver are stored for each row. The ID of a row is represented implicitly by the position in the checkpoint. Hence, the data within a checkpoint is clustered by row.

For keeping track of the versions for which a checkpoint is available, an index is introduced. By means of this information, the last checkpoint before a given version-ID can be determined efficiently in O(log(s)) with s being the number of checkpoints for this column. As the current version is accessed most frequently, a checkpoint of the latest version of each row is always maintained and called current checkpoint. When the current version of a row is updated, the old value is removed from the current checkpoint and appended to the delta array. The new value is now written to current checkpoint.

For this layout, delta max is the most important parameter which defines the maximum number of tuples to be stored before a full checkpoint is computed. A discussion on how to choose this parameter can be found in Appendix C.

B. Query and Update Processing

Insert. In the hybrid approach, the insert operation is a simple append to the current checkpoint. If, due to insertion, the size of the table exceeds the maximum size of the current checkpoint, the data will be copied into an array with double size. For the sake of simplicity, this case is not considered when calculating the memory consumption.

Update. Before the new value is written to the current segment, the previous value of the updated row has to be written to the delta array. If the number of updates exceeds the limit defined by delta max, a new checkpoint is built and a full serialization is written to a newly allocated checkpoint. This can be achieved efficiently by a copy operation from current to the new checkpoint. The position and the version-ID that lead to a full serialization are appended to the checkpoints index to keep track of the position of all checkpoints.

In the hybrid layout, similarly to the clustering by version approach, both asynchronous columns and synchronous columns update granularities are feasible. In addition, the synchronization of columns can be achieved based on checkpoints, this limits the number of tuples that have to be scanned, to retrieve the value in each column.

Delete Operation. The implementation of the delete operation is similar to the clustering by version approach described in Section VI-B.

Select Value for a Given Version and Row-ID. For retrieving the value for a given row-ID i and version ver, both the clustering by row and by version can be exploited in the hybrid approach. First, the position of the latest previous checkpoint is retrieved using the checkpoints index by means of a binary search in O(log(s)). The value for the given row-ID can be retrieved from this checkpoint by a simple array lookup. Next, the delta array is scanned as long as ver from ≤ ver to check if the row has been updated. Appendix D provides more details for this operation.

As in the hybrid layout, the current version is always contained in a checkpoint. This layout provides the fastest possible access to the latest version by means of a simple array lookup.

Select Value for a Given Version and a Group of Rows. Similar to the above mentioned approach, values for a group of rows can be selected within one single scan.

Aggregation over a Version-Interval for a Single Row. As the aggregation has to be computed for a time interval [ver start, ver stop], the index can be exploited to find the latest checkpoint before ver start. Next, the table has to be scanned in a similar way as described in Section VI as long as the current version is in the time interval.

C. Uncompressed Memory Consumption

In this layout, memory consumption is calculated similarly to the clustering by version approach. In addition, the space for checkpoints and their index has to be considered. The size of each checkpoint can be calculated by:
Compression

The advantage of the hybrid layout is the speed up for time travel queries for a given row. The execution time of this query is limited and shorter for smaller checkpoint intervals. However, this involves a time-space tradeoff because memory consumption increases for a larger number of checkpoints.

VIII. Experiments and Results

This section describes the results of performance experiments motivated by use cases from SAP (introduced in Section III) involving analytical queries on large data warehouses containing temporal data. In our experiments, we will study two metrics: memory consumption and the response time of queries and update operations.

A. Software and Hardware Used

The experiments were measured on a Windows Server 2008 64 Bit. The hardware was an IBM x3550 M2 server with 24 GiB RAM and an Intel Xeon L5520 CPU running at 2.26 GHz.

We implemented our memory layouts (clustering by row, clustering by version, hybrid) as an experimental database system whose design closely resembles the architecture of SAP HANA [7]. This prototype is a main memory column store which is used at SAP for the development of new data structures and query processing algorithms. The clustering by version memory layout with synchronous columns corresponds to the physical storage of the current release version of HANA. Yet, we do not consider compression in our experiments.

The results were compared to a prototype of an in-memory row-oriented database system as a baseline. In this row store, versioning support is implemented by chaining previous versions similar to [4]. The row store consists of an array of tuples each containing the values of different attributes. For each of these tuples a reference to a chain of previous versions is stored. To insert a new row, a new tuple is appended to the array. Correspondingly, the update operation adds a new tuple to the chain of versions of a row.
B. Benchmark

Our benchmark is based on TPC-H with added update scenarios to generate realistic temporal data. For our measurements we chose the lineitem table from the TPC-H benchmark because this table is updated frequently; it was populated by an initial load of 10 million rows followed by 200 million updates of rows, which were chosen based on a Zipf distribution with skew parameter $s = 1.5$. For each update, the updated attribute was chosen randomly, again, according to a Zipf distribution. In approximately 50% of the updates the value of the $l_{quantity}$ attribute was updated.

C. Query Response Time Experiments

The queries in this subsection are evaluated on one column only. For the measurements we chose the $l_{quantity}$ from the lineitem table.

1) Time Travel to a Previous Version: The measurement results shown in Figure 5 refer to the time travel use case (Section III-A) in which the maximum value of the $l_{quantity}$ attribute for all rows at a given version is calculated. In this diagram the execution time of a query which performs a time travel to a variable previous version is measured.

For the clustering by row layout, the query execution time decreases for higher version-IDs. This is due to the fact that the newest versions are stored in the leftmost segment. The performance decreases linearly for older versions because an increasing number of segments in the overflow array have to be read.

In contrast to clustering by row, the execution time increases for later versions in the clustering by version approach because more tuples have to be scanned for a higher version-ID.

The performance of the hybrid approach decreases faster than the clustering by version layout because there is an additional overhead caused by searching for the nearest checkpoint in the index. The sawtooth shape of the line is caused by the execution time increasing linearly to the distance to the nearest checkpoint. In addition, the latest version can always be retrieved in constant time from the current checkpoint. For a better visualization of the effects, only one checkpoint was created for the measurements.

The performance of the row store decreases significantly for lower version-IDs because a pointer has to be followed for each version.

2) Select Value for the Latest Version: As a special case of the time travel use case (III-A), Figure 6 shows the execution time of the query that retrieves the latest version of the $l_{quantity}$ attribute for all rows. The query execution time is measured for a variable number of versions which are stored in this column.

For the clustering by row layout, the execution time is independent of the number of versions because the latest versions are always stored in the leftmost segment and can therefore be accessed directly. In the clustering by version layout, the performance decreases steadily with the number of updates because the number of tuples to scan increases. The execution time of accessing the latest version in the hybrid layout is constant and lower than with clustering by row because all data can be read from the current checkpoint. Within the checkpoints, the accessed values are located closer together, which results in smaller jumps in memory and better cache efficiency compared to the wider segments of the clustering by row layout. In this experiment, the performance of the row store is similar to clustering by row because both approaches store the latest version at the leftmost position. Yet, accessing the data from the row store is slightly faster because the distance of the values is smaller for this schema, thus resulting in a better cache efficiency.

3) Aggregation over a Version-Interval for a Single Row: The next measurement refers to the audit use case introduced in Section III-B. Figure 7 shows the results of calculating the maximum value of the $l_{quantity}$ column within the version interval [60 M, 90 M] for a given row. Again, the execution time of the query is measured for a variable number of versions in this column.

The execution time of the clustering by row layout increases linearly with the number of versions because all versions of a row are clustered together and can be read sequentially. For the clustering by version approach, a full table scan is required to retrieve all versions of a row. This full traversal of all data leads to a worse performance compared to clustering by row.
because an additional comparison with the row-ID is required. The hybrid approach benefits from the checkpoint at version 50M, which results in a linear scan within the interval [50M, 90M] only. The query execution time for the row store is the worst because of the pointer chasing for each version.

D. Record Reconstruction

Up to now, the performance for executing queries was shown for a single column only. In this section the record reconstruction is investigated by measuring the execution time for different numbers of selected attributes. As an example, Figure 8 shows the execution time of a query which selects the latest value for each row in a variable number of columns.

For the hybrid layouts and clustering by row, the latest version is directly accessible from the current checkpoint and the leftmost position, respectively. Therefore, the performance of the record reconstruction join operator is independent of the number of updates per column, which leads to a linear increase with the number of columns. In clustering by version, a scan has to be performed for each column. Since we are using asynchronous columns, the number of tuples in different columns are not equal. Thus, scanning columns with fewer tuples takes less time and as a result we see slower growth in the right part of the curve. Since in the row store the values for all columns are located in the same record, the execution time does not depend on the number of retrieved columns.

E. Processing Inserts and Updates

1) Inserts: Figure 9 shows the time required for inserting a variable number of values into 10 columns of the lineitem table. Since inserting a new row is a simple append operation to the end of array in each layout, we can see that the execution time increases linearly with the number of new rows, and the measurement results remain in the same order of magnitude for all layouts.

2) Updates: A value in the database can be updated by inserting a value with a new version for an existing row. Figure 10 visualizes the time needed to execute a variable number of updates on the l_quantity column for the different layouts. The update execution time is approximately in the same order of magnitude for all column store layouts because a new version has to be appended for each approach. In contrast to this, the update performance of the row store is much worse because all attributes of a row have to be replicated for each update.

F. Memory Consumption

Figure 11 shows how the memory consumption for the column l_quantity scales in all layouts with the number of updates. Compression is disabled for this measurement.

The clustering by row layout consumes more memory than the clustering by version layout because of the constant width of 10 versions per segment. The most memory-efficient layout is clustering by version since the amount of unused memory
is minimal. The memory consumption of the **hybrid** approach is higher than clustering by version due to the existence of checkpoints. The row store is the most memory-inefficient layout because of replicated data.

Figure 12 shows the total memory consumption of a subset of 10 columns from the lineitem table. The clustering by column approach is the most memory-efficient for 10 columns because all columns are updated independently. The memory consumption of the **hybrid** approach depends on the number of checkpoints. For our experiments, only one checkpoint was created. Again, the row store has the highest memory consumption because it has to replicate the information of all 10 columns even if only a subset of the attributes are updated.

IX. Conclusion

This paper presented three alternative memory layouts to implement versioning and time travel in column store database systems. The first approach clusters the data by row-ID as a natural extension of the current design of column stores. The second layout clusters the data by version-ID similarly to the approach taken in log-structured file systems and PostgreSQL. Third, a hybrid approach, which is similar to the way that document versioning systems such as RCS and SVN keep versions, was presented.

Comprehensive performance experiments studied the trade-offs of all three approaches. As a baseline for the comparisons, an implementation of versioning and time travel in a row store was used. The experiments showed that, overall, all three approaches to implement time travel in a column store outperform the row store, regarding to both query response times and storage overhead. In terms of query response times the **hybrid** approach is the overall winner. The number of checkpoints for the **hybrid** approach involves a space-time tradeoff, and this parameter can be chosen automatically by the database system based on the expected workload.

There are a number of interesting avenues for future work. This work was focused on main memory databases because that seems to emerge as the state-of-the-art. Nevertheless, we are planning to repeat the experiments for disk-based and SSD-based database systems. Furthermore, we intend to study more complex workloads that involve indexes. Finally, we are planning to exploit the proposed techniques for an efficient implementation of multi-version concurrency control in column stores.

References

APPENDIX

A. Clustering by Row

The pseudo code in Algorithm 1 shows the algorithm to access the value for a given ID and version. Note that always the first element in the segment shows the latest version, whereas other versions are stored in increasing order (in order to prevent shifting the array while prepending).

Algorithm 1 Cluster by Row: Get Value for ID and Version

function GET_VALUE(id, version, base, overflow)
 segment ← base[id] // get segment for the given ID
 repeat
 if segment.pair[0].version <= version then
 return segment.pair[0].value
 end if
 for i = colWidth - 1; i >= 1; i -= 1 do
 if segment.pair[i].version <= version then
 return segment.pair[i].value
 end if
 end for
 segment ← overflow[segment.nextOverflow]
 until segment == empty
 return NOT_FOUND
end function

B. Clustering by Version

Algorithm 2 shows a scan for the retrieval of a given version and row-ID. The matching value was found with the occurrence of the first tuple for which the row-ID is equal to the given row-ID and the requested version is in the interval of versions when the value is valid for this row. The scan direction is chosen heuristically: a backward scan is performed when the given version is closer to the maximum available version version_{max}.

Algorithm 2 Cluster by Version: Get Value for ID and Version

function GET_VALUE(id, version, data)
 if version < version_{max}/2 then // do a forward scan
 for i = 0; i < data.size; i += 1 do
 if data.from[i] <= version < data.to[i] then
 if data.id[i] == id then
 return data.val[i]
 end if
 end if
 end for
 else // do a backward scan
 for i = data.size - 1; i >= 0; i -= 1 do
 if data.from[i] <= version < data.to[i] then
 if data.id[i] == id then
 return data.val[i]
 end if
 end if
 end for
 end if
 return NOT_FOUND
end function

C. Serialization Interval for the Hybrid Approach

In the hybrid layout described in Section VII, the checkpoint interval delta_{max} defines the maximum number of updates that are stored in the delta array before a checkpoint is generated. This involves a time-space tradeoff. Figure 13 shows the query performance for accessing a version-id for three different checkpoint intervals in one column. A smaller checkpoint interval leads to a smaller amount of data to be scanned in the delta and a smaller maximum execution time on one hand, but causes increased memory consumption due to the larger number of checkpoints on the other hand. For our experiments with the hybrid approach, we chose 50 million as the checkpoint interval (delta_{max} = 50 M), meaning that after every 50 million updates we build a new checkpoint.

D. Hybrid

In algorithm 3, first a pointer to the nearest checkpoint older or equal to the given version is retrieved by applying a binary search in the index. This search retrieves the position of the largest checkpoint smaller or equal to the given version. If the given version is equal to the version at which the checkpoint was built, the value for the row can be obtained by a single array-lookup. Otherwise, the delta has to be read additionally until the version at the current position becomes larger than the requested version.

Algorithm 3 Hybrid: Get Value for ID and Version

function GET_VALUE(id, version, delta, checkpoints, index)
 indexPos ← binarySearch(index, versions, version)
 checkptOffset ← index.checkptOffsets[indexPos]
 deltaPosition ← index.deltaPositions[indexPos]
 value ← checkpoints[checkptOffset + id]
 i ← deltaPosition // read delta as long as version is valid
 while i < delta.size and delta.from[i] <= version do
 if delta.id[i] == id then
 value ← delta.val[i]
 end if
 i ← i + 1
 end while
 return value
end function