White matter architecture rather than cortical surface area correlates with the EEG alpha rhythm

Pedro A. Valdés-Hernández *,1, Alejandro Ojeda-González 1, Eduardo Martínez-Montes, Agustín Lage-Castellanos, Trinidad Virués-Alba, Lourdes Valdés-Urrutia, Pedro A. Valdés-Sosa

Neuroimaging Department, Cuban Neuroscience Center, Ave 25, Esq. 158, #15202, PO Box 6412/6414, Cubanacán, Playa, Havana, Cuba

A R T I C L E I N F O

Article history:
Received 18 June 2009
Revised 8 October 2009
Accepted 10 October 2009
Available online 19 October 2009

Keywords:
White matter
Fractional anisotropy
Neocortical surface
EEG alpha rhythm
Axonal conduction velocity
Axonal time delay
Anatomical connectivity
EEG traveling waves
EEG standing waves
Head size
Thalamocortical neuropil
Wave damping

A B S T R A C T

There are few studies on the neuroanatomical determinants of EEG spectral properties that would explain its substantial inter-individual variability in spite of decades of biophysical modeling that predicts this type of relationship. An exception is the negative relation between head size and the spectral position of the alpha peak (Pα) reported in Nunez et al. (1978)—proposed as evidence of the influence of global boundary conditions on slightly damped neocortical waves. Here, we attempt to reexamine this finding by computing the correlations of occipital Pα with various measures of head size and cortical surface area, for 222 subjects from the EEG/MRI database of the Cuban Human Brain Mapping Project. No relation is found (p = 0.05). On the other hand, biophysical models also predict that white matter architecture, determining time delays and connectivities, could have an important influence on Pα. This led us to explore relations between Pα and DTI fractional anisotropy by means of a multivariate penalized regression. Clusters of voxels with highly significant relations were found. These were positive within the Posterior and Superior Corona Radiata for both hemispheres, supporting biophysical theories predicting that the period of cortico-thalamocortical cycles might be modulating the alpha frequency. Posterior commissural fibers of the Corpus Callosum present the strongest relationships, negative in the inferior part (Splenium), connecting the inferior occipital lobes and positive in the superior part (Isthmus and Tapetum), connecting the superior occipital cortices. We found that white matter architecture rather than neocortical area determines the dynamics of the alpha rhythm.

© 2009 Elsevier Inc. All rights reserved.

Introduction

In the past, detailed biophysical models have been proposed for the generation of EEG rhythms (David and Friston, 2003; Izhikevich and Edelman, 2008; Niedermeyer and Lopes da Silva, 2004; Nunez et al., 1995; Robinson et al., 2003a; Valdes-Sosa et al., 2009)—all depending on neuroanatomical-based parameters. It is therefore surprising that there are few experimental attempts to explain the considerable inter-subject variability of the EEG on the basis of measured individual neuroanatomical characteristics. We aim in this paper to provide additional insights into this issue by reviewing some of the previous results as well as providing novel findings. Understanding such relationships would not only contribute to the knowledge about the genesis of the electrophysiological phenomena but would also allow the elimination of uncontrolled sources of variance that decrease the sensitivity of experimental or clinical studies on individual subjects.

One important empirical work, exploring the neuroanatomical basis of EEG during maturation, is that of Whitford et al. (2007), where decreases of EEG power, especially in the slow-wave band, mirrored gray matter volume decreases from 10 to 30 years. This was directly confirmed by a significant regression between these two variables. They did not report significant relations between white matter volume and EEG power and concluded that a reduction of the neuropil, reflected in gray matter volume decreases, would correspond to the elimination of active synapses causing concurrent EEG power reduction.

Our concern in this paper is not with changes of power within specific EEG bands but rather of a distinctive signature of the normal resting human EEG, the spectral position of the alpha peak or the alpha frequency (Pα). Among the quantitative EEG parameters, Pα is the best signature of maturation (Valdés et al., 1990); the EEG feature with the highest heritability (Posthuma et al., 2001); and a sensitive indicator of pathology (Valdes et al., 1992). Exploration of the neuroanatomical determinants of Pα compels us to the examination of the theories about the generation of the alpha rhythm. This has been the subject of several biophysical models which could be classified according to the neuroanatomical scales and structures involved: (i) pacemakers, (ii) local and (iii) global and (iv) local-global
combinations. From another point of view, they can also be classified as (a) thalamic, (b) cortical or (c) thalamic-cortical.

The pacemaker theory is supported by the intrinsic oscillation properties of some neural cells, e.g. those in the thalamus (Andersen and Andersson, 1968; Jahnsen and Linas, 1984) or pyramidal cells in layer V of the neocortex (Bollimunta et al., 2008; Connors and Amitai, 1997; Flint and Connors, 1996; Lopes da Silva, 1991). This theory is unable to explain most of the global EEG phenomena, e.g. the relative frequencies of major rhythms and sleep-wave variations (Robinson et al., 2001b). However, the intrinsic oscillatory behavior of those cells may probably shape the rhythmic behavior of networks to which they belong (Lopes da Silva, 1991).

The local models of alpha oscillations comprise excitatory and inhibitory populations of neurons interacting via dendritic response functions and nonlinearities. These two populations can be the thalamocortical relay and reticular neurons in the thalamus (Lopes da Silva et al., 1974) or the pyramidal cells and interneurons in the cortex. A local cortical model is described in Van Rotterdam et al. (1982), where a chain of cortical excitatory-inhibitory modules predicted intracortical alpha waves with speed of 30 cm/s, in agreement with the experimental finding in (Lopes da Silva and Storm van Leeuwen, 1978). Other local models deal with the dynamics of either a single (Jansen et al., 1993) or coupled cortical columns (Jansen and Rit, 1995), although these two have been criticized in Grimbert and Faugeras (2006) for being unable to reproduce alpha rhythm across the whole range of possible physiological parameters in the model. In general, the local models, although contributing to the global dynamics of the global alpha rhythm, do not account for the significant spatial coherence, within the alpha band, between distant scalp areas, reported in the literature (Cantero et al., 1999; Niedermeyer and Lopes da Silva, 2004; Nunez et al., 2001).

On the other hand, large-scale networks of connected neuronal populations can generate the global alpha rhythm, as predicted by Izhikevich and Edelman (2008), Liley et al. (1999), Liley et al. (2002), Nunez et al. (1995), Sotero et al. (2007), Valdes-Sosa et al. (2009), and Wright et al. (2001). In particular, purely global models ignore dendritic response functions and finite intracortical propagation thus depending on propagation delays between distant anatomical structures only. The paradigmatic example of this type of modeling is Nunez et al. (1995) for the generation of the human alpha rhythm. This model is cortical, based on the argument that only 1% of cortical input to the human brain is from the thalamus, the rest consisting of cortico-cortical connections. In this model, the boundary conditions affect spectral properties of the EEG rhythms, leading to the cortical standing wave theory of the EEG, recently reviewed in Nunez and Srinivasan (2006), which, to our knowledge, is the only global model that has been subjected to empirical tests. A traveling wave behavior of electrical activity through the neocortex was also suggested by Nunez et al. (1978). There is evidence for this in experimental reports and reviews, based on scalp EEG (Burkitt et al., 2000; Hughes et al., 1992; Hughes et al., 1995; Lopes da Silva, 1991; Manjarrez et al., 2007; Massimini et al., 2004; Wingeier et al., 2001). Moreover, these waves were recently measured directly with optical imaging in Wu et al. (2008). In Nunez et al. (1995), traveling waves are predicted to be slightly damped. Since the neocortex is a closed 2D surface, these waves might interfere to form standing waves. Some patterns of scalp EEG for visual evoked steady-states, presented in Chapter 6 of Nunez et al. (1995), seem to support this hypothesis. According to this theory, the eigenfrequencies of the standing waves are equal to those of the EEG rhythms. The boundary conditions of this system are determined by neocortical surface area (NSA) which is predicted to be inversely proportional to the eigenfrequencies (Nunez et al., 1995).

The cortical standing wave theory has been criticized by Rennie et al. (1999), Robinson et al. (1997, 2001a) and Wright and Liley (1996) who suggested that the high damping rates of cortical traveling waves preclude boundary condition affecting the dynamical properties of the alpha rhythm. Such high damping rates must produce excessively blurred peak resonances in contrast with observations (Robinson et al., 2001b), even though Robinson et al. (2001b) predicted a decrease of damping due to thalamocortical resonances. To date, there is no strong experimental evidence for “standing waves” on the neocortex. There is only an indirect verification in Nunez et al. (1978) where a mild negative correlation between head size and the Pp is reported, a result replicated by Posthuma et al. (2001). Nunez et al. (1978) used head size as a proxy for NSA due to the unavailability, at that time, of suitable techniques to measure in vivo the latter in individuals. With the availability of current Neuroimaging and Neuroinformatics tools (Ashburner and Friston, 1999; Mazzotta et al., 2001; Robbins, 2003; Smith, 2002), the relation between NSA and the Pp may now be reexamined by using direct measurement of NSA in a large sample of individuals. This would provide stronger support or falsification for the actual existence of EEG neocortical standing waves. This experimental test is one of the prime objectives of this paper.

On the other hand, there are many models in the literature with combinations of global and local features. The inclusion of local features results in waves that are more damped than those of the “EEG cortical standing waves theory,” and therefore minimizes the effects of boundaries (Robinson et al., 2001b; Wright and Liley, 1996). These models can be cortical (Jirsa and Haken, 1997; Liley et al., 1999; Liley et al., 2002; Nunez et al., 1995; Robinson et al., 1998; Wright and Liley, 1995) or thalamic-cortical (Robinson et al., 2001c, 2003a), depending on the importance given to the thalamus in the generation of the alpha rhythm. Nevertheless, the role of thalamocortical, cortico-thalamic and corticocortical interactions appears to be determinant in the generation of the alpha rhythm, as experimentally suggested in Lopes da Silva et al. (1980), for the dog, with the method known as “theoretical thalamic deafferentation,” which consists in computing partial coherence functions. In fact, the thalamic-cortical model treated in Robinson et al. (2003a), strikingly predicts the spectral characteristic of the alpha rhythm, e.g. the peak width not predicted by the “EEG cortical standing wave theory,” in addition to other EEG phenomena such as the topographical distribution of the alpha splitting (Robinson et al., 2003b).

Current Neuroimaging techniques allow the in vivo examination of other neuroanatomical determinants of the Pp. The principal ingredient added to large-scale models (global, global-local, cortical or thalamic-cortical) is the long range connections via white matter. Therefore, most relevant would be the neuroanatomical correlates of axonal connectivities and inter delays in thalamocortical, cortico-thalamic and corticocortical circuitries. For example, connectivity strength is theoretically related to the frequency of coupled cortical areas (David and Friston, 2003; Sotero et al., 2007). Time delays appear to be even more important (David and Friston, 2003; Jirsa, 2009; Jirsa and Haken, 1997; Robinson et al., 2003a;b; Valdes-Sosa et al., 2009). In fact, in the general equations governing the “EEG cortical wave theory” (Nunez et al., 1995; Nunez and Srinivasan, 2006), the eigenfrequencies depend more on time delays in long range corticocortical axons than on NSA. In particular, a theoretical prediction that strengthens the role of the thalamus in the generation of the alpha rhythm is that of Roberts and Robinson (2008) and Robinson et al. (2001b) where the Pp is found to be most sensitive, and inversely proportional, to the period of corticothalamic feedback.

In the conduction along the bundles of axons connecting two different gray matter regions the strength of the connectivity is roughly determined by the number of axons (Iturria-Medina et al., 2007) and therefore depends on fiber density, i.e. the number of fibers per unit of cross-sectional area; whereas time delay is determined by conduction velocity which depends on myelination (Sabah, 2000), i.e. the cross-sectional area occupied by myelin sheath, as well as, possibly, on fiber density due to ephaptic interactions (Reutskiy et al., 2003; Bokil et al., 2001). Both fiber density and myelination can be
quantified locally with Neuroimaging. All the above theoretical work strongly encourages exploring, firstly at the phenomenological level, the relation of these neuroanatomical parameters with P_n.

The Image of Diffusion Tensor Fractional Anisotropy (FA) is a suitable candidate for the in vivo characterization of fiber density and myelination. This is an average-in-a-voxel measure of the anisotropic profile of water motion in a heterogeneous medium that can be easily measured nowadays with MRI. For the particular case of a single bundle of parallel axons, FA is theoretically directly proportional to the fraction of cross-sectional area occupied by the axons in the extracellular space (Hwang et al., 2003; Pabitra and Basser, 2005) (see Appendix A) and precisely this fraction is directly proportional to fiber density and myelination. Indeed, the experimental evidence of the effect of fiber density on FA is reviewed in Beaulieu (2002) and Le Bihan (2007). Moreover, FA within certain white matter tracts of the brain has been recently found to be significantly predicted by White Matter Fraction Images in a linear model with positive slope (Mädler et al., 2005). Matter Fraction Images in a linear model with positive slope (Mädler et al., 2005). Moreover, FA within certain white matter tracts of the brain has been recently found to be significantly predicted by White Matter Fraction Images in a linear model with positive slope (Mädler et al., 2005). Moreover, FA within certain white matter tracts of the brain has been recently found to be significantly predicted by White Matter Fraction Images in a linear model with positive slope (Mädler et al., 2005). Moreover, FA within certain white matter tracts of the brain has been recently found to be significantly predicted by White Matter Fraction Images in a linear model with positive slope (Mädler et al., 2005). Moreover, FA within certain white matter tracts of the brain has been recently found to be significantly predicted by White Matter Fraction Images in a linear model with positive slope (Mädler et al., 2005). Moreover, FA within certain white matter tracts of the brain has been recently found to be significantly predicted by White Matter Fraction Images in a linear model with positive slope (Mädler et al., 2005). Moreover, FA within certain white matter tracts of the brain has been recently found to be significantly predicted by White Matter Fraction Images in a linear model with positive slope (Mädler et al., 2005). Moreover, FA within certain white matter tracts of the brain has been recently found to be significantly predicted by White Matter Fraction Images in a linear model with positive slope (Mädler et al., 2005). Moreover, FA within certain white matter tracts of the brain has been recently found to be significantly predicted by White Matter Fraction Images in a linear model with positive slope (Mädler et al., 2005). Moreover, FA within certain white matter tracts of the brain has been recently found to be significantly predicted by White Matter Fraction Images in a linear model with positive slope (Mädler et al., 2005). Moreover, FA within certain white matter tracts of the brain has been recently found to be significantly predicted by White Matter Fraction Images in a linear model with positive slope (Mädler et al., 2005). Moreover, FA within certain white matter tracts of the brain has been recently found to be significantly predicted by White Matter Fraction Images in a linear model with positive slope (Mädler et al., 2005). Moreover, FA within certain white matter tracts of the brain has been recently found to be significantly predicted by White Matter Fraction Images in a linear model with positive slope (Mädler et al., 2005).

In this work, we explore the possible neuroanatomical determinants of P_n through individual subjects taken from the database of the Cuban Human Brain Mapping Project (CHBMP). The CHBMP is suitable for this purpose since it combines structural Magnetic Resonance Imaging (MRI), Diffusion-Weighted Magnetic Resonance Imaging (DT-MRI) and EEG information (Udulag et al., 2008). We reexamine the results reported in Nunez et al. (1978), but this time by automatically assessing head size with improved precision for 222 individuals, based on their T1-weighted MRIs. Furthermore, we calculate NSA and we assess the relation between its logarithm and that of the P_n, as claimed by the EEG cortical standing wave theory (Nunez et al., 1995).

Additionally, we explore, for the first time, an empirical relationship between WMAS and the P_n based on a multivariate penalized regression (Vega-Hernandez et al., 2008). We present and discuss which tracts, as defined by Regions-Of-Interest in Mori et al. (2008) and Hua et al. (2008), might be related with the P_n.

The phenomenological findings of this paper inspire future work exploring biophysical explanations by means of mathematical modeling of the generation of the alpha rhythm.

Materials and methods

Notation

A lower case bold symbol, e.g. \mathbf{h}_{m}, denotes a column vector of length n. An upper case symbol, e.g. $\mathbf{a}_{n,m}$, denotes a matrix whose size is specified by the corresponding subscripts. Nonbold symbols denote scalar magnitudes. The superscript T denotes transpose. ||\mathbf{a}|| is the Frobenius norm of \mathbf{a}. 1_m is a column vector of n ones, $\mathbf{1}_{n,m} = 1_m \otimes 1_n$ is an $n \times m$ matrix of ones, $\mathbf{I}_{n,m}$ is the identity matrix of order n and $\mathbf{H} = \mathbf{I}_{n,m} - (1/m) 1_{n,m}$ is the centering operator of order n. The symbol \land is the logical operator AND, while the natural logarithm of x will be denoted by $\log(x)$.

Acquisition and preprocessing of MRI data

As part of the Cuban Human Brain Mapping Project, using a Siemens Symphony 1.5 T, we sampled MRI data of 397 healthy subjects from the Cuban population. They were initially a subset of a larger sample (1574) randomly targeted from the Cuban National ID registry that was submitted to neuropsychiatric and neuropsychological tests. Those who were considered by an expert panel as healthy provided, after written consent, our current MRI data set which consists of 3D MPRAGE structural T1-weighted images with $1\times1\times1$ mm3 voxel size and dimensions of $160\times256\times256$. We used TR/TE/T1 = 3000/3.93/1100 ms. After visual quality control by an expert, the final number of selected T1-weighted images was $N_m = 305$.

We also acquired, using a single-shot EPI, six repetitions of diffusion-weighted images (DWIs) for 12 directions of the diffusion gradient with $b = 1200$ s/mm2 and a nondiffusion-weighted image ($B_0 = 0$ s/mm2). The number of slices was adapted to cover the whole brain, with a thickness of 3 mm, in-plane resolution of 2×2 mm2 and FOV of 128×128 mm2. TE was 160 ms. Magnitude and phase images were also acquired using a gradient echo sequence with TE1 = 7.71 ms and TE2 = 12.47 ms. All DWIs were visually inspected and those which presented either technical or pathological defects were discarded. This quality control process led to a final sample of DWIs of 172.

Head size and cortical surface areas

We calculated four measures of head size for every subject in a fully automated procedure. For this, we first normalized the T1-weighted image to the MNI-152 average brain (Mazziotta et al., 2001), using SPM nonlinear registration (Discrete Cosine Transform expansion, cutoff = 25 mm) (Ashburner and Friston, 1999). The linear part of this transformation was used to map the plane $z = 0$ in the MNI space to the individual one. We extracted the curve defined by the intersection between the scalp surface and the transformed plane. The scalp was extracted using FSL (Smith, 2002). The length of this curve was calculated as the first measure of head size. We also marked nasion, inion and both preauricular points in the MNI-152 average brain using IMAGIC software (Neuronic S.A www.neuronic.com). With the whole transformation, these points were mapped to the individual space and projected to the scalp surface. The distance between individual nasion and inion and between the individual preauriculare was calculated as the second and third measure of head size, respectively. The fourth measure was the geometrical mean of the first three measures, i.e. the cubic root of their product, as proposed in Nunez et al. (1978).

The surface of the neocortex for each subject was extracted using CLASP (http://www.cic.mcgill.ca/index.php/CLASP) (Kim et al., 2005), software kindly provided by the Montreal Neurological Institute. Each cortical surface is the mean surface between the white/grey matter interface and the gray matter/cerebrospinal fluid interface with a tessellation of 81,920 faces and approximately 41,000 vertices. For each hemisphere, we identified patches in the medial plane that actually do not contribute to the area of the neocortex and are only yielded by CLASP due to the closed spherical topology of the extracted hemispheres. These patches were removed to calculate the total neocortical surface area, i.e. the sum of the areas of the faces.

DTI fractional anisotropy

A mild Gibbs ringing artifact around the ventricles in the B0 images was corrected with a Hanning filter. Eddy current and motion effects were also corrected by linear registration of the weighted images to the B0. With the aid of phase and magnitude images, we corrected distortion effects due to main field inhomogeneities using the Unwarping SPM2 toolbox (Anderson et al., 2001). Diffusion tensors were fitted for every voxel using a robust linear regression method (Le Bihan and van Zijl, 2002). We computed the FA images for all the subjects and, in order to achieve anatomical correspondence among them, performed the following procedure:

1. A random FA image of the sample was normalized to the FA template provided online by the ICBM (ICBM-DTI-81 (Mori et al., 2008)) using SPM5, (cutoff of 25 mm) (Ashburner and Friston, 1999). This was the first reference image of an iterative procedure described in the next steps.
Ages are within the range from 18 to 45 years. We assess correlations between both \(P_v \) and FA with age to discard the effect of this in our analyses and results.

Final data sets

We organized the data sets obtained above by constructing the following mathematical structures:

1. A vector \(\mathbf{h}_{\text{lps}}^{\text{prelim}} \times 1 \) containing the first measure of head size, namely the axial perimeter, for the \(N_1 \) subjects.
2. A vector \(\mathbf{h}_{\text{post}}^{\text{prelim}} \times 1 \) containing the second measure of head size, namely the anterior–posterior distance, for the \(N_1 \) subjects.
3. A vector \(\mathbf{h}_{\text{post}}^{\text{true}} \times 1 \) containing the third measure of head size, namely the distance between the preauricular points, for the \(N_1 \) subjects.
4. A vector \(\mathbf{h}_{\text{cube}}^{\text{prelim}} \times 1 \) containing the fourth measure of head size proposed by (Nunez et al., 1978), namely cubic root of the product of the first, second and third head measures, for the \(N_1 \) subjects.
5. A vector \(s_{\text{NT}} \times 1 \) containing the neocortical surface area for the \(N_1 \) subjects.
6. A vector \(\alpha_{\text{NEEG}} \times 1 \) containing the \(P_v \) for the \(N_{\text{EEG}} \) subjects.
7. A 2D matrix \(A_{\text{NEEG}} \times N_v \) with the \(N_{\text{EEG}} \) FA images, ordered in row vectors of \(N_v \) elements corresponding to voxels.

Relation between head size measures and the alpha frequency

In the theory presented in Nunez et al. (1995), electrical activity propagates from one cortical region to the next (either along collaterals or white matter axons) like traveling waves over the neocortical surface, which is topologically spherical. This is a finite medium so traveling waves can interfere to form standing waves. In an exploratory analysis assuming very simple properties of the wave medium, i.e. assuming undamped, nondispersive and free oscillations, the eigenmodes are the Spherical Harmonics functions \(Y_{\ell m}, l = 1,2,3,...; m = -l, -(l − 1), ..., 0, ..., (l − 1) \), and the eigenfrequencies, \(\omega_l \) (corresponding to the index \(l \)), result to be inversely proportional to the radius, \(R \), of the neocortical equivalent sphere:

\[
\omega_l \propto \frac{\sqrt{l(l+1)} \nu}{R}, \quad l = 1,2,3,...
\]

(3)

where \(\nu \) is the wave conduction velocity. In this theory, the alpha frequency is assumed to correspond to the first eigenmode \((P_v \equiv \omega_{l=1}) \) since \(\omega_{l=1} \) is around the typical value of 10 Hz. The proportionality trend between spatial and temporal frequencies still holds for slightly damped waves so a relation like Eq. (3) can be still used to describe the actual brain dynamics in the cortical standing wave theory of the EEG.

Since the area of the equivalent sphere is that of the neocortex surface (NSA), the square root of the latter can substitute for \(R \) in the relation above. However, at the time of the original study (Nunez et al., 1978), it was not possible to measure NSA in vivo with acceptable precision. Therefore, they proposed to use the fourth head size measure defined in this paper as a proxy for NSA, assuming a fixed ratio of the NSA to the external head area (approximately the cortical folding factor). The significant negative correlation obtained in Nunez et al. (1978) supported Eq. (3). However, the folding factor can vary from subject to subject (Mangin et al., 2004). Fortunately, we are able to measure NSA directly from MRI. We therefore substitute its square root for the NSA to the external head area (approximately the cortical folding factor) and apply the natural logarithm to both members, obtaining:

\[
\log(\text{Pv}) = -1/2\log(\text{NSA}) + C,
\]

(4)

where \(C \) is an undetermined constant.

We first investigate the validity of the relation obtained in Nunez et al. (1978) by assessing the Pearson correlation between \(\alpha_{\text{NEEG}} \times 1 \) and \(\mathbf{h}_{\text{lps}}^{\text{true}} \times 1 \), where \(N_{\text{NEEG}} = 222 \) is the number of subjects having both T1-weighted and EEG simultaneously. We also determine which,
among the four head size measures defined in this paper, has the highest correlation with NSA, being the actual best representative of the latter. Additionally, the value of this correlation quantifies the variability of the folding factor and therefore the validity of Nunez’s assumption. We then calculate the Pearson correlation between the NSA-representative head measure and $\alpha_{N_{\text{EEG}}-N_{\text{DTI}}}$ and $\log(s_{N_{\text{EEG}}-N_{\text{DTI}}})$. This would allow comparing the estimated slope with the theoretical value of $-1/2$.

Ridge regression between fractional anisotropy and the alpha frequency

In order to study the relationship between P_α and FA, we propose the following linear model:

$$\alpha_{m \times 1} = \alpha_{m \times N} \beta_{N_{\text{DTI}}} + 1_m \beta_0 + e_{m \times 1}. \quad (5)$$

where $m = N_{\text{EEG}} \times N_{\text{DTI}} = 89$ is the number of subjects having both EEG and DTI simultaneously, and the vector ϵ represents a multivariate Gaussian error.

We conveniently define $\tilde{\alpha} = \mathbf{HA}$ and $\tilde{\alpha} = \mathbf{H} \alpha$. Both are measures of the deviation of each individual from the average across subjects. Given that $H (1_m \beta_0) = 0$ and $H \epsilon = \epsilon$, Eq. (5) can be easily transformed into:

$$\tilde{\alpha} = \mathbf{H} \tilde{\beta} + e \quad (6)$$

Using a sparse discrete $N_{\text{EEG}} \times N_{\text{Laplacian}}$, as the penalizing operator, the solution of the so-called Ridge regression (Vega-Hernandez et al., 2008) is given by $\tilde{\beta} = \arg \min \{|| \tilde{\alpha} - \tilde{\mathbf{H}} \tilde{\beta} ||^2 + \lambda || \tilde{\beta} ||^2 \}$, with λ being the regularization parameter. The analytical form of this solution is:

$$\tilde{\beta} = \left(X'X + \lambda N_{\text{EEG}} \times N_{\text{Laplacian}} \right)^{-1} X' \tilde{\alpha}, \quad (7)$$

where $X = \mathbf{AL}^{-1}$. An optimal value for λ is obtained by minimizing the generalized cross validation function (Vega-Hernandez et al., 2008). The intercept is estimated as $\tilde{\beta}_0 = 1/m \ 1_m^T (\tilde{\alpha} - \mathbf{H} \tilde{\beta})$. The use of a quadratic penalty based on the Laplacian of the coefficient copes with the ill-posed condition of the problem in the sense of Hadamard. This constraint imposes smoothness between the coefficients, which is justified if we assume that the development of the architecture of tissue between neighboring voxels is a correlated process.

Statistical significance

The bootstrapping methodology suggested in Paparoditis and Politis (2005) was used for assessing the coefficients $\tilde{\beta}$, using Eq. (7), that are significantly different from zero. Using Eq. (6), a vector of residuals $\tilde{\epsilon} = \tilde{\alpha} - \mathbf{H} \tilde{\beta}$ is estimated. Under the null hypothesis of no linear relation, i.e., $H_0: \tilde{\beta} = \mathbf{0}$, pseudo-observations are generated by adding a noise vector to the intercept, i.e. $\tilde{\alpha}' = \epsilon'$, where the components of ϵ' are drawn from the empirical distribution of the estimated residuals (vector ϵ). This is done for $j = 1, \ldots, 10^3$ bootstraps. The estimators of $\tilde{\beta}$, under the null hypothesis, say $\tilde{\beta}_{H_0}$, are also calculated for all bootstraps. Being $s_{\epsilon j}$ a vector with the element-wise the variance of β_{H_0}, we constructed the “studentized” pivotal statistics, $t_{\epsilon j} = \sqrt{\mathbf{H}_{\text{EEG}} \cdot \text{DWD} \beta_{H_0}} / s_{\epsilon j}$ and $t = \sqrt{\mathbf{H}_{\text{EEG}} \cdot \text{DWD} \beta} / s_{m}$, which are suitable to maximize the power of the test (Paparoditis and Politis, 2005). To avoid the inflation of type I error, due to the experiment-wise error for the simultaneous univariate comparisons, a negative and a positive global multivariate threshold, based on all $t_{\epsilon j}$, have to be established in order to find those negative and positive components of \tilde{t} respectively for which it is possible to reject the null hypothesis with certain probability. Thus, we define the “0.5; 99.5” statistics, which are slightly less conservative, but reliable, versions of the min-max statistics proposed in Galán et al. (1994). These are calculated for each bootstrap as the 0.5 and 99.5 percentile of the values of $t_{\epsilon j}$. Having the distributions of both statistics, the negative threshold, t_{-}, is chosen as the α percentile of the “0.5” statistic whereas the positive, t_{+}, is set at the 100 $- \alpha$ percentile of the “99.5” one. This allows for the determination of the significant negative and positive (nonzero) components of \tilde{t}, and therefore of β. With $\alpha = 1$, we set to zero the nonsignificant components to obtain a new vector, $\beta_{0,5/1}$ (using the notation β_{H_0} to refer to the “0:100 $-$ s” statistic, whereas α refers to the percentile calculated from the “s:100 $-$ s” statistic). Let $p(t) = Tcdf(t)$ be the cumulative distribution function of the histogram of all elements of \tilde{t}. This is the probability of a certain test, t, to satisfy $H_0: t = 0$. The statistical significance of both the negative and positive values of $\beta_{0.5/1}$ is therefore $p_{\tilde{t}} = Tcdf(t_\tilde{t})$ and $p_+ = 1 - Tcdf(t_\tilde{t})$ respectively.

The values of the elements of $\beta_{0.5/1}$ can be arranged into the FA template image with the corresponding values for each voxel. In the resulting image, we can find clusters of significant coefficients. To reduce possible spurious results, we also set to zero the values of the coefficients of $\beta_{0.5/1}$ corresponding to those clusters with a volume below 150 mm3, as in Stufflebeam et al. (2008). Aided by the ICBM-DTI-B1 Atlas (Mori et al., 2008) and that presented in Hua et al. (2008), which we shall name simply Fiber Atlas (see Table 1), we also identify the major bundle of tracts containing significant clusters of $\beta_{0.5/1}$.

To assess whether the results of this paper hold with even more conservative criteria, we obtained also the $\beta_{0.1}$ estimator, by using the min–max (“0 $-$ 100”) statistics, which is proposed in Galán et al. (1994), and $\alpha = 1$. This time, the clusters below 100mm^3 were removed.

The regression method described above is also used in this work to assess the relation between both age and head size with FA.

Ridge regression between head size and FA

Our sample has a considerable variation across head sizes. According to the theoretical considerations in Appendix B, FA should not depend on the head size. However, this has to be proven experimentally. If head size constitutes a source of FA variance, it has to be taken into account to decrease the percentage of unexplained variance in the P_α–FA regression model.

We investigated the possible relation between FA and the different size measures defined in this paper as well as the radius of the equivalent neocortical sphere \sqrt{s}. For this, we substituted α for the desired measure in the Ridge regression model described in this subsection. We also used the logarithms of the size measures to account for different possible forms of the FA-size relationship.

Results and discussion

No significant correlation was found between age and P_α in our sample ($p > 0.05$). This is in agreement with Aurlien et al. (2004). Moreover, the coefficients of the regression between age and FA became statistically nonsignificant ($p > 0.05$) beyond a few iterations of the bootstrapping procedure. In fact, for the range of ages of our sample, very slight correlation has been found between age and FA in some voxels (Moseley, 2002b; Salat et al., 2005; Sullivan and Pfefferbaum, 2006). Therefore we will discard the effect of age on our data sets for the posterior analyses.

Relation between the alpha frequency and the head size measures

Fig. 1 shows a plot of the neocortical surface area (NSA) versus each head size measure and their corresponding correlations. The highest correlation is with the anterior–posterior distance (the first measure, i.e. the nasion to inion distance). Thus, this is the best representative of NSA, instead of the fourth head size measure, which was used in Nunez et al. (1978), namely the cubic root of the product of the anterior–posterior
distance, the preauricular distance and the cephalic perimeter. All correlations were highly significant so the use of a head size measure as an approximate of NSA was appropriate in Nunez et al. (1978).

Fig. 2a shows a plot of the alpha frequency (Pα) versus the nasion to inion distance. Contrary to Nunez et al. (1978), although still negative, the Pearson correlation ($r = -0.04$) is not significantly

Fig. 2. Scatter plot of (a) Pα vs. AP with their correlation and p-value and (b) log(NSA) vs. Pα with their regression slope and p-value.
different from zero \((p = 0.55)\). Fig. 2b shows the log(P\textsubscript{\textalpha}) versus log (NSA) plot. The slope of their regression is \(-0.0558\) with a confidence interval of \([-0.123, 0.005]\) which not only includes zero but also excludes the theoretical value predicted by Eq. (3), which is \(-1/2\).

Although the Eq. (3) was derived from simple linear approximations of the wave equation, for which the eigenmodes are the Spherical Harmonics (Nunez et al., 1995), the NSA-P\textalpha inverse relation would still be valid even for more complicated versions of the theory of cortical standing waves, taking into account the actual properties of the medium and geometry of the head (Nunez et al., 1995; Nunez and Srinivasan, 2006), which is highly nonlinear, inhomogeneous, dispersive and with complicated connectivity patterns. Thus, the prediction of the EEG cortical standing wave theory, at least in its present formulation, is not supported by our results.

There are additional conceptual difficulties with the existence of a significant NSA-P\textalpha relation, even for the case when Eq. (3) holds. As recognized by Nunez et al. (1995), the assumption of a constant value of the axonal conduction velocity (CV) for all head sizes may not be valid. Head size might conceivably be directly proportional to CV if conduction times are biological constants. In this case, \(v/R = \text{const}\) in Eq. (3) predicts a constant P\textalpha irrespective of head size. Proportionality between CV and head size is in fact supported by evidence in the literature: (1) the well known linear relation between CV and myelin sheath thickness (Goldman and Albus, 1968; Rushton, 1951; Sabah, 2000; Waxman, 1980), (2) the possible positive relation between myelin sheath thickness and fiber length (Chen et al., 1992; Hursh, 1939a), and finally (3) the reasonable direct proportionality between fiber length and head size, since larger heads imply connected regions to be one further from each other. Indeed, Hursh (1939b) experimentally proved that CV increases with developing cat’s head size increases, while Eyre et al. (1991) found a constancy of time delays for human development. Furthermore, Salami et al. (2003) suggested, based on striking experimental results in mice, that thalamocortical fiber length modulates myelination, and thus CV, to keep latency constant irrespective of how distant the connected structures are. The intra- and inter-species positive relation between CV and brain size, by modulation of axon thickness, is experimentally presented and discussed in Wang (2008) as a consequence of conduction optimization.

The relation between the alpha frequency and the fractional anisotropy image

We firstly performed the regression between head size and FA. The coefficients became statistically nonsignificant beyond the 1000 iteration of the bootstrapping procedure. This gives experimental evidence for the theoretical considerations in Appendix B: FA changes are due microstructural variations not related to head size. Based on this and the obtained results in the subsection above, we can discard a possible effect of head size on both FA and P\textalpha.

We then performed the regression analysis between the centered fractional anisotropy matrix \(\hat{A}\) and the centered alpha frequency vector \(\alpha\) (Eq. (6)). The significant nonzero estimates of the coefficients of the solution of this equation, under the smoothness condition (Eq. (7)), i.e. both \(\hat{\beta}_{0.5,1}\) and \(\hat{\beta}_{0,1}\) are overlaid on the template FA image (Fig. 3). These vectors correspond to the “0.5;99.5” and “0;100” pairs of statistics, respectively, with \(\alpha = 0.01\). The interpretation of this image

![Significant nonzero estimates of the coefficients of \(\hat{\beta}_{0.5,1}\). The values are overlaid on the template FA image. The names of the significant clusters of \(\hat{\beta}_{0.5,1}\) are outlined. IFO, Inferior Fronto-Occipital Fasciculus; ILF, Inferior Longitudinal Fasciculus; SCC, Splenium of the Corpus Callosum; PCR, Posterior Corona Radiata; SCR, Superior Corona Radiata.](image-url)
is straightforward. For voxels corresponding to negative (positive) components of $\beta_{0.5,1}$, FA is inversely (directly) proportional to P_α. Besides, the intercept is $\hat{\beta}_0 = 10.05\,\text{Hz}$, and represents the predicted P_α for the average FA, being closer to its mean value. Note that this corresponds to the commonly accepted typical value of P_α in a normal subject ($\approx 10\,\text{Hz}$).

The uncorrected p-values are $p \leq 0.0004$ for the “0.5;99.5” statistics and $p \leq 0.0002$ for the “0;100” statistics (see also Table 1). A value of $\alpha = 1$ corresponds to $p \leq 0.01$ for corrected multiple comparisons. These p-values are smaller than those in Stufflebeam et al. (2008) ($p \leq 0.001$ uncorrected and $p \leq 0.05$ corrected for multiple comparisons). Moreover, we used 10^4 iterations in the bootstrap procedure, which is higher than 10^4, used in Stufflebeam et al. (2008). We are considering that work as a reference, regarding the statistical procedure, since it is the only one reporting a relation between FA and an electrophysiological variable.

The FA in the voxels corresponding to the significant components of $\hat{\beta}_{0.5,1}$, only explains the 25% of the P_α variance for the linear multivariate model. This is probably due to other sources of variance that are not taken into account in the model. For example, according to Appendix A and B, a change in fiber length irrespective of head size leads to an inversely proportional change in time delays and therefore P_α, without changing FA. Additionally other parameters, associated to the role of grey matter local dynamics, such as dendritic rise and decay times, nonlinearity thresholds, synaptic strength and density, number of neurons and short and long term plasticity, could be other sources of variance. On the other hand, there are several neuroanatomical causes of variability of FA, which do not necessarily affect P_α. For example, according to the theoretical analysis in Appendix A and B, a change in bundle thickness irrespective of head size, keeping the number of fibers constant, leads to an inversely proportional change of fiber density and therefore FA, without change in connectivity and time delay and thus with no evident implications on the P_α.

We are currently exploring more detailed biophysical models relating white matter parameters, (such as those reflecting the importance of the connectivity pattern (Izhikevich and Edelman, 2008; Jirsa, 2009; Sotero et al., 2007; Valdes-Sosa et al, 2009)) and neural mass model parameters (grey matter) to observable electrophysiological phenomena, as well as implementing very large-scale network simulations (Valdes-Sosa et al., 2009) to test these and other issues.

White matter tracts with significant voxels

The ROIs containing voxels corresponding to significant nonzero coefficients of the RIDGE P_α-FA regression are summarized and commented in Table 1 (and also shown in Fig. 3). They have been divided into three main groups corresponding to: longitudinal ipsilateral association fibers, thalamocortical projection fibers (or either corticothalamic feedbacks) and commissural fibers. An intriguing hemispheric asymmetry appears in the ipsilateral longitudinal tracts, with positive FA-P_α relation in the left and negative in the right. A positive FA-P_α relation is found in the Posterior and Superior Corona Radiata, probably associated to interactions between thalamus and cortex. Another intriguing result is the presence of significantly negative coefficients in the Posterior and Anterior Radiations only in the right hemisphere. The posterior commissural fibers of the Corpus Callosum present the most significant clusters of FA-P_α relationship, being negative in the inferior part (Splenium), connecting the inferior occipital lobes and positive in the superior part (Isthmus and Tapetum), connecting the superior occipital lobes.

It is worth mentioning that the use of FA, as a neuroimage-based measure of WMAS, introduces two main disadvantages in the correct identification of ROIs where the WMAS might significantly determine

Table 1

Possible tracts and ROIs containing significant nonzero clusters of the multivariate regression estimators.

<table>
<thead>
<tr>
<th>Fiber bundles (longitudinal fascicles, projection or association fibers)</th>
<th>Statistical significance</th>
<th>Sign of the relation</th>
<th>ROIs with significant clusters according to the ICBM-DTI-81 (Mori et al., 2008) Atlas and the Fiber Atlas (Hua et al., 2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thalamocortical or corticothalamic fibers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior Corona Radiata and Superior Corona Radiata in both the right and left hemispheres</td>
<td>$p < 0.00004$</td>
<td>Positive</td>
<td>ICBM-DTI-81 Atlas: Posterior Corona Radiata Left (PCR-L), Superior Corona Radiata Left (SCR-L), Posterior Corona Radiata Right (PCR-R), Superior Corona Radiata Right (SCR-R). We suggest that this significance is associated to thalamocortical (TC) interactions since there is no significance in the Body of the Corpus Callosum or corticofugal pathways, both also passing trough CR.</td>
</tr>
<tr>
<td>Posterior Thalamic Radiation in the right hemisphere</td>
<td>$p < 0.0004$</td>
<td>Negative</td>
<td>ICBM-DTI-81 Atlas: Posterior Corona Radiata Right (PCR-R).</td>
</tr>
<tr>
<td>Anterior Thalamic Radiation in the right hemisphere</td>
<td>$p < 0.0004$</td>
<td>Negative</td>
<td>ICBM-DTI-81 Atlas: Anterior Corona Radiata Right (ACR-R).</td>
</tr>
<tr>
<td>Commissural fibers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inferior Splenium and Major Forceps*</td>
<td>$p < 0.000025$</td>
<td>Negative</td>
<td>ICBM-DTI-81 Atlas: Splenium of the Corpus Callosum (SCC). Fiber Atlas: This suggests that the significance is predominantly within the Major Forceps, i.e. fibers connecting the inferior Occipital Lobes.</td>
</tr>
<tr>
<td>Isthmus and Tapetum*</td>
<td>$p < 0.000028$</td>
<td>Positive</td>
<td>ICBM-DTI-81 Atlas: Superior part of the SCC, Tapetum Right (TAP-R) and Tapetum Left (TAP-L). This suggests a positive significance within the commissural fibers connecting the superior Occipital Lobes.</td>
</tr>
<tr>
<td>Association fibers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inferior Fronto-Occipital Fascicle (IFO) in the left hemisphere</td>
<td>$p < 0.00044$</td>
<td>Positive</td>
<td>ICBM-DTI-81 Atlas: Sagittal Stratum Left (SS-L), the External Capsule Left (EC-L) and the Inferior Fronto-Occipital Fasciculus Left (IFO-L), all of them containing the IFO. Fiber Atlas: This suggests that the significance is predominantly within the IFO and ILF bundles.</td>
</tr>
<tr>
<td>Inferior Longitudinal Fascicle (ILF) in the left hemisphere</td>
<td>$p < 0.00044$</td>
<td>Positive</td>
<td>ICBM-DTI-81 Atlas: SS-L, which contains the ILF, Fiber Atlas: This suggests that the significance is predominantly within the IFO and ILF bundles.</td>
</tr>
<tr>
<td>Inferior Fronto-Occipital Fascicle (IFO) in the right hemisphere</td>
<td>$p < 0.00045$</td>
<td>Negative</td>
<td>ICBM-DTI-81 Atlas: Sagittal Stratum Right (SS-R), the External Capsule Right (EC-R) and the Inferior Fronto-Occipital Fasciculus Right (IFO-R), all of them containing the IFO. Fiber Atlas: This suggests that the significance is predominantly within the IFO and ILF bundles.</td>
</tr>
<tr>
<td>Inferior Longitudinal Fascicle (ILF) in the right hemisphere</td>
<td>$p < 0.00045$</td>
<td>Negative</td>
<td>ICBM-DTI-81 Atlas: SS-R, which contains the ILF. Fiber Atlas: This suggests that the significance is predominantly within the IFO and ILF bundles.</td>
</tr>
</tbody>
</table>

*Tracts with the highest significance.
P(A) (1) the major presence of multiple fiber profiles, which could explain why significant clusters are not spread to parts of the tracts that are included in the mask; and (2) the masking condition, which could eliminate parts of or entire tracts. We believe, however, that masked FA is still an acceptable measure of WMAS, and is also easy to acquire with standard MRI protocols. Indeed FA-based white matter structural features have been successfully related to several variables in the literature, such as age (Camara et al., 2007; Moseley, 2002a; Pfefferbaum et al., 2000; Salat et al., 2005; Sullivan and Pfefferbaum, 2006), gender (Hsu et al., 2008; Szeszko et al., 2003), brain development (Ashiari et al., 2007; Courchesne et al., 2000; De Bellis et al., 2001; Giorgio et al., 2008; Schneiderman et al., 2007), behavioral variables (Deutsch et al., 2005) or reaction times (Madden et al., 2004; Stufflebeam et al., 2008). The work in Stufflebeam et al. (2008) demonstrates that FA correlates, in task-related anatomical regions, to electrophysiological events, as measured with MEG. As in this paper, these works usually apply a masking condition to the FA values.

Interpretation of the results

The significant relations between $P(A)$ and FA could be interpreted in the light of current theories of the genesis of the EEG, presented early in this paper, related to the possible effect of connectivity and time delay.

As mentioned before, FA is reflecting fiber density, myelination or a contribution of both. In particular, the results in Mädler et al. (2008), based on the voxel-wise regression between FA and Myelin Water Fraction (MWF), support the use of FA as a correlate of myelin in the Corona Radiata and Posterior White Matter (Splenium and Major Forceps). Therefore, our FA-$P(A)$ relation might be reflecting, in these ROIs, the effect of myelination on $P(A)$, provided that the former determines the time delay of communication of the cortical areas connected by these tracts. It is believed that the alpha rhythms arise from highly synchronous cortical activity driven by the thalamus (Steriade et al., 1990). The positive feedback from cortex to thalamus forms a thalamo-cortico-thalamic closed loop. According to the simulations in Roberts and Robinson (2008) and Robinson et al. (2001c), $P(A)$ is most sensitive, and inversely proportional, to the period of this loop (twice the time delay between thalamic and cortex). Therefore, for the case of the Superior and Posterior Corona Radiata, the positive FA-$P(A)$ relation is expected provided that an increase in FA implies an increase of myelination. Note that these tracts mainly connect posterior cortices. This might be due to the following: (1) the highest alpha power is at occipital sites and/or (2) we are measuring the EEG at O1 and O2. To explain both cases, the posterior anatomical structure(s) have to be the most influential. Although the closed eyes alpha is a global phenomenon arising from the cross-talk between different spatial scales (Nunez et al., 2001), the contribution of different localized structures are probably weighted by their proximity to the electrodes. In Robinson et al. (2003b), the contribution of posterior cortico-thalamocortical circuitry to the occipital scalp EEG is theoretically tackled by introducing spatially nonuniform corticothalamic and thalamocortical time delays.

The most significant clusters of $P(A)$-FA relation are found in the occipito-occipital contralateral connections, precisely the circuitry connecting contralateral occipital cortices. This is coincidently the region where FA is more related with MWF in Mädler et al. (2008), giving further support to the possible role of myelin on $P(A)$. However, the modulation of fiber density in connectivity cannot be discarded (Soteri et al., 2007). As can be seen in Table 1, there is evident sign variability in the $P(A)$-FA relation among these contralateral connections. This might have several possible explanations. For example, we can consider that our measured $P(A)$ is the joint frequency of two neural masses in the “alpha regimen,” each located at either posterior side of the brain. The simulations of David and Friston (2003) demonstrate that the correlation between the joint frequency and the time delay mediating their communication changes sign for different value ranges of the latter. Provided that there is a large variability of fiber lengths and myelination in the contralateral connections of the Corpus Callosum, time delays can fall in very different values ranges. On the other hand, the dual inhibitory and excitatory role described for the Corpus Callosum, involved in brain function integration and lateralization, respectively (Bloom and Hynd, 2008), might offer an alternative explanation for this sign variability. Also, it might be a possible negative influence of fiber density on conduction velocity due to an ephaptic interaction between fibers within a bundle, provoking an increase in time delay for higher couplings (Reutskiy et al., 2003). The Splenium of the Corpus Callosum might be particularly sensitive to this phenomenon since it presents a high fiber density (Barazany et al., 2009).

Although difficult to explain, the hemispheric asymmetry of the relation in the inferior longitudinal ipsilateral tracts and the Anterior and Posterior Thalamic Radiations might be due to the inter-hemispheric asymmetry of white matter (Buchel et al., 2004).

Conclusions

No correlation was found in a combined EEG/MRI data set (Cuban Human Brain Mapping Project) between head size and the spectral position of the alpha peak ($P(A)$). This contrasts with the previous reports of Nunez et al. (1978) and Posthuma et al. (2001) where such a relation was found. Head size was considered by these authors to be proportional to the cortical surface area (NSA). However, the NSA is the actual variable that should best correlate with the EEG alpha rhythm according to a cortical standing wave theory of the EEG (Nunez et al., 1995), which predicts slightly damped traveling waves through the neocortex making the effect of boundaries on the dynamics of the alpha rhythm important. Our data allowed, for the first time, a direct validation of this theory by examining the relation between $P(A)$ and NSA due to the possibility for extracting the individual cortical surfaces. Even for this variable, there is no significant relation, as shown by the regression between the logarithms of both NSA and $P(A)$. It therefore seems that, at least in its present form, the cortical standing wave theory of EEG generation is not supported by our data.

However, in our analysis of current biophysical models (e.g. Robinson et al., 2001b; Wright and Liley, 1996), the combination of global and local models predicts more damped alpha waves thus boundary conditions make little effect on $P(A)$. Since large-scale interactions impinge the global character to the alpha rhythm, $P(A)$ should be more likely related to those white matter neuroanatomical determinants of connectivities and time delays. In fact, we found highly significant correlations between Diffusion Tensor Fractional Anisotropy (FA) and $P(A)$, with no effect of head size on FA. This relation is significant for the ipsilateral longitudinal tracts, being positive in the left and negative in the right hemisphere. It is positive in the Posterior and Superior Corona Radiata, probably associated to interactions between thalamus and cortex. However, it is the posterior commissural fibers of the Corpus Callosum that present the most significant relations, being negative in the inferior part (Splenium), connecting the inferior occipital lobes and positive in the superior part (Isthmus and Tapetum), connecting the superior occipital lobes.

The results reported demonstrate that the use of large combined EEG/MRI databases allows empirical falsification of biophysical models of electrophysiological phenomena. Work in progress will provide more detailed biophysical models as well as large-scale network simulations, based on individual neuroanatomical measurements, in order to explore the nature of the relation between white matter architecture and the EEG spectrum in individual subjects.
The connection of these microstructural parameters with the possible variables determining the alpha rhythm (connectivity and time delay) is straightforward. A rough estimate of connectivity is \(C = N \) whereas time delay is \(t = L / v \), where \(L \) is the fiber length and \(v \) is the conduction velocity, which is proportional to \(D \) (Goldman and Albus, 1968; Rushton, 1951; Sahab, 2000; Waxman, 1980). It is \(v = KD \), being \(k \) an arbitrary constant. The influence of \(f \) on \(v \) due to ephaptic interaction of the fibers is not taken into account in this analysis.

This suggests that \(F \) might be directly related to connectivity and inversely related to time delay.

Appendix B. A theoretical analysis of the effects of head size on both the fractional anisotropy and the frequency of the alpha rhythm

Let us follow the notation in Appendix A and assume that the linear dimensions of any brain structure, e.g. the axonal fibers, are directly proportional to head size (Wang, 2008) (which we shall denote by \(R \)) and \(N \) is unchanged for different \(R \) (which is reasonable according to the inverse proportionality of fiber density and the square root of brain volume; Braintenberg, 2001; Wang, 2008). Then \(D = kR, B = kR, L = kR, \) with \(k, k_2, k_3 \) being arbitrary constants. This leads to time delays and \(F \) values which are independent of \(R \), i.e. \(F = \Phi(f(kR_k, kR_2, kR_3)) = \text{cons} \) and \(t = L/kD = kR_2/kR_1 = \text{cons} \). This suggests that only those changes in the microstructural neuroanatomical parameter not linearly related to head size variations lead to variations in \(F \), time delay or connectivity.

References

