Another aspect of graph invariants depending on the path metric and an application in nanoscience

M.H. Khalifeh a,b, H. Yousefi-Azari a,∗, A.R. Ashrafi b,c

a School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, Islamic Republic of Iran
b Department of Mathematics, Faculty of Science, University of Kashan, Kashan 87317-51167, Islamic Republic of Iran
c School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395–5746, Tehran, Islamic Republic of Iran

ABSTRACT

The aim of this paper is to find a new expression for distance-based graph invariants of connected graphs having a decomposition into convex subgraphs. We apply this method to Schultz and Gutman indices of graphs. It can be generalized to other distance-based graph invariants. As an application, the Wiener index of the one-pentagonal nanocone is computed.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and notations

Throughout this paper all graphs are assumed to be simple, finite and connected. A function Top from the class of connected graphs into real numbers with the property that Top(G) = Top(H) whenever G and H are isomorphic is known as a topological index in the chemical literature; see [1]. There are many examples of such functions, especially those based on distances, which are applicable in chemistry. The Wiener index [2], defined as the sum of all distances between pairs of vertices in a graph, is probably the first and most studied such graph invariant, both from a theoretical and a practical point of view; see for instance [3–11].

Suppose G is a graph, x, y ∈ V(G) and λ is a non-zero real number. The distance d(x, y) is the length of a shortest path connecting x and y. We also define d_C(u, v) = d_G(u, v)^λ and W(G) = ∑_{u,v} d_G(u, v)^λ. The Schultz and Gutman indices of a graph G are defined as:

W_s(G) = ∑_{[u,v]⊆V(G)} (deg_C(u) + deg_C(v))d_C(u, v),

W_g(G) = ∑_{[u,v]⊆V(G)} (deg_C(u)deg_C(v))d_C(u, v).

If G and H are graphs such that V(H) ⊆ V(G) and E(H) ⊆ E(G) then H is said to be a subgraph of G, denoted by H ≤ G. If F ⊆ V(G) then the subgraph ⟨F⟩_C of G induced by F is defined by V⟨F⟩_C = F and E⟨F⟩_C = {e ∈ E(G) | [u, v] ⊆ F} is called the induced subgraph of G induced by F. An isometric subgraph L of G is a subgraph in which d_L(u, v) = d_G(u, v), for all

∗ Corresponding author.
E-mail addresses: hyousefi@ut.ac.ir, YousefiAzari@gmail.com (H. Yousefi-Azari).

0898-1221/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.08.042
vertices $u, v \in V(L)$. We write $L \ll G$ to show that L is an isometric subgraph of G. Clearly, $F \ll H$ and $H \ll G$ implies that $F \ll G$. Define $N^G_G(v) = \{x \in V(G) | d_G(x, v) < r \}$. By this notation, $|N^G_G(v)| = \deg_v(G) + 1$.

Throughout this paper our notation is standard and taken mainly from [12–14].

Definition 1. Suppose H is a subgraph of G and $v \in V(H)$. The vertex v is called boundary vertex of H in G, if $|N^G_G(v)| - |N^H_H(v)| > 0$. The set of all boundary vertices of H in G is denoted by $\partial_G(H)$.

The following simple lemma is an immediate consequence of our definition.

Lemma 1. Let G and H be graphs, $H \subset G$, $u \in V(H)$ and $v \in V(G) \setminus V(H)$. Then every path connecting u and v contains a vertex of $\partial_G(H)$.

Suppose $P = u_1u_2 \cdots u_nv$ is an arbitrary path connecting u and v. Define $P_G(u, v)$ to be the following subgraph:

$$V(P_G(u, v)) = \{u_1, u_2, \ldots, u_n, v\},$$

$$E(P_G(u, v)) = \{u_1u_2, \ldots, u_nv\}.$$

If w is another vertex and $v_1b_1b_2 \cdots b_nw$ is path connecting v and w then $P_G(u, v) + P_G(v, w)$ denotes the following sequence:

$$ua_1a_2 \cdots a_nb_1b_2 \cdots b_nw.$$

Suppose $[a_i]_{i=1}^q \cup [b_j]_{j=1}^r = \emptyset$. Then, $P_G(u, v) + P_G(v, w)$ is a path connecting u and w, when $u \neq w$ and a cycle, otherwise. Also, the length of $P_G(u, v)$ is denoted by $|P_G(u, v)|$.

Suppose G is a graph, H, K are subgraphs of G. The union and intersection of H and K are denoted by $H \cup K$ and $H \cap K$, respectively. These are defined as:

$$E(H \cup K) = E(H) \cup E(K),$$
$$V(H \cup K) = V(H) \cup V(K),$$
$$E(H \cap K) = E(H) \cap E(K),$$
$$V(H \cap K) = V(H) \cap V(K).$$

The union and intersection of a collection $\{H_i\}_{i=1}^n$ of subgraphs are denoted by $\bigcup_{i=1}^n H_i$ and $\bigcap_{i=1}^n H_i$, respectively.

A subgraph H of G is called convex if any shortest path of G between vertices of H is already in H. In other words, $u, v \in V(H)$ with $|P_G(u, v)| = d_G(u, v)$ implies that $P_G(u, v) \subseteq H$. It is clear that convexity is a transitive relation and every convex subgraph is isometric, but its converse is not generally correct.

It is easy to see that for each non-trivial simple graph G and its convex subgraph H containing an edge $e = uw$, $H - e$ is not isometric, since $d_{G\setminus e}(u, v) \neq d_G(u, v) - 1$. So, H is not convex. On the other hand, it is not so difficult to construct a graph G having isometric subgraphs G_1 and G_2 such that $G_1 \cup G_2$ is not isometric. The same is true for the intersection of G_1 and G_2. On the other hand, one can construct a graph G having convex subgraphs G_1 and G_2 such that $G_1 \cup G_2$ is not convex, but the intersection of convex subgraphs have convex component(s). In general, we have the following lemma:

Lemma 2. Suppose $\{H_i\}_{i=1}^k$ is a sequence of convex subgraphs of a connected graph G. Then each component of $\bigcap_{i=1}^k H_i$ is a convex subgraph of G.

The previous lemma is not correct if we interchange the “convex subgraph” into “isometric subgraph”. In the following two lemmas, two criteria for convexity and isometry of subgraphs are proved.

Lemma 3. Suppose $H \subset G$. If $\langle V(H)\rangle_C = H$ and there exists an isometric subgraph I of G such that $\partial_G(H) \subseteq \langle V(I)\rangle_C \subseteq \langle V(H)\rangle_C$ then $H \ll G$.

Proof. If it is not, take $u, v \in V(H)$ such that $d_G(u, v) < d_H(u, v)$. Suppose $P_G(u, v) = ua_1a_2 \cdots a_nv$ is a shortest path in G. Since $\langle V(H)\rangle_C = H$, there exists $i, 1 \leq i \leq n$, such that $a_i \not\in V(H)$. Consider $P_G(u, a_i) + P_G(a_i, v) = P_G(u, v)$ and apply Lemma 1, to obtain vertices a_i, a_j such that $\{a_i, a_j\} \subseteq \partial_G(H)$. Since there is $I \ll G$ such that $\{a_i, a_j\} \subseteq \langle V(I)\rangle_C$, then $d_G(a_i, a_j) = d_H(a_i, a_j)$. Therefore, $d_H(a_i, a_j) \leq d_G(a_i, a_j) + d_G(a_j, a_i)$, which is impossible. \Box

Lemma 4. Suppose G is a graph and $H \subset G$. If $\langle V(H)\rangle_C = H$ and there exists a convex subgraph I of G such that $\partial_G(H) \subseteq \langle V(I)\rangle_C \subseteq \langle V(H)\rangle_C$ then H is convex.

Proof. It is enough to prove that if $u, v \in V(H)$ and $P_G(u, v)$ is a path of length $d_G(u, v)$ then $P_G(u, v) \subseteq H$. If not, since $\langle V(H)\rangle_C = H$ there exists $w \in V(G) \setminus V(H)$ such that $P_G(u, w) + P_G(w, v)$ is a shortest path between u and v. By Lemma 1, there are vertices $a_m, a_n \in \partial_G(H)$ such that $a_m \in V(P_G(u, w))$ and $a_n \in V(P_G(v, w))$. Now there are paths $P_G(a_m, w)$ and $P_G(a_n, w)$ such that $P_G(a_m, w) \subseteq P_G(u, w)$, $P_G(a_n, w) \subseteq P_G(w, v)$ and $P_G(a_m, w) + P_G(a_n, w)$ is a shortest path connecting a_m and a_n. Moreover, there is a convex subgraph $\langle V(I)\rangle_C \subseteq \langle V(H)\rangle_C$ such that $\partial_G(H) \subseteq \langle V(I)\rangle_C$ and by definition $P_G(a_m, w) + P_G(a_n, w) \subseteq I$ and so $w \in V(H)$ which is a contradiction. \Box
2. Main results

The aim of this section is to present a new approach for computing some distance-based invariants of a class of graphs, many classes of chemical graphs are contained. Using our method, it is possible to recalculate easily the main results of papers [15–17]. We encourage the reader to consult papers [18–22] for background materials, as well as basic computational techniques.

Theorem 1. Suppose \(F \subseteq E(G) \) such that \(G - F \) is a graph with exactly two components \(G_1 \) and \(G_2 \). If \(G_1 \) and \(G_2 \) are isometric subgraphs of \(G \) then for every \(u \in V(G_1) \) and \(v \in V(G_2) \) there exists a shortest path \(P_F(u, v) \) such that \(|P_F(u, v) \cap F| = 1 \).

Proof. Suppose \(e = ab \in F \). Since \(G_1 \) and \(G_2 \) are isometric, \(\{a, b\} \subseteq V(G_1) \) and \(\{a, b\} \subseteq V(G_2) \). We now assume that there exists a shortest path \(P_F(u, v) \) such that \(u \in V(G_1) \), \(v \in V(G_2) \) and \(|P_F(u, v) \cap F| = 1 \), \(\{a, b\} \subseteq V(G_1) \). Since \(G_1 \ll G \), \(G_2 \ll G \) and \(G - F \) is not connected, there are paths \(P_{G_1}(u, a) \) and \(P_{G_2}(a, b) \) such that \(P_{G_1}(u, a) = P_{G_1}(u, a) + P_{G_1}(a, b) + P_{G_2}(b, v) \), and \(P_{G_2}(a, b) = P_{G_2}(a, b) + P_{G_2}(b, v) \), is a path in \(G \) with the property that \(|P_F(u, v) \cap F| = 1 \). This completes the proof. \(\Box \)

Corollary 1. Suppose \(G \) is a graph, \(F \subseteq E(G) \) and \(G - F \) is a graph with exactly two components \(G_1 \) and \(G_2 \) such that \(G_1 \ll G \). Choose \(u \in V(G_1) \) and \(v \in V(G_2) \) and define:

\[
S = F \cap \{E(P_F(u, v)) \mid P_F(u, v) = d_G(u, v) \}.
\]

Then for each \(\alpha \in S \) there exists a path \(P_F(u, v) \) such that \(|P_F(u, v) \cap F| = \alpha \).

In **Theorem 1**, replace the term “isometric” by “convex”. Since \(G - F \) is not connected, for arbitrary vertices \(u \in V(G_1) \) and \(v \in V(G_2) \) there are an edge \(ab \in F \) and a shortest path \(P_F(u, v) = P_F(u, a) + P_F(a, b) + P_F(b, v) \) such that \(a \in V(G_1) \) and \(b \in V(G_2) \). Since \(P_F(u, a) \) and \(P_F(b, v) \) are shortest paths of \(G \) and \(G_2 \) are convex, \(P_F(u, v) \subseteq G_1 \) and \(P_F(b, v) \subseteq G_2 \). Thus we have the following corollary:

Corollary 2. Suppose \(G \) is a connected graph and \(F \subseteq E(G) \). If \(G - F = G_1 \cup G_2 \), \(u \in V(G_1) \), \(v \in V(G_2) \) and \(G_1, G_2 \) are convex then for every shortest path \(P_F(u, v) \), \(|P_F(u, v) \cap F| = 1 \).

Lemma 5. Suppose \(G \) is a graph and \(\{F_i\}_{i=1}^r \) is a partition of the edge set of \(G \) such that for each \(i \), \(G - F_i \), has exactly two components \(G_{i}^1 \) and \(G_{i}^2 \) which are convex. Then there exists a set \(R \) of shortest paths with the property that for each pair of vertices of \(G \) there exists a unique path in \(R \) connecting them and for each \(i \) the following statements hold:

1. If \(P_G(u, v) \in R \), where \(\{u, v\} \subseteq V(G_{i}^1) \) or \(\{u, v\} \subseteq V(G_{i}^2) \) then \(|E(P_G(u, v)) \cap F_i| = 0 \).
2. If \(u \in V(G_{i}^1) \), \(v \in V(G_{i}^2) \) and \(P_G(u, v) \in R \) then \(|E(P_G(u, v)) \cap F_i| = 1 \).

Proof. Since the graph \(G - F_i \) has convex components, by definition of convexity the proof of the first part is trivial. To prove 2 we can use either **Corollary 2** or **Theorem 1**, **Corollary 1** and **Lemma 2**, repeatedly. \(\Box \)

Similar to that we said before **Lemma 2**, for every subgraph \(H \) of graph \(G \) and \(e = uv \in E(H) \) the graph \(H - e \) is not isometric and so convex, since \(d_H(u, v) > d_G(u, v) = 1 \). In general, every non-induced subgraph is not isometric and so convex.

Condition (⋆): \(G \) is a connected graph with a partition \(\{F_i\}_{i=1}^r \) of \(E(G) \) such that \(G - F_i \) has exactly two components \(G_{i}^1 \) and \(G_{i}^2 \) which are convex, \(1 \leq i \leq r \).

Theorem 2. If \(G \) satisfies the condition (⋆) then \(G \) is bipartite.

Proof. Suppose \(C \) is an arbitrary isometric cycle of \(G \). We claim that \(|C \cap F_i| = 0 \) or \(2 \), \(1 \leq i \leq r \). If not, \(|C \cap F_i| = 1 \) or \(2 \), for some \(i \). If \(C \cap F_i = |e| \) then either \(C - e \) is contained in one of the components of \(G - F_i \) or \(G - F_i \) is connected. The latter contradicts condition (⋆). In other case, the component containing \(C - e \) is not an induced subgraph of \(G \) and by the paragraph before condition (⋆) cannot be isometric, contradicting convexity of the components of \(G - F_i \), so \(|C \cap F_i| = 1 \). Now suppose \(t = |C \cap F_i| > 2 \). Consider \(G - F_i \) to find a partition for the edges or vertices of \(C \) into \(t \) paths that are not connected by edges of \(C - F_i \), which may have length 0. By the Pigeonhole principle, at least two members of this partition are contained in one component of \(G - F_i \). Obviously, the component containing more than one part of the partition of \(C - F_i \) is not an induced subgraph of \(G \) and by the paragraph before condition (⋆) it is not isometric leads to a contradiction. Thus \(|C \cap F_i| = 0 \) or 2, and \(\sum_{i=1}^{r} |C \cap F_i| = 2 \). Moreover, \(\{F_i\}_{i=1}^{r} \) is a partition of \(E(G) \) and so \(C \) is an even cycle. On the other hand, if \(G \) has an odd cycle then one can find an isometric odd cycle. This shows that the length of every cycle of \(G \) is even which completes our argument. \(\Box \)

Suppose \(G \) is a graph, \(\lambda \) is a non-zero real number and \(F, L \) are subsets of \(V(G) \). Define:

\[
\lambda D(F, G) = \sum_{u \in V(G)} \sum_{v \in F} d_G^2(u, v),
\]

\[
\lambda D_F(L, F) = \sum_{v \in L} \sum_{u \in F} d_G^2(u, v).
\]
It is easy to see that \(\frac{1}{2} D_C(V(G), V(G)) = \frac{1}{2} D(V(G), G) = W(G) \). If \(\{ F_i \}_{i=1}^n \) is a partition of \(V(G) \) then \(W(G) = \frac{1}{2} \sum_{i=1}^n D_C(F_i, F_j) \). Obviously, if \(F \subseteq V(G) \) and \((F)_C \ll G \) then \(D_C(F, F) = 2W((F)_C) \). Similar to the Wiener index, one can see that if \(\{ F_i \}_{i=1}^n \) is a partition of \(V(G) \) then \(W(G) = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda D_C(F_i, F_j) \). Therefore,

\[
\lambda W(G) = \frac{1}{2} \left[\sum_{i=1}^n \lambda D_C(V(G), V(G)) \right] = \frac{1}{2} \left[\lambda D(V(G), G) \right].
\]

On the other hand, if \(F \subseteq V(G) \) and \((F)_C \ll G \) then \(\lambda D_C(F, F) = 2 \times \lambda W((F)_C) \).

Theorem 3. Suppose that the condition \((\ast)\) holds. Then

\[
W(G) = \sum_{i=1}^r \left| V(GF_i(1)) \right| \left| V(GF_i(2)) \right|.
\]

Proof. Suppose \(e \in E(G) \) and \(R \) is a set of shortest path connecting vertices of \(G \) such that for each \(u \neq v \in V(G) \), there is a unique shortest path in \(R \) connecting \(u \) and \(v \). Define

\[
n(e) = \sum_{e \in E(G(U, V))} \left| \{ P_G(u, v) \} \cap \{ [u, v] \} \right|.
\]

Then one can see that \(W(G) = \sum_{e \in E(G)} n(e) \). Assume that \(R \) has the properties given in Lemma 5. Apply Lemma 5 to deduce that \(\sum_{e \in E(G)} n(e) = \sum_{e \in E(G)} \sum_{P_G(u, v) \in R} n(e) = \sum_{e \in E(G)} \sum_{P_G(u, v) \in R} |V(GF_i(1))| \left| V(GF_i(2)) \right| \), as desired. \(\square \)

Theorem 4. Suppose that condition \((\ast)\) holds, then \(\lambda W(G) = \sum_{i=1}^r \left[\lambda \sum_{e \in E(G)} \lambda n(e) \right] \), for non-zero real \(\lambda \).

Proof. Suppose \(R \) is a set of shortest paths in \(G \), such that for each pair \((x, y) \) of vertices of \(G \), there exists a unique shortest path in \(R \) connecting \(x \) and \(y \). Set \(B(e) = \{ (u, v) \} \) \(P_G(u, v) \in R \) \(E(P_G(u, v)) \neq \emptyset \) and \(\lambda n(e) = \sum_{[u, v] \in B(e)} d^2(u, v) \). Then, we can see that

\[
\lambda W(G) = \sum_{e \in E(G)} \lambda n(e).
\]

Assume that \(R' \) is a set of shortest paths of \(G \) that satisfies the conditions of the set \(R \) and Lemma 5. Therefore,

\[
\sum_{e \in E(G)} \lambda n(e) = \sum_{u \in V(GF_i(1)) \cap V(GF_i(2))} d^2(u, v) = \lambda D_C(V(GF_i(1)), V(GF_i(2))).
\]

On the other hand, \(V(GF_i(1)) \) and \(V(GF_i(2)) \) constitute a partition of \(V(G) \) and also \(GF_i(1) \) and \(GF_i(2) \) are isometric subgraphs of \(G \). Thus,

\[
\lambda W(G) = \lambda D_C(V(GF_i(1)), V(GF_i(2))) + \lambda W(GF_i(1)) + \lambda W(GF_i(2)).
\]

We now apply (1), (2) and (3) to conclude that

\[
\lambda W(G) = \sum_{e \in E(G)} \lambda n(e) = \sum_{i=1}^r \sum_{e \in E(G)} \lambda n(e)
\]

\[
= \sum_{i=1}^r \left[\lambda W(G) - \lambda W(GF_i(1)) - \lambda W(GF_i(2)) \right].
\]

This completes our proof. \(\square \)

Theorem 5. Suppose that condition \((\ast)\) holds, then

\[
W_+ (G) = \sum_{i=1}^r \left(|E(G)| + 2 |E(GF_i(1))| \left| E(GF_i(2)) \right| + |E(GF_i(1))| \left| E(GF_i(2)) \right| \right),
\]

\[
W_\times (G) = 2 |E(G)|^2 + \sum_{i=1}^r \left(|E(GF_i(1))| \left| E(GF_i(2)) \right| - |F_i|^2 \right),
\]

where \(E = E(G) \) and \(V = V(G) \).
Consider a set R of shortest paths between vertices of G such that for each vertex $a, b \in V(G)$ there is exactly one shortest path connecting a and b in R. Suppose there are k paths $P_G(u_1, v_1), P_G(u_2, v_2), \ldots, P_G(u_k, v_k)$ in R containing the edge e. Define $\eta_G(e) = \sum_{i=1}^{k} \deg(u_i) + \deg(v_i))$. So $W_+(G) = \sum_{e \in E(G)} \eta_G(e)$. By Lemma 5, there exists a set of shortest path R such that if $u \in GF_1(1), v \in GF_1(2)$ then the shortest path $S(u, v)$ of R connecting u and v has exactly one edge in F_1 and if $u, v \in GF_1(1)$ or $u, v \in GF_1(2)$ then $S(u, v)$ does not have an edge in F_1. On the other hand, by convexity of components of each $G - F_i$, for every $e \in F_i$, the endpoints of e cannot belong to a unique component of F_i. Therefore, we have:

$$
W_+(G) = \sum_{e \in E(G)} \eta_G(e) = \sum_{i=1}^{r} \sum_{e \in F_i} \eta_G(e)
$$

which completes the proof. □

Remark. Suppose T is a tree. By removing an edge of T, a forest containing two components, each of them having a boundary vertex, is obtained. Since two components have exactly one boundary vertex then by Lemma 4 they are convex. So, the properties of Theorems 3 and 5 are satisfied. Therefore, we have:

$$
W_+(T) = 4W(T) - 2|E(T)|^2 - |E(T)|,
$$

(4)

$$
W_+(T) = 4W(T) - |E(T)|^2 |V(T)| = W_+(T) + |E(T)|^2.
$$

These results are obtained in [23,24] in a different method.

For graphs satisfying the condition (*), it is possible to apply Lemma 5 to obtain a new method for computing other distance-based graph invariants; see [25] for details.

3. An application in nanoscience

Carbon nanocone originally is discovered by Ge and Sattler in 1994, [26]. These are constructed from a graphene sheet by removing a 60° wedge and joining the edges a cone with a single pentagonal defect at the apex. Removing additional wedges introduces more such defects and reduces the opening angle. A cone with six pentagons has an opening angle of zero and is just a nanotube with one open end.
The aim of this section is to compute the Wiener index of a carbon nanocone $G[n] = \text{CNC}_2[n]$ containing a central pentagon surrounded by n layers of hexagons; see [27,28] and Fig. 1. To do this, we consider the partition of the molecular graph of $G[n]$ into five regions F_1, F_2, F_3, F_4 and F_5, Fig. 1. Consider the graphs $G_1[n] = (F_1 \cup F_2 \cup F_3)_{G[n]}, G_2[n] = (F_1 \cup F_2)_{G[n]}$ and $G_3[n] = (F_1)_{G[n]}$ depicted in Figs. 2–4, respectively. The subgraphs $\partial G_1[n](G_1[n]), \partial G_1[n](G_2[n])$ and $\partial G_1[n](G_3[n])$ and an isometric subgraph containing them are depicted in Figs. 2–4. By Lemma 2, $G_2[n] \ll G[n]$ and $G_3[n] \ll G[n]$. We are now ready to prove the following theorem:

Theorem 6. The Wiener index of the graph $G[n]$ can be expressed as follows:

$$W(G[n]) = 5(W(G_1[n]) - W(G_2[n])).$$

Proof. By definition and the symmetry of $G[n]$, the following equalities are satisfied:

$$D(F_1, G[n]) = \sum_{i=1}^{5} D_{G[n]}(F_1, F_i) = D_{G[n]}(F_1, F_1) + 2D_{G[n]}(F_1, F_2) + 2D_{G[n]}(F_1, F_3).$$

$$D_{G[n]}(F_1 \cup F_2, F_1 \cup F_2) = 2D_{G[n]}(F_1, F_1) + 2D_{G[n]}(F_1, F_2),$$

$$D_{G[n]}(F_1 \cup F_2 \cup F_3, F_1 \cup F_2 \cup F_3) = 4D_{G[n]}(F_1, F_2) + 3D_{G[n]}(F_1, F_1) + 2D_{G[n]}(F_1, F_3).$$
To explain, we partition one can find a partition of edges of M are denoted by M. We now apply Eqs. (6) and (7).

By the paragraph before this theorem, $G_1[n] \cong (F_1 \cup F_2 \cup F_3)_{G[n]} \ll G[n]$. By Eq. (6),

$$D(F_1, G[n]) = D_{G[n]}(F_1 \cup F_2 \cup F_3, F_1 \cup F_2 \cup F_3) = D_{G[n]}(F_1 \cup F_2, F_1 \cup F_2).$$

Therefore,

$$D(F_1, G[n]) = D_{G[n]}(F_1 \cup F_2 \cup F_3, F_1 \cup F_2 \cup F_3) - D_{G[n]}(F_1 \cup F_2, F_1 \cup F_2).$$

By the paragraph before this theorem,

$$G_1[n] \cong (F_1 \cup F_2 \cup F_3)_{G[n]} \ll G[n].$$

So by Eq. (6),

$$D(F_1, G[n]) = 2W(G_1[n]) - 2W(G_2[n]),$$

and,

$$W(G[n]) = 1/2 \sum_{i=1}^{5} D(F_i, G[n]) = 5/2D(F_j, G[n]). \quad 1 \leq j \leq 5.$$

We now apply Eqs. (7) and (8) to obtain the result.

In Figs. 5 and 6, two hexagonal systems $M(11, 6)$ and $N(9, 5)$ are depicted. The general case of these hexagonal systems are denoted by $M(n, k)$ and $N(n, k)$. Obviously, $M(2n, n) \cong G_1[n]$ and $N(n, n) \cong G_2[n]$. By Lemma 3 and Figs. 5 and 6, one can find a partition of edges of $M(2n, n)$ and a partition of edges of $N(n, n)$ satisfying the conditions of Theorem 4.

To explain, we partition $M(2n, n)$ (and similarly for $N(n, n)$) by cuts drawn in Figs. 5 and 6. By a simple calculations, $g_1 = |V(G_1[n])| = 3(n + 1)^2$ and $g_2 = |V(G_2[n])| = 2(n + 1)^2$. So by Theorem 3 we have:

$$W(G_1[n]) = \frac{g_2^2}{4} + 2 \sum_{i=1}^{n} (g_2 - i^2)^2 + 2 \sum_{i=1}^{n} (g_2 - 2i(n + 1))(2i(n + 1)).$$

$$W(G_2[n]) = \frac{g_2^2}{4} + 2 \sum_{i=1}^{n} (g_2 - i^2)^2 + 2 \sum_{i=1}^{n} (g_2 - 2i(n + 1))(2i(n + 1)).$$
Corollary 3.

\[W(G[n]) = 15 + 86n + \frac{1135}{6} n^2 + \frac{1205}{6} n^3 + \frac{310}{3} n^4 + \frac{62}{3} n^5. \]

Proof. Apply Theorem 6 and calculations given after this theorem. □

Acknowledgements

The authors are indebted to the referees for their suggestions and helpful remarks which led us to improve the paper. The work of the third author was supported in part by a grant from IPM (No. 89050111).

References

