An Efficient Algorithm for Line Extraction from Laser Scans

Alen Alempijevic
ARC Centre of Excellence in Autonomous Systems (CAS)
University of Technology Sydney
NSW, Australia
alalemp@eng.uts.edu.au

Gamini Dissanayake
ARC Centre of Excellence in Autonomous Systems (CAS)
University of Technology Sydney
NSW, Australia
gdisa@eng.uts.edu.au

Abstract— In this paper, an algorithm for extracting line segments from information gathered by a laser rangefinder is presented. The range scan is processed to compute a parameter that is invariant to the position and orientation of straight lines present. This parameter is then used to identify observations that potentially belong to straight lines and compute the slope of these lines. Log-Hough transform, that only explores a small region of the Hough space identified by the slopes computed, is then used to find the equations of the lines present. The proposed method thus combines robustness of the Hough transform technique with the inherent efficiency of line fitting strategies while carrying out all computation in the sensor coordinate frame yielding a fast and robust algorithm for line extraction from laser range scans. Two practical examples are presented to demonstrate the efficacy of the algorithm and compare its performance to the traditional techniques.

Keywords— laser rangefinders; line segment extraction; Hough transform; robot navigation

I. INTRODUCTION

Laser rangefinders have become extremely popular sensors for robot navigation, particularly in indoor environments. Extracting geometric features present in the environment by processing the raw sensor data is often an integral part of many navigation algorithms. Straight lines are usually the most predominant geometric feature in typical indoor environments. Matching natural features such as straight lines or corners extracted from sensor data with information available in a map of the environment form the basis of Kalman filter based localization algorithms. Furthermore, in situations where a map of the environment is not available, feature based simultaneous localization and mapping algorithms can be used to automatically generate navigation maps. Therefore, robust extraction of geometric features from sensor data is important in the filed of robot navigation.

Hough transform and its efficient variant the Log-Hough transform are currently the best methods available for extracting line segments from a laser scan. In an indoor environment, most of the lines present tend to be aligned with two or three orientations. Therefore searching the Hough space through all possible orientations present is clearly inefficient. In this paper, a parameter invariant to the equation of the line segments is used to segment the range scan and identify potential candidate data points that belong to straight lines. The parameter derived is not sufficiently sensitive to discriminate between straight lines and gradual curves. A Log-Hough transform is therefore used to eliminate false candidates and obtain equations of the lines present. As the search space used for computing the Log-Hough transform is now dramatically reduced, the combined algorithm produces an approximately 30% reduction in the computational time.

This paper is organized as followed. Section II provides a brief description of existing algorithms for line extraction. The proposed algorithm is developed in section III. Section IV provides practical examples and comparison between the proposed algorithm and traditional Log-Hough techniques. Discussion and conclusions are presented in section V.

II. EXISTING TECHNIQUES FOR LINE SEGMENT EXTRACTION

A line can be uniquely described by its slope a, and the intercept with y axis b.

A more robust representation is the use of the perpendicular distance of the line to the origin (r) and the angle between a normal to the line and the positive x axis (θ), as shown in Figure 1. The equation of the line in (d, α) space is given by

$$d(\alpha) = \frac{r}{\cos(\theta - \alpha)} \quad (1)$$

The simplest method for line extraction is an algorithm adopted from computer vision as described in [2], with variations practically implemented in [3]. The algorithm proceeds iteratively by gradually adding successive laser readings to a line defined by the first few observations. A least square algorithm is used to detect whether the point lies on the postulated line. If the error is greater than the threshold error the line is terminated and another line starts.
An alternative to the above is iterative endpoint fitting. This method works by joining the first and last point in a laser scan and calculating the orthogonal distance between the points in the scan and the generated line. If this distance is greater then a maximum distance then the line is split into two and the two segments are again analyzed. The algorithm proceeds until the scan is segmented to a set of lines. An alternative implementation of this technique can be found in [3] where initial segmentation into a sequence of data is achieved by examining the distance between successive points and compare this against a threshold. The tolerance is arbitrarily selected as a compromise between the maximum distance at which the depth readings can be taken and the smallest gap between objects the system can detect.

Drawbacks with the above implementations are in selection of a threshold for the error, line length and the inherent recursiveness of the algorithms. In addition, if the obtained laser scan is noisy or various objects are obscuring planes defining the map, then the line assembly will fail.

Hough transform technique is significantly more robust then the line fitting strategies discussed above [8]. In the Hough transform, a given observation \((d, \alpha)\) is mapped to all points in the \(r-\theta\) space that specify a possible line through that point. This set will form a sinusoid. All observations that belong to a particular line will all map to sinusoids that intersect at a common point. The \(r-\theta\) space is quantized where \(r = \{ r_i | r_i = r_0 + k\Delta r \}\) and \(\theta = \{ \theta_k | \theta_k = \theta_0 + k\Delta\theta \}\). An accumulator array \(H(r, \theta)\) is defined on \(r-\theta\). As each observation \((d, \alpha)\) is mapped to a sampled sinusoid, each accumulator in \(H(r, \theta)\) along the sinusoid is incremented. When all points are accounted for, the accumulators with the highest count will be taken to indicate the parameters of the line that best explain the points.

The most difficult problem in generating the Hough transform is selecting the quantization levels for \(r\) and \(\theta\). This not only impacts on the efficiency of the line detector but also the computational requirements [7]. These problems have been addressed in detail in [1], [4] and [5]. Further, the use of Hough transform is restricted to alignment detection; the Hough transform can only determine the polar parameters of the straight lines, not the exact position of the points constituting the line [8].

The quantization problem has been addressed with the Log Hough Implementation where the \(r\) space is quantized with a log distribution utilizing the minimum range \(r_0\) as the shifting parameter [1]. In addition, performing the operation in log space also significantly reduces the computational cost of the classic Hough algorithm. Log-Hough transform is the most effective method currently available for extracting lines. Operation of this algorithm is explained in detail in section III. The major shortcoming of the algorithm is the need to search through the whole range of line orientation while in a typical indoor environment usually the lines are aligned in two principal orientations.

III. PROPOSED METHOD

Consider a straight line and three consecutive observations from a scan of a laser manifested as shown in Fig 2.

The observations are \(d_1, d_2\) and \(d_3\) where \(d_i = 1, 2, 3\) and \(\Delta\) is the angular resolution of the laser rangefinder. From

\[d_i = \frac{p}{\cos(\theta - \alpha - (i-1)\Delta)} \]

Let

\[AD = \frac{1}{d_1} + \frac{1}{d_2} + \frac{1}{d_3} \]

Substituting (2) in (3) and simplifying gives

\[AD = 1 + 2\cos(\Delta) \]

![Figure 1 - Line in polar coordinate system](image1)

![Figure 2 - Laser Scan with Straight Line](image2)
It is clear that the parameter AD is independent of the equation of the straight line and is only a function of the angular resolution of the laser rangefinder. A more generalized form of the parameter AD can be written as

$$AD_{ik} = \frac{k}{\sum_{j=1}^{L} \sqrt{d_{i-j}}} = 1 + 2 \sum_{j=1}^{L} \cos(j\Delta)$$ \hspace{1cm} (5)

Clearly AD_{ik} for a given observation p_i is a constant if the points p_{i+k} to p_{i-k} belonging to a straight line. It should be noted here that (4) represent a sufficient condition for p_{i-k} to p_{i+k} to belong to a straight line. There are many other curves that give rise to the same value AD_{ik} The most trivial example is an arbitrary curve that passes through all points p_{i-k} to p_{i+k}

Figure 3 shows a scan from a SICK LMS 200 laser rangefinder obtained from an office environment. Figure 4 shows the AD_{10} ($i=9, \ldots, 352$) for this scan.

However, in the present example straight line segments are already identified. Therefore, the search space for the Log-Hough transform can be significantly reduced if approximate orientations of the line (9) are available.

Consider:

$$ad_{ik} = \frac{\sqrt{\sum_{j=1}^{L} d_{i-j}}}{\sqrt{d_{i}}}$$ \hspace{1cm} (7)

Using (2) and simplifying it can be shown that

$$\theta_i = \tan^{-1} \left(\frac{ad_{ik}}{\sum_{j=1}^{L} \sin(j\Delta)} + \alpha_i \right)$$ \hspace{1cm} (8)

Equation (8) can now be used to obtain a value for θ for the straight line that is defined by points p_{i-k} to p_{i+k}. Figure 5 illustrates the implementation of (8) on the laser scan data.
The comparison between the line segments detected using the proposed algorithm and the traditional Log Hough transform is illustrated in Fig 8 for the UTS data set and Fig 9 for the Intel Laboratory Set. As expected, both algorithms produce similar results. Table I contains an comparison between the detected line attributes r and θ using the alternative methods for the Intel Laboratory Set illustrated in Fig 9.

It is now necessary to search only the space surrounding the value for θ in (8) in the Hough space. It is important to note that all the computations described above are performed in the sensor space (d,α) without any transformation to the Cartesian co-ordinates (x,y) thereby resulting in significant reduction in computation time.

To obtain the precise values for r and θ it is necessary to find the peaks with the highest accumulator count within the Log Hough space Fig 6. Niblack and Petkovic [6] suggest finding the peaks by using a rectangular window that encapsulates the spreading of the peak and produces sub-quantized results of higher accuracy. Once the peak values r_{log} have been detected these are converted from the quantized space using (9).

$$d = r_{\text{log}} e^{mA_{\text{peak}}}$$

(9)

IV. EXPERIMENTAL RESULTS

The algorithm described above was evaluated using two sets of experimental data. The first data set was obtained from a Pioneer Robot equipped with a SICK LMS 200 laser rangefinder maneuvering in the UTS Laboratory. The second data set has been obtained from the Robotics Data Set Repository – Radish [9] and contains data from a test conducted at the Intel Laboratory – Seattle, seen in Fig 7.

In both data sets the laser rangefinder can produce the bearing and range scans at 0.5 degrees separation. $k=10$ was used as the smoothing parameter. Hence from (5) $A_{\text{Da}} = 1 + 9.9892$. A threshold of ±0.015 around this value was empirically selected to determine the points that constitute a line. This threshold was been empirically selected. All points that have A_{Da} less than the threshold and surrounding ± 5 points were selected. To obtain the estimated angle θ, all individual θ's obtained for every point p_{i-10} to p_{i+10} on the line.
A comparison between the computational time required for extraction of line segments in Fig. 10 demonstrates the efficiency of the proposed method in comparison to the Log Hough implementation for the identical data set. The variation of the computational time seen for the Log Hough method is due to the fact that all scans do not have identical number of observations as the laser scan has a limited range. Proposed algorithm has a computational time that is a function of the number of straight line segments present in the environment.

V. CONCLUSIONS

The main contribution of this paper is a new method for extracting line segments from a laser scan. The approach is based on using a pose-invariant parameter, computed in the sensor space, to segment a laser scan and identify likely candidates that may belong to straight lines. The segmented scan is then processed using a Log Hough transform to obtain the equations of the lines. Another parameter that is also computed in the sensor space is derived for obtaining the approximate orientation of the lines present, thereby significantly reducing the size of the window the needs to be searched during the Hough transform. This parameter may be further used to identify the exact position of the points constituting the line. Thus, the proposed method enables robust and efficient line extraction from laser range data.

ACKNOWLEDGMENT

This work is supported by the ARC of Excellence programme, funded by the Australian Research Council (ARC) and the New South Wales Government.

REFERENCES

Behavior Implementation in Autonomous Agents using Modular and Hierarchical Neural Networks
Flávio Silva, Mauro Roisenberg, Guilherme Bittencourt, Renato Vieira, Jorge Barreto

SESSION FM2
Software And Programming For Robotics

FM2.1 RAM 1227
Software reuse in robotics: Enabling portability in the face of diversity
Robert Smith, Glenn Smith, Aster Wardhani

FM2.2 RAM 1180
Query Generation for Helper Robots to Recognize Objects
Rahmadi Kurnia, Md. Altab Hossain, Akio Nakamura, Yoshinori Kuno

FM2.3 RAM 1157
Robot Open Structure Link Interconnection (ROSLI)
Premanand Kusalavan, Jonas Djuanda, Chot Hun Lim

FM2.4 RAM 1139
PC-Base Off-Line Programming using VRML for Welding Robots in Shipbuilding
Chang-Sei Kim, Keum-Shik Hong, Hans Yong-Sub Han, Soo-Ho Kim, Soon-Chang Kwon

FM2.5 RAM 1057
Study on “Virtual Robot in Network Environment—Softman”
Pang Jie, Li Guizhi, Zhang Wei, Tu Xunyan

FM2.6 RAM 1107
Formal Languages Aspects as a Tool for Representation and Implementation of Behavior-Based Robotics
Renato Vieira, Mauro Roisenberg, Olinto Furtado

FM2.7 RAM 1066
Real-time Control of AHU Based on a Neural Network Assisted Cascade Control System
Chengyi Guo, Qing Song, Wenjian Cai

SESSION FP2
Segmentation And Correspondence

FP2.1 RAM 1232
An Efficient Algorithm for Line Extraction from Laser Scans
Alen Alempijevic, Gamini Dissanayake

FP2.2 RAM 1224
Tracking Objects and Faces using Color Histograms Enhanced with Specularity Detection
Jae Byung Park, Youngrock Yoon

FP2.3 RAM 1217
A Study on Detecting Moving Objects via Projective Transformation
Midori Nagayoshi, Shigeru Uchikado

FP2.4 RAM 1001
Texture Segmentation Algorithm Based on Wavelet Transform and Kd-tree Clustering
Guosheng Yang, Yanli Hou, Chunyan Huang

FP2.5 RAM 1259
X-Ray Image Segmentation Based on Genetic Algorithm and Maximum Fuzzy Entropy
Xin Wang, Brian Stephen Wong, Chen Guan Tui

FP2.6 RAM 1279
A Divide and Conquer Algorithm for Rectilinear Region Coverage
Amit Agarwal, Meng Hiot Lim, Lip Chien Woon

SESSION FA3
High Performance Systems And Control

FA3.1 RAM 1160
A High Performance Precision Machine
Kay Soon Low, Meng Teck Keck

FA3.2 RAM 1249
Comparing Classical and Optimal Control of 3D Hovering
Thanis Nuchkrua, Nattachai Juthong

FA3.3 RAM 1041
Design of Critical Control Systems Using Genetic Algorithm and LMI-based Regional Pole Assignment Technique
Toshiyuki Satoh, Naoki Saitoh

FA3.4 RAM 1264
A Rank Condition for Rho-exponential Stabilization of Dynamic Caplygin Systems
Ti-Chung Lee, Jing-Sin Liu

FA3.5 RAM 1148
2004 IEEE Conference
on Robotics, Automation and Mechatronics

© 2004 IEEE Personal use of this material is permitted. However, permission to reprint / republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.