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Automatic Role Recognition in Multiparty Recordings:
Using Social Affiliation Networks for Feature Extraction

Hugues Salamin, Sarah Favre, Member, IEEE, and Alessandro Vinciarelli

Abstract—Automatic analysis of social interactions attracts in-
creasing attention in the multimedia community. This letter con-
siders one of the most important aspects of the problem, namely the
roles played by individuals interacting in different settings. In par-
ticular, this work proposes an automatic approach for the recog-
nition of roles in both production environment contexts (e.g., news
and talk-shows) and spontaneous situations (e.g., meetings). The
experiments are performed over roughly 90 h of material (one of
the largest databases used for role recognition in the literature) and
show that the recognition effectiveness depends on how much the
roles influence the behavior of people. Furthermore, this work pro-
poses the first approach for modeling mutual dependences between
roles and assesses its effect on role recognition performance.

Index Terms—Broadcast data, meeting recordings, role recogni-
tion, social network analysis.

I. INTRODUCTION

T HE computing community is making significant efforts
towards the development of automatic approaches for the

analysis of social interactions (see [1]–[3] for extensive surveys
of the domain). This is not surprising as social interactions are
not only one of the most important aspects of our everyday lives
but also a ubiquitous subject in multimedia data: radio and tele-
vision programs (debates, news, talk-shows, movies, etc.) rarely
show something other than social interactions. The way people
interact depends on the context, but there is one aspect that all
social interactions seem to have in common:

People do not interact with one another as anonymous be-
ings. They come together in the context of specific environments
and with specific purposes. Their interactions involve behaviors
associated with defined statuses and particular roles. These sta-
tuses and roles help to pattern our social interactions and pro-
vide predictability [4].

As the above suggests that roles are a universal key to under-
stand social interactions and these are one of the most common
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Fig. 1. Role recognition approach. The picture shows the two main stages of
the approach: the features extraction and the actual role recognition.

subjects of multimedia material, this work proposes an approach
for the automatic recognition of roles in multiparty recordings.

The approach includes two main stages (see Fig. 1): the first is
the feature extraction and it involves the automatic construction
of a Social Affiliation Network (SAN)[5] as well as its conver-
sion into feature vectors that represent each person in terms of
their relationships with the others. The second stage is the role
recognition, i.e., the mapping of the feature vectors extracted in
the first stage into roles belonging to a predefined set. This task
is performed using Bernoulli or Multinomial distributions [6]
for the Affiliation Network features and Gaussian distributions
for the intervention lengths associated to each role.

The experiments have been performed over three different
corpora (see Section V-A for more details): a collection of radio
news bulletins (around 20 h), a dataset of radio talk-shows
(around 25 h), and the AMI meeting corpus (around 45 h) [7].
To the best of our knowledge, there is only one work reporting
experiments performed over a larger amount of data [8]. How-
ever, the corpus of [8] includes only the news scenario, while
our data include other settings. This is important because it
allows one to assess the approach robustness with respect to
changes of the interaction structure.

1520-9210/$26.00 © 2009 IEEE
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For the first two datasets, the accuracy (percentage of
recording time correctly labeled in terms of roles) ranges from
60% to 85%; for the third dataset, the accuracy is around
45%. One possible explanation of the difference is that roles
are easier to model when they are formal, i.e., correspond to
functions that impose more or less rigorous constraints on the
way people behave and interact with the others (like in the case
of broadcast data). In contrast, roles are harder to model when
they are informal, i.e., when they correspond to a position in a
given social system (e.g., manager in a company) and do not
necessarily impose tight constraints on the way people behave
and interact (like in the case of meetings). However, the perfor-
mance significantly outperforms chance for both broadcast and
meeting recordings.

Role recognition can be useful in several applications (the list
is not exhaustive). For example in media browsers, the informa-
tion about the role of the person speaking at a given moment
can help users to quickly identify segments of interest. In sum-
marization, the role of people can be used as a criterion to se-
lect representative segments of the data [9], [10]. In information
retrieval, the role can be used as an index to enrich the content
description of the data. Furthermore, the role can be used to seg-
ment the data into semantically coherent segments [11], [12].

The main contributions of this paper with respect to previous
approaches proposed by the authors [13] and the rest of the lit-
erature are as follows.

• The approach proposed in [13] can be applied only to
groups involving at least eight to ten persons because it is
based on simple Social Networks and these need at least
this number of people to produce meaningful features.
This work addresses such a limit by introducing the use of
SANs, a different kind of network that makes it possible to
analyze smaller groups. Without this change, the analysis
of the AMI meetings (including only four participants)
would not be possible.

• The approach in [13] does not take into account the de-
pendence between roles. Each person is assigned a role in-
dependently of those assigned to others. This work pro-
poses an approach to overcome this limit and takes into
account the constraints that the role distribution across dif-
ferent interacting participants must respect. To the best of
our knowledge, this is a novelty not only with respect to
[13] but also with respect to the state-of-the-art.

• To the best of our knowledge, this is the first work in the
literature that reports experiments performed over different
interaction contexts, i.e., production environment data in-
volving formal roles (news and talk-shows) and sponta-
neous settings involving informal roles (meetings).

The rest of the paper is organized as follows: Section II presents
a survey of related works, Section III describes the feature ex-
traction stage, Section IV describes the role recognition stage,
Section V presents experiments and results, and Section VI
draws some conclusions.

II. RELATED WORK

Role recognition works presented in the literature (see [1] and
[3] for survey) can be split into two major groups depending on
whether they address the recognition of formal or informal roles

[14]. The former corresponds to specific functions to be ful-
filled in a given social context (e.g., the chairman in a meeting)
and tends to induce stable, machine detectable, behavioral pat-
terns. The latter corresponds to positions in a social system (e.g.,
the manager in a company) and does not necessarily result into
detectable behavioral patterns. Table I reports claimed perfor-
mance and basic data descriptions for each work discussed in
this section.

Most of the works dedicated to formal roles perform exper-
iments over production environment data like movies, news,
talk-shows, etc. Some approaches [8], [15] apply techniques
like hidden Markov models or boosting and use features ac-
counting for the speaking activity of people, e.g., intervention
length, number of interventions, lexical choices (distributions
of bigrams and trigrams), etc. Other approaches [13], [16]
have proposed the use of Social Networks as a mean to extract
features that are given as input to Bayesian classifiers [13]
or used to build co-occurrence matrices aimed at identifying
social groups [16].

The recognition of informal roles is typically performed
using meeting recordings. The work in [17] recognizes so-
cial roles suggested by human sciences (e.g., gate-keeper or
attacker) by feeding support vector machines with features
extracted from both audio and video. These include the same
features described above for formal roles and fidgeting mea-
sures extracted from the video. The approaches in [18] and [19]
are tested over the same meeting data as those used in this work
(see Section V-A). The first work combines a Bayesian classifier
fed with features extracted using Social Networks, and boosting
techniques applied to the distribution of words, bigrams, and
trigrams extracted from the automatic transcriptions of the
interventions. The second work uses speaking activity features
(e.g., probability of initiating a talk-spurt when someone else
is speaking or when a participant in a specific other role is
speaking). The AMI meeting corpus has been used as well for
automatic recognition of dominant clique (the two most domi-
nant persons) [20] and relationship between dominance and one
of the roles played in the corpus (the Project Manager) [21].
While these two works cannot be said to address specifically
the role recognition problem, they still are similar to the others
presented in this section as they identify persons with specific
social characteristics depending on their behavior.

III. FEATURE EXTRACTION

This section presents the feature extraction stage aimed at ex-
tracting and representing the interaction pattern of each person.
The stage includes two steps: the first is the segmentation of the
recordings into single speaker segments (speaker diarization),
and the second is the extraction of a SAN from the resulting
speaker sequence (see upper dotted box in Fig. 1).

The experiments involve two kinds of data: radio programs,
where there is a single audio channel, and meeting record-
ings, where each participant wears a headset microphone.
This requires the application of different speaker diarization
techniques fully described in [22] (broadcast data) and [23]
(meeting recordings). The techniques are not described here
because they are not the main element of interest in this work.
Section III-A shows how the output of the speaker diarization
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Fig. 2. Interaction pattern extraction. The picture shows the SAN extracted
from a speaker segmentation. The events of the network correspond to the seg-
ments � and the actors are linked to the events when they talk during the cor-
responding segment. The actors are represented using n-tuples �� where the
components account for the links between actors and events.

is used to build a SAN and represent people with n-tuples
accounting for their interaction pattern.

A. Affiliation Network Extraction

The result of the speaker diarization process is that each
recording is split into a sequence , where

, is the label assigned to the speaker voice
detected in the th segment of audio, and is the duration
of the th segment. The label belongs to the set of unique
speaker labels, outputed by the speaker diarization process
(see lower part of Fig. 2). The sequences extracted from the
speaker diarization are used to create a SAN representing the
relationships between the roles. A SAN is a graph with two
kinds of nodes: the actors and the events [5]. Actors can be
linked to events, but no links are allowed between nodes of the
same kind (see upper part of Fig. 2). In the experiments, the
actors correspond to the people involved in the recordings, and
the events correspond to uniform non-overlapping segments
spanning the whole length of the recordings. The rationale
behind this choice is that actors speaking in the same interval of
time are more likely to talk with one another (i.e., of interacting
with one another) than actors speaking in different intervals of
time. Thus, the SAN encodes information about who interacts
with whom and when.

One of the main advantages of this representation is that each
actor can be represented by a n-tuple ,
where is the number of segments used as events and the com-
ponent accounts for the participation of the actor in the
th event. The experiments make use of two kinds of represen-

tation. In the first one, component is 1 if the actor talks
during the th segment and 0 otherwise (the corresponding n-tu-
ples are shown at the bottom of Fig. 2). In the second one,
is the number of times that actor talks during the th segment.
In the first case, the n-tuples are binary, and in the second case,
they have integer components higher or equal to 0. In both cases,
people that interact more with each other tend to talk during the
same segments and are represented by similar n-tuples. If the
roles influence the structure of the relationships between people,
similar n-tuples should correspond to the same role.

IV. ROLE RECOGNITION

The problem of role recognition can be formalized as follows:
given a set of actors and a set of roles , find the function

mapping the actors into their actual role. In other
words, the problem corresponds to finding the function such
that is the role of actor .

Section III has shown that the interaction pattern of each actor
is represented with a n-tuple , where
is the number of segments, that can have either binary or

positive integer components. Furthermore, every actor talks
for a fraction of the total time of the recording. Thus, each
actor corresponds to a pair .

Given a function and the set of observations
, the problem of assigning a role to each actor can

be thought of as the maximization of the a-posteriori probability
. By applying the Bayes Theorem and by taking into

account that is constant during recognition, this problem
is equivalent to finding such that

(1)

where is the set of all possible functions mapping actors
into roles.

In order to simplify the problem, two assumptions are made:
the first is that the observations are mutually conditionally inde-
pendent given the roles. The second is that the observation
of actor only depends on its role and not on the role of
the other actors. Equation (1) can thus be rewritten as

(2)

The above expression is further simplified by assuming that the
speaking time and the interaction n-tuples of actors
are statistically independent given the role ; thus, the last
equation becomes

(3)

The probabilities appearing in the last equation have been esti-
mated using different models to take into account the two repre-
sentations of described above, and to model the constraints in
the distribution of roles (e.g., there must be only one anchorman
in a given talk-show), i.e., to explicitly take into account the de-
pendence between the roles.

The next sections show how , , and
are estimated in the experiments.

A. Modeling Interaction Patterns

This section shows how the probability is es-
timated for both binary and multinomial n-tuples (see
Section III-A).

When the components of the n-tuple are binary, i.e.,
when actor talks during segment and 0 otherwise, the most
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natural way of modeling is to use independent Bernoulli dis-
crete distributions:

(4)

where is the number of events in the network (see Section III),
and is the parameter vector of the distribu-
tion. A different Bernoulli distribution is trained for each role.
The maximum likelihood estimates of the parameters for a
given role are as follows [6]:

(5)

where is the set of actors playing the role in the training
set, and is the n-tuple representing the actor .

When the components correspond to the number of times
that actor talks during event , i.e., when the components are
integers greater or equal to 0, they can be represented with a
vector , where is the maximum number of
times that an actor can talk during a given event, ,
and ( one-out-of- ). In other words, is repre-
sented with a -dimensional vector where all the components
are 0 except one, i.e., the component , where is the
number of times that the actor represented by talks during
event . As a result, is represented as a n-tuple of vectors

and can be modeled as a product of inde-
pendent multinomial distributions:

(6)

The parameters can be estimated by maximizing the likeli-
hood of over a training set . This leads to a closed form
expression for the parameters:

(7)

B. Modeling Durations

Given a labeled training set, there is a set of actors
playing role , is estimated using a Gaussian distribu-
tion , where and are the sample mean and
variance, respectively:

(8)

(9)

This corresponds to a maximum likelihood estimate, where a
different Gaussian distribution is obtained for each role.

C. Estimating Role Probabilities

This subsection shows how the a-priori probability
of actor playing role is estimated. Two approaches are
proposed: the first is based on the assumption that roles are
independent and does not take into account the constraints that
the role distribution across different participants in a given
recording must respect, e.g., there is only one Anchorman in a
talk-show, there is only one Project Manager in a meeting, etc.
The second approach considers the roles to be dependent and
takes into account the above constraints.

1) Modeling Independent Roles: The first approach assumes
that the roles are independent and thus that is simply
the product of the a-priori probabilities of the roles assigned
through to the different actors:

(10)

The a-priori probability of observing the role can be esti-
mated as follows:

(11)

where and are the total number of actors and the total
number of actors playing role in the training set.

Using the above approach, Equation (2) boils down to

(12)

and the role recognition process simply consists in assigning
each actor the role that maximizes the probability

.
2) Modeling Dependent Roles: The second approach tries

to model the constraints that the role distribution of a given
recording must respect. For example, there must be only one An-
chorman in a talk-show while the number of Guests can change
at each edition of the talk-show. In this case, the roles played
by the different recording participants cannot be considered in-
dependent, and cannot be written as the product of the
a-priori probabilities of the roles [like in (10)].

A given mapping corresponds to a distribution of
roles across the different recording participants where each role
is played by a certain number of actors. The constraints to be re-
spected are expressed in terms of the number of actors that can
play a given role (e.g., only one actor can be the Anchorman).
Thus, must be different from 0 only for those distributions
of roles that respect the constraints. The number of possible ac-
tors playing some roles is actually predetermined (i.e., exactly

actors must play role ), while for others, the only available
a-priori information is that at least one person must play the role
(i.e., ).
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TABLE I
SYNOPSIS OF ROLE RECOGNITION RESULTS. THE TABLE PROVIDES A BRIEF DESCRIPTION OF THE DATA

USED IN THE LITERATURE, AS WELL AS THE PERFORMANCE ACHIEVED IN THE DIFFERENT WORKS

TABLE II
ROLE DISTRIBUTION. THE TABLE REPORTS THE PERCENTAGE OF TIME EACH ROLE ACCOUNTS FOR IN C1, C2, AND C3

According to the above, is modeled with a product of
multinomial distributions [6]:

(13)

where is a one-out-of- (see Section IV-A) representation of
the number of times a role can be played in a given recording,
and is the parameter vector.

We can divide the set in classes where all mappings
lead to a role distribution where the same role is played always
the same number of times. We assume that all mappings in
the same class have the same probability. Thus, the probability
of observing a given assignment is

(14)

Then in the second model, (2) can be rewritten as

(15)

where is the expression of (14). Maximizing this product
using a brute-force approach is not tractable if the number of
actors is high. Therefore, we used simulated annealing [24] to
approximate the best mapping for each recording.

V. EXPERIMENTS AND RESULTS

The next four sections describe data and roles, performance
measures, experimental setup, and role recognition results.

A. Data and Roles

The experiments of this work have been performed over three
different corpora referred to as C1, C2, and C3 in the following.
C1 contains all news bulletins (96 in total) broadcasted by Radio
Suisse Romande (the French-speaking Swiss national broad-
casting service) during February 2005. The average length of
C1 recordings is 11 min and 50 s, and the average number of
participants is 12. C2 contains all talk-shows (27 in total) broad-
casted by Radio Suisse Romande during February 2005. All C2
recordings are one hour long and the average number of partic-
ipants is 25. C3 is the AMI meeting corpus [7], a collection of
138 meeting recordings involving four persons each and with
an average length of 19 min and 50 s. While C1 and C2 contain
real-world news and talk-shows, the meetings in C3 are a simu-
lation and the participants act roles they do not play in their real
life.

The roles of C1 and C2 share the same names and correspond
to similar functions: the Anchorman (AM), i.e., the person man-
aging the program, the Second Anchorman (SA), i.e., the person
supporting the AM, the Guest (GT), i.e., the person invited to re-
port about a single and specific issue, the Interview Participant
(IP), i.e., interviewees and interviewers, the Headline Reader
(HR), i.e., the speaker reading a short abstract at the beginning
of the program, and the Weather Man (WM), i.e., the person
reading the weather forecasts. However, even if the roles have
the same name and correspond to roughly the same functions,
they are played in a different way in C1 and C2 (e.g., consider
how different is the behavior of an anchorman in news supposed
to inform and in talk-shows supposed to entertain). In C3, the
role set is different and contains the Project Manager (PM), the
Marketing Expert (ME), the User Interface Expert (UI), and
the Industrial Designer (ID). See Table II for the distribution
of roles in the corpora.
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B. Speaker Diarization Results

The interaction patterns used at the role recognition step are
extracted from the speaker segmentation obtained with the two
different diarization processes (see Section III). Errors in the di-
arization (e.g., people detected as speaking when they are silent,
or multiple voices attributed to a single speaker) lead to spurious
interactions that can mislead the role recognition process.

The effectiveness of the diarization is measured with the pu-
rity , a metric showing on one hand to what extent all fea-
ture vectors corresponding to a given speaker are detected as
belonging to the same voice, and on the other hand to what ex-
tent all vectors detected as a single voice actually correspond to
a single speaker. The purity ranges between 0 and 1 (the higher
the better) and it is the geometric mean of two terms: the av-
erage cluster purity and the average speaker purity . The
definition of is as follows:

(16)

where is the total number of feature vectors, is the number
of speakers, is the number of voices detected in the diariza-
tion process, is the number of vectors belonging to speaker

that have been attributed to voice , and is the number of
feature vectors in voice . The definition of is as follows:

(17)

(see above for the meaning of the symbols).
The average purity is 0.81 for C1 and 0.79 for C2. The average

purity for C3 is 0.99. The difference in purity is explained by the
different experimental conditions and methods used to obtain
the speaker segmentation.

C. Experimental Setup

The experiments are based on a -fold cross-validation ap-
proach [6]. The corpora are split into equally sized parts of
which are used as training set, while the remaining one
is used as the test set. Each of the parts is used iteratively
as the test set so that the experiments can be performed over
the whole dataset while still preserving a rigorous separation
between training and test set. In the case of our experiments,

and each subset contains 20% of the data. The only
hyperparameter to be set is the number of segments used as
events in the SAN. At each iteration of the -fold cross-vali-
dation, is varied such that the value giving the highest role
recognition results over the training set has been retained for
testing. In this way, a rigorous separation between the training
and test set has been observed for the setting of the hyperpa-
rameter as well.

The statistical significance of performance differences is as-
sessed with the Kolmogorov–Smirnov test [25]. The advantage
of this test is that it does not make assumptions about the distri-
bution of the performance (unlike the -test that assumes the per-
formances following a Gaussian distribution) and it is adapted

to continuous distributions (unlike the -test that requires the
distributions to be made discrete through histogramming).

D. Role Recognition Results

Table III reports the results achieved over C1 and C2, Table IV
those obtained for C3. The performance is measured in terms of
accuracy, i.e., the percentage of time correctly labeled in terms
of role in the test set. Each accuracy value is accompanied by
the standard deviation of the accuracies achieved over the dif-
ferent recordings of each corpus. The distribution used to model
the interaction patterns is indicated with B (Bernoulli) and M
(multinomial). The approach used to estimate the a-priori role
probabilities is indicated with I (independence) and D (depen-
dence).

Modeling the dependence between roles leads to statistically
significant improvements for C2 and C3, while it decreases
the performance for C1. One probable explanation is that C1
presents more variability in the number of people playing a
given role; thus, (see Section IV-C) cannot be estimated
as reliably as for the other corpora. However, these results
suggest that taking into account the dependence across roles is
beneficial as long as can be estimated reliably. To the best
of our knowledge, this is the first attempt to model explicitly
the dependence between roles and the results provide a first
assessment of what can be expected, at least for the approach
proposed here, in terms of performance improvement.

For the three corpora, the differences between the perfor-
mances achieved using Bernoulli and multinomial distributions
are not statistically significant. This suggests that the important
information is presence/absence (conveyed by the Bernoulli dis-
tribution) and not number of times a speaker talks during an
event (conveyed by the multinomial). This is not surprising be-
cause the most important aspect encoded by SANs (at least for
the approach proposed in this work) is who interacts with whom
and not how much someone interacts with someone else.

Overall, roles in meeting data appear to be harder to model
for several reasons. On one hand, roles in meetings are informal,
i.e., they correspond to a position in a given social system and
do not correspond to stable behavioral patterns like in the case
of the formal roles in broadcast data. On the other hand, the
meetings in C3 are not real-world, i.e., the participants act
in a scenario that does not correspond to their real lives. Not
surprisingly, the meeting role recognized with highest accuracy
is the Project Manager (PM). In fact, the PM plays also the
role of chairman, i.e., a formal role that influences the actual
interaction pattern of the people that play it. The performance
difference when passing from manual (ground truth) to auto-
matic speaker diarization is statistically significant for C1 and
C2 (see Tables III and IV). The difference is not significant
for C3 because the purity of the speaker segmentation for such
a corpus is 0.99, i.e., it corresponds almost perfectly to the
groundtruth speaker segmentation. In contrast, the difference is
significant for C1 and C2 because in this case, the speaker di-
arization process produces more errors and the purity is around
0.8, i.e., the output of the speaker diarization is significantly
different from the groundtruth speaker segmentation. The
difference in accuracy is around 10% (statistically significant)
and this is mostly due to the small differences (2 s on average)
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TABLE III
ROLE RECOGNITION PERFORMANCE FOR C1 AND C2. THE TABLE REPORTS

BOTH THE OVERALL ACCURACY AND THE ACCURACY FOR EACH ROLE. “B”
STANDS FOR BERNOULLI, “M” STANDS FOR MULTINOMIAL, “I” STANDS FOR

ROLES INDEPENDENCE, AND “D” STANDS FOR ROLES DEPENDENCE. THE

OVERALL ACCURACY IS ACCOMPANIED BY THE STANDARD DEVIATION � OF

THE PERFORMANCES ACHIEVED OVER THE SINGLE RECORDINGS. THE UPPER

PART OF THE TABLE REPORTS THE RESULTS OBTAINED OVER THE OUTPUT

OF THE SPEAKER SEGMENTATION, THE LOWER PART REPORTS THE RESULTS

OBTAINED OVER THE MANUAL SPEAKER SEGMENTATION

TABLE IV
ROLE RECOGNITION PERFORMANCE FOR C3. THE TABLE REPORTS BOTH THE

OVERALL ACCURACY AND THE ACCURACY FOR EACH ROLE. “B” STANDS

FOR BERNOULLI, “M” STANDS FOR MULTINOMIAL, “I” STANDS FOR ROLES

INDEPENDENCE, AND “D” STANDS FOR ROLES DEPENDENCE. THE OVERALL

ACCURACY IS ACCOMPANIED BY THE STANDARD DEVIATION � OF THE

PERFORMANCES ACHIEVED OVER THE SINGLE RECORDINGS. THE UPPER PART

OF THE TABLE REPORTS THE RESULTS OBTAINED OVER THE OUTPUT OF THE

SPEAKER SEGMENTATION, THE LOWER PART REPORTS THE RESULTS OBTAINED

OVER THE MANUAL SPEAKER SEGMENTATION.

between the actual speaker changes and the changes as detected
by the diarization process. The sum of all the misalignments,
on average, corresponds to roughly 10% of the recording
length, and this is the probable explanation of the performance
difference when passing from manual to automatic speaker
segmentations.

The rest of the errors are due to limits of the role recognition
approach that cannot distinguish between different roles when
the associated interaction patterns are too similar. This is true,
for example, in the case of the low performance of the IP in
corpus C1. The interaction pattern of the IP role is similar to
that of the Guest, but the latter has higher a-priori probability,
so it is usually favored as the output of the recognizer.

A qualitative comparison with other approaches is possible
only for some works which use parts of the same data as ours.

Both [20] and [21] perform experiments over a subset of the
AMI meeting corpus (around 5 h of material). The performance
in [20] is around 80%, almost twice as much as our approach
over the same data (see Section V). However, as the goal is to de-
tect the two most dominant persons, the probability of assigning
each person the correct role is 50%, while it is only 25% in our
case. The work in [21] reports a 65% recognition rate of the
Project Manager, while our work achieves, over the same role,
an accuracy of 79%. Considering that our experiments are per-
formed over the whole AMI meeting corpus, while the experi-
ments of [20] and [21] take into account only a subset of 5 h,
our approach seems to be more effective in both cases, though
the task is not the same. The work in [18] uses the whole AMI
corpus, but it applies a different experimental setup. However, it
performs exactly the same task as this work, and the role recog-
nition rate is around 60%.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented an approach for the automatic recog-
nition of roles in multiparty recordings. The problem of role
recognition has been addressed only recently in the literature,
but it attracts an increasingly growing interest because it is a key
point in the automatic analysis of social interactions [1], [2]. The
proposed approach has been tested over roughly 90 h of mate-
rial, one of the biggest datasets ever used in the literature for
this task. To the best of our knowledge, this is the first work that
compares the performance of an approach over both informal
and formal roles (see Section II for the difference between the
two types of role), showing how the role typology influences the
effectiveness of the recognition.

The results show that the recognition accuracy is higher than
85% in the case of broadcast data, and it is around 45% in the
case of meeting recordings. There are several possible reasons
for such a difference. The first, and probably most important, is
that broadcast data include formal roles, while meetings include
informal ones. Formal roles are easier to model because they im-
pose constraints on the behavior of people that can be detected,
represented, and modeled with probabilistic approaches (like in
the case of this work). In contrast, informal roles do not neces-
sarily constrain behavior, and so automatic recognition is more
difficult through approaches like the one presented in this work,
at least for the aspect of behavior used as role evidence in this
work, i.e., who talks with whom and when.

The second is that the broadcast data are real, while the
meeting data are acted. The meetings do not involve people
playing the role they actually have in their life, but volunteers
that simulate an artificially assigned role they have never played
before. This is likely to reduce significantly the performance of
any role recognition method.

In the case of the broadcast data, the performance is suffi-
cient to browse effectively the data (users can quickly find seg-
ments corresponding to a given role and the mismatch between
the ground truth and the automatic output rarely exceeds a few
seconds). In the case of meeting recordings, the approach is ef-
fective only to identify the Project Manager. This allows one to
effectively follow the progress of the meeting because the PM
plays the chairman role as well and, as such, is responsible for
following the agenda through her/his interventions.



1380 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 11, NO. 7, NOVEMBER 2009

The main limitation of the current approach is that it does
not take into account any sequential information. The role of
the person speaking at turn is likely to have a statistical influ-
ence on the role of the person speaking at turn . This kind
of information could be modeled using probabilistic sequence
models (e.g., hidden Markov models), as well as statistical lan-
guage models (e.g., -grams). Furthermore, the approach pro-
posed in this work uses only the co-occurence turn-taking pat-
terns as role evidence, while other behavioral cues can be ex-
tracted from both audio (e.g., prosodic features) and video (e.g.,
gestures). Both above limitations will be the subject of future
work.
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