On Relationships Offering New Drill-across Possibilities

Alberto Abelló
U. Politècnica de Catalunya
C/ Manuel Girona 1-3
E-08034 Barcelona
aabello@lsi.upc.es

José Samos
U. de Granada
Avd. de Andalucia 38
E-18071 Granada
jsamos@ugr.es

Félix Saltor
U. Politècnica de Catalunya
C/ Manuel Girona 1-3
E-08034 Barcelona
saltor@lsi.upc.es

ABSTRACT
OLAP tools divide concepts based on whether they are used as analysis dimensions, or are the fact subject of analysis, which gives rise to star shape schemas. Operations are always provided to navigate inside such star schemas. However, the navigation among different stars is usually overlooked. This paper studies different kinds of Object-Oriented conceptual relationships (part of UML standard) between stars (namely Derivation, Generalization, Association, and Flow) that allow to drill across them.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

General Terms
Design

Keywords
Multidimensional design, UML, drill-across, semantics

1. INTRODUCTION
A Data Warehouse (DW) is, as it was defined in [8], a set of subject-oriented, integrated, historical, non-volatile data in support of the decision making process. Due to its historical and global nature, it contains lots of data that analysts find difficult to query. On-Line Analytical Processing (OLAP) tools are conceived to ease the navigation through the DW. The most important characteristic of OLAP is the multidimensional view it offers. This allows one to apply specific storage techniques in order to reduce response times. Thus, small DWs optimized for multidimensional access, i.e. Data Marts (DMs), are deployed. In this work we will forget storage and retrieval mechanisms to center our efforts in how conceptual multidimensional modeling helps users.

Multidimensionality conceives data as if they were placed in a hypercube (we will adopt the term Cube from here on) where cells contain the data subject of analysis, and the different analysis dimensions show points of view to see data from. These data are conceptualized as instances of a star shape schema like that shown in figure 1. The fact of interest is surrounded by its analysis dimensions, so that a point in each one of them identifies a specific fact. We are interested in the analysis of the fact ProductSale with regard to the Product which was sold, the Time when was sold, the Customer to whom was sold, the Clerk who sold it, the Promotion that affects it, and the Store where it was sold.

Figure 1: Star schema of product sales

Figure 2: Aggregation hierarchy in Time dimension

How different analysis data could be defined at different granularities was already pointed out by [18], a statistical model close to multidimensional concepts. Thus, some multidimensional models, like [12], [3], [6], [17], [20], or [15], decompose analysis dimensions into hierarchies of aggregation levels. In these models, roll-up or aggregation hierarchies might be defined, which show the different granularities or aggregation levels at which data can be found in each analysis dimension. For instance, if we consider the Time dimension in figure 2, it contains Day, Month, and Year aggregation levels, so that data available by day can be rolled up to month or year.

Multidimensional operations have also been defined over Cubes: Slice reduces the dimensionality of a Cube; Dice selects a set of data; Roll-up aggregates data along the hierarchy in an analysis dimension; Drill-down gives more detail in an analysis dimension, by descending along its aggregation hierarchy; and Drill-across travels from a Cube to another one. An in depth explanation of these operations is found...
in [5]. SQL syntax was already extended to support some multidimensional operations as can be seen in [9]. In this paper, we leave aside most of these operations to pay special attention to Drill-across.

Quite often, different data cubes in a business model are found closely related, and analysts want to jump from one to another. They are usually interested in generating several reports showing different sets of data organized from the same point of view, so that they are easily comparable. For instance, it could be interesting to analyze evolution of sales along Time and Product, and compare it with production in the same period of time, for the same product. Probably, that information will be stored in different Cubes, and users will need to drill across multidimensional schemas. The aim of this paper is to elaborate on the applicability of Drill-across by studying how a multidimensional schema could contain several, related star shape subschemas, even if the data cubes are physically stored in different DMs.

The structure of the paper is as follows: section 2 presents some work on relating different star schemas; section 3 shows our general approach to the problem; section 4 exemplifies the different kinds of relationships we found between Stars; section 5 contains a discussion about the relationships we found; finally, section 6 draws conclusions.

2. RELATED WORK

Lately, there has been a lot of work about OLAP tools. We can find literature devoted to specific storage techniques and access mechanisms, as well as to pure multidimensional modeling. Both areas benefit from the duality fact-dimension, and restrict their studies to isolated star shape schemas, i.e. how we can store/model one fact and its surrounding analysis dimensions. Nevertheless, some authors have already pointed out the importance of drilling across different data cubes, which means navigating through data in different star shape schemas. Unfortunately, the “Drill-across” operation, in these models, is limited to the case that some analysis dimensions are shared by the Cubes.

[10] proposes a logical model to implement “star schemas” on Relational databases. Each “star schema” contains a central “fact table” related by foreign keys to its corresponding “dimension tables”. To support “Drill-across”, Ralph Kimball contends that all constraints on dimension attributes must evaluate to exactly the same set of dimension instances in both schemas. This is clearly satisfied, if the respective Dimensions are exactly the same. However, he also explains how this matching can be satisfied, for instance, if the only difference between the Dimensions is their granularity, i.e. the finest detail level allowed.

A later work, [7], presents “multi-star” schemas obtained by normalization of “fact tables”, while [16] defines a “multidimensional object family” as multidimensional objects possibly with shared subdimensions (i.e. subsets of levels in the aggregation hierarchy of the analysis dimension). [13] goes a little further, and distinguishes three kinds of schemas with more than one Star, i.e. “constellation”, “galaxy”, and “star cluster”. A “constellation” schema consists of a set of star shape schemas with hierarchically linked ”fact tables”. A “galaxy” is a collection of star schemas with shared Dimensions. Finally, a “star cluster” is a set of star schemas sharing subdimensions. [5] defines “constellation”, as well. In this case, it is a set of star shape schemas sharing analysis dimensions. The shared analysis dimensions must be “conforming dimensions”, which means for this author that their values are consistent among the star schemas. Even though these models allow several star shape subschemas in a schema, they do not study relationships between them.

Some authors, like [20] and [19], show the usage of semantic relationships in multidimensional modeling. Nevertheless, none of them studies their usage on relating several star schemas. Specifically, Flow and Derivation have not even been considered.

3. MULTISTAR CONCEPTUAL SCHEMAS

Along this paper, we use a multidimensional extension of UML as presented in [2]. There, multidimensional elements are defined as follows:

- A Fact (formally defined in [1]) is a subject of analysis. It could contain different kinds of cells (we will call them Cells), which, in turn, could contain different Measures that we want to analyze. Each data cell is identified by a point in each of its analysis dimensions. These points may correspond to different granularities for every cell. For instance, in the introductory example of figure 1, ProductSale would contain different Cells, if some Measures were not available at Day granularity. Moreover, other Measures could not be interesting for every Customer, but only for CustomerProfiles. Thus, there would be different kinds of cells depending on whether Measures are available or meaningful for either Day or Month, Customer or CustomerProfile.

- A Dimension is a connected, directed graph representing a point of view on analyzing data. Every vertex in the graph corresponds to an aggregation Level, and an edge reflects that every instance at target Level decomposes into a collection of instances of source Level (i.e. edges reflect part-whole relationships between instances of Levels). Each Level corresponds to a granularity in the Dimension, and has attributes that allow us to select some of its instances. By selecting points in every analysis dimension, we choose the data cells of interest in our analysis. Thus, Dimensions contain those data that identify Cells instances.

- A Star is a Fact and the set of Dimensions used in its analysis.

- A Cube is the representation of a set of Cell instances in the n-dimensional space defined by one Level for each Dimension.

Users could only be interested in a given Fact. However, sometimes, they will desire to relate data in different Stars, and OLAP tools should also allow it. We can understand Drill-across as re-using the same condition over the Dimensions on querying different Facts. This means that we select a subspace in a given Cube, and want to view the corresponding space for a different Fact. At a first glance, this can be allowed, if both Cubes share some Dimensions. However, we argue that it is also possible, if Dimensions are not exactly the same. If this is the case, semantic relationships should exist between the Dimensions and/or Facts in the Stars.

Actually, the analysis dimensions used on drilling across need not exactly coincide in both Cubes. We contend that
they should just be defined on a related semantic domain (i.e. domains reflecting the conceptualization of values in the mind of the designer). Thus, Drill-across between different Cubes is performed thanks to semantic relationships between Stars. Two Stars are related whether either their Facts, or their Dimensions are related. We will distinguish four kinds of relationships in this paper, i.e. Derivation, Generalization, Association, and Flow (in UML terminology, as defined in [14]). Maybe the less known of this Relationships is Flow, which relates two versions of an object, or an object and a copy of it.

These Relationships offer new analysis possibilities to the users. They free them from being chained to one subject of analysis, allowing to navigate between Stars, not only when there exist shared Dimensions, but also in other cases.

4. INTER-STEMAR RELATIONSHIPS

We are interested in providing multidimensional schemas with more than one Fact. However, having several Facts in the same schema is absolutely useless, if it contains isolated Stars. Facts need to be related in some way to allow Drill-across. Some models, and most OLAP tools allow it, if Stars share Dimensions. However, purely sharing Dimensions does not seem enough at conceptual level, where we could find much more meaningful semantic relationships among data.

In this section, we are going to detail the semantic relationships between different Stars, that allow navigation through them. Section 4.1 shows possible relationships between two Dimensions; section 4.2 exemplifies relationships between two Facts; and section 4.3 explains how a Fact can be related to a Dimension in another Star, or vice versa.

4.1 Dimension-Dimension

[11], [5], and some multidimensional tools, stress the importance of having “conforming dimensions” to drill across. Thus, the schemas must share analysis dimensions so that their instances exactly coincide. This unnecessarily restricts the usage of Drill-across. Actually, it is just needed that the selected instances of the Dimensions of the origin Star determine instances in the Dimensions of the destination Star. Thus, domains used in both Dimensions should be related in some way, but Dimensions could still be different. This section shows four kinds of O-O relationships between Dimensions that allow Drill-across.

4.1.1 Derivation

Firstly, we could find that the same concept has different names depending on the subject. Therefore, the same Dimension, with exactly the same instances, will need a different name depending on the context where we are going to use it. Moreover, this Dimension could not play the same role for different Facts. Product, may be considered RawMaterial in a different context. It is not enough to say they are “synonyms” (like in [10]), because they could even have different attributes of interest to the users. For example, keeping or studying the benefit of raw material can be meaningless. Moreover, we could find that elements in a Dimension are different from those in another one, even though they represent the same concepts. For instance, a given subject implies that Red, Blue, and Yellow are the instances in Color domain; while in a different case, we need to distinguish different kinds of Blue, like Dark Blue or Light Blue. It is also possible to find differences in how concepts are codified (for example, letters or numbers).

Sometimes, some Dimension instances in a Star are only considered grouped in another Star (only summarized data at some level are considered), because of lack of interest in the individuals, confidentiality issues, or space problems to keep information at maximum detail. In [10], a Dimension whose finer granularity is not of interest is called “Demo
graphic minidimension”. Thus, we could use the same Dimension in two star schemas at different aggregation levels. For instance, one of them could keep data by hour, while the other does it by day. Clearly, all we have to do to drill across them is roll data at Hour up to Day. In this way, both Cells will be defined over the same kind of dimensional instances. Hence, they will be comparable.

![Figure 3: Example of containment of Dimension](image)

If two Dimensions coincide in one of their aggregation levels, both can be conceived again as derived from a common, more general Dimension which contains their hierarchies. Figure 3 shows how the Time Dimension, previously presented in figure 2, is included in a more general Dimension CorporateTime. Time does neither provide Hour nor Week Levels, because they are not of interest for the ProductSales Star where it is used.

Considering Derivability would allow one to reflect that two Dimensions come from a common concept, in spite of the fact that they look different. Thus, two Dimensions can be related by Derivation, and users can drill across from a Fact to another one through it. The Dimension is not shared, because it appears different in each Star. However, by means of this kind of relationship, we can offer users the desired view while they are still able to drill across.

4.1.2 Generalization

We can also find relationships between analysis dimensions along Generalization/Specialization. Dimensions of different Stars could be related by Generalization, so that Drill-across would be allowed. For instance, Customer and Clerk are both specialization of People. Therefore, we could travel from a Star with Customer Dimension to another one with Clerk Dimension, if their sets of instances are not disjoint. Moreover, they will have in common all attributes in the superclass, and maybe some aggregation levels.

As outlined in [5], using superclasses and subclasses in star schemas, we gain better understanding. Figure 4 exemplifies how we can specialize People Dimension at SellRole Level (solid arrow) to get Clerk Dimension, which contains a Level (i.e. Clerk) with instances corresponding to people acting as clerks, and another one with only one instance representing the set of all clerks (i.e. All). Dashed arrows show that a Level is specialization of another one. By a similar specialization of People, we obtain Customer Dimension.
Sharing *Dimensions* would not be enough in this case, neither. *Clerk* has more attributes and much less instances than *Customer*. Therefore, sharing *People Dimension* in both *Stars* would generate lots of undesirable null values. Nevertheless, we can still drill across, if instances of *Clerk* can also be instances of *Customer*.

4.1.3 Association

It is possible to have associated analysis dimensions, as well. The domain of a *Dimension* could be used as an attribute domain in another *Dimension*. Selected instances in a *Dimension* would allow to identify instances in the other, so that it is possible to drill across the corresponding *Facts*. Clerks used to be assigned to stores. Thus, *Clerk* would be associated with *Store Dimension* (maybe multivalued). This is not what is called “outrigger table” in [10]. That is at a *Logical* level, and refers to normalization. In this case, it is not normalizing at all, but showing that two different analysis dimensions are semantically related.

We can also find stronger associations between analysis dimensions, if we join more than one to give rise to another. This is not a simple association, because if we remove one of the aggregated *Dimensions*, we loose the aggregate one. For example, *Colors* could be used to define *ColoredProduct*. Dissociating *Colors* from *ColoredProduct* means we do not have colored products any more.

Figure 5: Example of correlated *Dimensions*

If *ColoredProduct* would be represented as two separate *Dimensions* (i.e. *Color* and *Product*), all combinations of color-product would be allowed. Sometimes this could be the case, but other times, products are only available for a reduced set of colors (if both analysis dimensions are correlated, as exemplified in figure 5). Therefore, it is much better for the designer to reduce the analysis space only to those meaningful values by modeling all of them in just one *Dimension*. In the figure, we have six meaningless values out of nine possibilities. Thus, it should be better to model it as only one *Dimension* where all three values are meaningful.

Whether a case like this is modeled as two independent *Dimensions* (i.e. *Color* and *Product*), or only one (i.e. *ColoredProduct*), will depend on the distribution of the cells related to the *Dimension* instances, and the user point of view. Thus, we can find *Color* and *Product* in a *Star*, and *ColoredProduct* in another one, and a user should be able to navigate from one to another through *Aggregation* relationships (as shown in figure 6). It is important to notice that the elements at homonym levels in different *Dimensions*, in this case, do not coincide. For instance, *Color Level* in *Colors Dimension* contains elements representing colors. Nevertheless, *Color level* in *ColoredProduct Dimension* contains elements representing sets of colored products grouped by color.

Again, this offers navigation possibilities that just sharing *Dimensions* does not. If a psychological study included *Colors*, *ColoredProduct* could not be shared with the *Star* corresponding to that study, because it was about colors, and did not consider products at all. However, analysts will probably be interested in navigating from one *Star* to the other. Thus, navigation should be allowed through the *Association* between *Colors* and *ColoredProduct*.

4.1.4 Flow

Because of the long periods of interest in analysis tasks and how fast business change nowadays, it is expected that analysis dimensions in a multidimensional schema evolve. It is not acceptable to throw away old *Dimensions*. Old data would still be stored following the old schema, while we are currently using a new one.

As our business grows, it could become international, so that a new *Level Country* will appear in the *Store Dimension*. *Attributes* could also appear or disappear in any *Dimension*, as the information systems and the enterprise evolve. We should not study data with regard to those attributes, because their values at the time data was collected are unknown. Therefore, old *Dimensions* should be kept as they were, but related to the corresponding new *Dimensions* by *Flow* relationships. This will show to the user which dimensional data can be used at each analysis depending on the period of time in which s/he is interested. As studied in [4], functions can be offered to the users to estimate values of dimension attributes in the periods of time they are unknown. Anyway, the schema should reflect the difference to let users know whether the values are real or estimated.
Sharing is not possible in this case. It would mean studying old data with regard to new attributes or vice versa. In any case, it could generate absolutely wrong results.

4.2 Fact-Fact

Points in the multidimensional space are always identified by its analysis dimensions. However, using those Dimensions is not always necessary to select a set of points. Having functions from points in a space to points in another one is another possibility. Therefore, if we identify a set of cells in a Fact, we will be able to select the corresponding set in a related Fact. This means that we can also use Relationships between Facts to navigate.

4.2.1 Derivation

Firstly, two Facts can be related by Derivation, i.e. Measures in one Fact are obtained by applying some operation to Measures in other Facts. For instance, on analyzing efficiency of employees, some Measures could be obtained by operating the profits of some products sold (the best sales, sales involving relevant products, etc.). Probably, most of the Dimensions will be shared by both Facts (i.e. EmployeeEfficiency, and ProductSale). However, we could also travel between them due to the fact that data in some cells are obtained by processing other cells. We could navigate from data in EmployeeEfficiency to the data in ProductSales used in their calculation. This does not correspond to Drill-down, because both Facts represent different subjects, and selection of Cell instances is not performed by means of aggregation hierarchies.

4.2.2 Association

As between Dimensions, we can also find Associations between Facts. A Fact in a Star can be associated with Facts in other Stars. For instance, a Deal is composed by several individual ProductSale. Notice that Measures of Deal are not necessarily obtained from those of ProductSale (for instance, discount in the deal). Thus, if we are studying a set of sales, it can be interesting to see data corresponding to deals in which they were done. Coincidences or differences in Dimensions do not matter. We should be able to travel from a Star to another one just because there exists an Association between the Facts.

4.2.3 Generalization

Some Facts do not have exactly the same Measures nor associated Dimensions, but still are closely related. They can be related by Generalization. For instance, ProductSale can be seen as a specialization of Contract. Since a sale is a kind of contract, it will have its specific Measures and Dimensions. In turn, as it is shown in figure 7, ProductSale could be specialized into CashSale or CreditSale depending on how it is paid. We will have different information for each of the specializations (for example, number of credit card). Analysis dimensions are inherited from the superclass, but others could be added, like Bank. Users should be allowed to navigate through different Facts just because their Cells are specialization of one another. Usually, they will also share most analysis dimensions, but sharing them is not needed in this case to drill across, since Fact domains are subset of one another.

4.2.4 Flow

New Measures could appear, possibly replacing others; precision of the measurements could also be improved or even worsened; new interesting analysis dimensions could be found (besides or instead of the already existing ones); and so on. Even if the subject stays, how information is captured can evolve. Data sources, measurement instruments, or calculation algorithms are probably going to change, and these changes should be reflected in our model by means of Flow relationships between Facts. All this is not reflected by just relating our Facts to Time Dimension, since we actually have different Cell structures. One day we start recording discount checks in ProductSale, hence we need to keep both incomes (i.e. cash, and discount checks). From this day on, we should have different Stars containing data about the same kind of facts before and after the acceptance of the checks, because the Cell structure changed. An analyst would be able to relate those data by means of Flow relationships between Facts. At query time, Flow relationships would allow to provide conversion functions between different versions of data (like in [4]), or just show a warning to the analysts. However, implementation issues are out of the scope of this paper.

None of all these O-O semantic relationships can be reflected by sharing Dimensions. Instead, they show correspondences among factual information, which offers new navigation possibilities. We can go from a Star to another, independently of Dimensions, if cells in the first determine cells in the other.

4.3 Fact-Dimension

The last possibility to navigate through different Stars is that the Fact in one of them is used as Dimension in the other, or vice versa. This should not be properly regarded as Drill-across, since we do not want to analyze data in two Facts from the same point of view. Rather, we are using results of querying a Fact to query a different one. For instance, some people could be interested in the analysis of promotions. Thus, the promotions selected by studying Promotion Fact, can be used as Dimension to study ProductSale. A Fact is not conceived to be used as Dimension, so that it will not exactly coincide in both schemas.

4.3.1 Derivation

A Dimension can be obtained by deriving it from a Fact. The name can be changed, some attributes added or removed, others recalculated, some instances selected, etc. in order to adapt it to its new usage. Facts use to have much more instances than Dimensions. Nevertheless, by grouping them, we could obtain coarser aggregation levels of interest. Measures use to be numerical, while attributes in Dimen-

![Figure 7: Example of Generalization between Facts](image-url)
sions use to be descriptive. Therefore, Derivation (exemplified in figure 8) will probably imply a change in the kind of attributes. Promotion Fact could have a numerical attribute benefits, while Promotion Dimension would have an enumerated, derived attribute success instead. Thus, users can drill across through the relationship between a Fact and a Dimension even if they do not coincide, but there exists a Derivation between them.

4.3.2 Association

Instances of a Fact could also be associated with those of a Dimension, or vice versa. For instance, some products can be affected by promotions. Thus, Product Dimension could have an attribute defined on domain Promotion Fact (i.e. association arrow in figure 8). Notice the difference between that and relating the Promotion to another Fact (i.e. deriving a Dimension and using it to analyze ProductSale). The latter would mean that a sale was performed during a promotion, while the former would show all promotions that have been applied to a kind of product.

5. DISCUSSION

Drill-across implies the usage of the analysis framework that we are using for a given Fact, on analyzing a different one. That is to study different data at the same granularity, and constrained by the same conditions over the analysis dimensions. Other authors restrict that to Cubes that share Dimensions. However, we have seen in previous section, that there are four relationships between Dimensions that would also allow it, because Dimension instances in one Star determine Dimension instances in the other. If two Dimensions are related by Generalization, or Flow, they will be different. However, there will be a one-to-one relationship between their instances so that Drill-across can be performed. If the Dimensions are related by Derivation, or Association, instances do not coincide, but an instance of a Dimension determines instances in the other.

Actually, it is not necessary the Dimensions in the destination Fact to be related to those in the origin. It could be that selected cells in the latter determine a set of cells in the former. This is the case if both Facts are related in some way. Thus, we just need to substitute Measures of one cell, by those of its counterpart in the other Fact. In this way, we are also able to study data in two different Cubes whose Facts are related.

Relationships between a Fact and a Dimension do not allow proper Drill-across. However, if selected cells during the analysis of a Fact determine a set of points in a Dimension, these can be used in the analysis of another Fact. Notice that neither Generalization, nor Flow relationships between a Fact and a Dimension were considered. We think that a temporal transformation can convert neither Facts into Dimensions, nor vice versa. Moreover, they represent different kinds of concepts so that they cannot be related by Generalization, neither. If we want to obtain one from the other, we must derive it. Nevertheless, factual information cannot be derived from dimensional data. That is because Facts represent measurements, while Dimensions show given information.

<table>
<thead>
<tr>
<th>Relationships</th>
<th>D-D</th>
<th>F-F</th>
<th>I-D</th>
<th>D-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Generalization</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Association</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Flow</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

Table 1: Summary table

Table 1 sums up the kinds of Relationships between different Stars that we found of interest for drill-across.

6. CONCLUSIONS

In this paper we have described relationships we found between star schemas for OLAP tools. We explained how different Stars can be related by Derivation, Generalization, Association, or even Flow relationships (in UML terminology). We have shown how those relationships, between analysis dimensions and the different kinds of cells, could be used to navigate or Drill-across between Stars, even when Dimensions are not shared.

The implementation of the operations will depend on the kind of DBMS we are using. Currently, we are working on the implementation of a UML design tool, which will offer the translation of a multidimensional schema to a relational system. The next step will be to built a graphic interface to query such schema.

Acknowledgements

This work has been partially supported by the Spanish Research Program PRONTIC under projects TIC2000-1723-C02-01, and TIC2000-1723-C02-02.

7. REFERENCES

