Some integral inequalities for functions with \((n - 1)\)st derivatives of bounded variation

Aimin Xu*, Dezao Cui

Department of Mathematics, Zhejiang University, Hangzhou 310027, PR China

Received 18 November 2005; received in revised form 6 April 2006; accepted 8 May 2006

Abstract

In this paper, we generalize Cerone’s results, and a unified treatment of error estimates for a general inequality satisfying \(f^{(n-1)}\) being of bounded variation is presented. We derive the estimates for the remainder terms of the mid-point, trapezoid, and Simpson formulas. All constants of the errors are sharp. Applications in numerical integration are also given.

\(\text{c} \quad 2007 \text{ Elsevier Ltd. All rights reserved.}

Keywords: Bounded variation; Appell type polynomial; Bernoulli polynomial; Ostrowski’s inequality; Trapezoidal inequality

1. Introduction

In 2000, Cerone, Dragomir and Pearce [1] proved the following trapezoid type inequalities.

Theorem 1. Let \(f : [a, b] \rightarrow \mathbb{R}\) be a function of bounded variation. Then we have the inequality

\[
\left| \int_a^b f(t) \, dt - \left[(x - a)f(a) + (b - x)f(b) \right] \right| \leq \left[\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right] \int_a^b (f) \tag{1.1}
\]

for all \(x \in [a, b]\), where \(\int_a^b (f)\) denotes the total variation of \(f\) on the interval \([a, b]\).

The inequality (1.1) is a perturbed generalization of the trapezoidal inequality for mapping of bounded variation. Using (1.1), Cerone et al. further obtained the following error estimate for the composite quadrature rule.

Theorem 2. Let \(f\) be defined as in Theorem 1; then we have

\[
\int_a^b f(t) \, dt = \sum_{i=0}^{n-1} \left((\xi_i - x_i) f(x_i) + (x_{i+1} - \xi_i) f(x_{i+1}) \right) + R(f). \tag{1.2}
\]
The remainder term $R(f)$ satisfies the estimate

$$|R(f)| \leq \left[\frac{v(l)}{2} + \max_{i=0,1,\ldots,n-1} \left| \xi_i - \frac{x_i + x_{i+1}}{2} \right| \right] \int_a^b f(t) \, dt \leq v(l) \int_a^b f(t) \, dt,$$

(1.3)

where $v(l) := \max\{|l_i| : i = 0, 1, \ldots, n - 1\}$, $l_i = x_{i+1} - x_i$ and $\xi_i \in [x_i, x_{i+1}]$.

In this paper, following the main ideas of Vinogradov [2], we give a unified treatment of error estimates for a general quadrature rule satisfying $f^{(n-1)}$ being of bounded variation. Using the perturbed inequality, we obtain the error bounds for the mid-point, trapezoid and Simpson quadrature formulas. We also generalize Euler trapezoid formulas [3].

2. The main results

A sequence of polynomials $\{u_k\}^\infty_0$ is called a sequence of Appell type polynomials if $u_0 = 1, u'_k = u_{k-1} (k \in \mathbb{Z}_+)$.

Lemma 1. Let $f : [a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ is a function of bounded variation on $[a, b]$ for some $n \geq 1$, $n \in \mathbb{Z}_+$. Moreover, if $n = 1$, $f(t)$ is continuous at $x, x \in [a, b]$. Suppose that $\{r_k\}, \{s_k\}$ are sequences of Appell type polynomials on $[a, x]$ and $[u_k], \{v_k\}$ are sequences of Appell type polynomials on (x, b). Let $m \in \mathbb{N}, m \leq n,$

$$k_n(x, t) = \begin{cases} p_n(t) = r_{n-m}(t)s_m(t), & t \in [a, x); \\ q_n(t) = u_{n-m}(t)v_m(t), & t \in (x, b]. \end{cases}$$

Then we have the following equality:

$$\int_a^b f(t) \, dt - \frac{(-1)^n}{C_n^m} \int_a^b k_n(x, t) \, dt f^{(n-1)}(t) = \begin{cases} \frac{1}{C_n^m} \sum_{k=0}^{n-1} (-1)^{n-k-1} \left[q_n^{(k)}(b) f^{(n-1-k)}(b) \\ - q_n^{(k)}(a) f^{(n-1-k)}(a) \right], & x = a; \\ \frac{1}{C_n^m} \sum_{k=0}^{n-1} (-1)^{n-k-1} \left[(p_n^{(k)}(x) - q_n^{(k)}(x)) f^{(n-1-k)}(x) \\ + q_n^{(k)}(b) f^{(n-1-k)}(b) - p_n^{(k)}(a) f^{(n-1-k)}(a) \right], & x \in (a, b); \\ \frac{1}{C_n^m} \sum_{k=0}^{n-1} (-1)^{n-k-1} \left[p_n^{(k)}(b) f^{(n-1-k)}(b) \\ - p_n^{(k)}(a) f^{(n-1-k)}(a) \right], & x = b, \end{cases}$$

where $C_n^m = \frac{n!}{m!(n-m)!}$.

Proof. Integrating by parts in the sense of Riemann and Stieltjes, we can easily obtain Lemma 1. □

Remark 1. Actually, $f^{(n-1)}$ is continuous if it is of bounded variation when $n > 1$. If $k_1(x, t)$ is continuous at x, we can weaken the conditions of Lemma 1. In this case, it is not necessary that $f(t)$ is continuous at x.

Theorem 3. Let f be defined as in Lemma 1. Suppose that $m \in \mathbb{N}, n \in \mathbb{Z}_+, m \leq n$ and $\lambda \in [0, 1]$. Then we have

$$\int_a^b f(t) \, dt - \frac{1}{C_n^m} \sum_{j=0}^{n-1} \left[\sum_{i=L}^{U} \sum_{j=0}^{n-m-1} C_j^i C_{n-j}^{n-m-i} (1 - \lambda)^{m-j+i} \right] \frac{(b - x)^{n-j} - (a - x)^{n-j}}{(n-j)!} f^{(n-1-j)}(x)$$

$$- \frac{1}{C_n^m} \sum_{j=n-m}^{n-1} C_j^{n-m} \lambda^{-j} (x - a)^{n-j} f^{(n-1-j)}(a) - (x - b)^{n-j} f^{(n-1-j)}(b) \right|$$
\[
\sup_{0 < \tau < 1} \frac{\tau^{n-m}|\tau - \lambda|^m}{n!} \int_a^b (f^{(n-1)}) \max\{|x - a|^n, |x - b|^n\},
\]

(2.1)

where \(U = \min\{j, n - m\} \), \(L = \max\{0, j - m\} \).

Proof. Let

\[
k_n(x, t) = \begin{cases} p_n(t) = \frac{(t - a)^{n-m}(t - \alpha)^m}{m!(n - m)!}, & t \in [a, x); \\ q_n(t) = \frac{(t - b)^{n-m}(t - \beta)^m}{m!(n - m)!}, & t \in (x, b], \end{cases}
\]

and \(\alpha = \lambda x + (1 - \lambda)a \), \(\beta = \lambda x + (1 - \lambda)b \).

Thus, it follows from a straightforward calculation that

\[
p_n^{(j)}(x+) = \sum_{i=L}^U C_j^i C_{n-j}^{m-i} \frac{(1 - \lambda)^{m-j+i}(x - a)^{n-j}}{(n - j)!},
\]

\[
q_n^{(j)}(x-) = \sum_{i=L}^U C_j^i C_{n-j}^{m-i} \frac{(1 - \lambda)^{m-j+i}(x - b)^{n-j}}{(n - j)!}.
\]

On the other hand, we have

\[
\left| \int_a^b k_n(x, t) \, d f^{(n-1)}(t) \right| = \left| \int_a^x \frac{(t - a)^{n-m}(t - \alpha)^m}{m!(n - m)!} \, d f^{(n-1)}(t) + \int_x^b \frac{(t - b)^{n-m}(t - \beta)^m}{m!(n - m)!} \, d f^{(n-1)}(t) \right|
\]

\[
\leq \sup_{a < t < x} \frac{|(t - a)^{n-m}(t - \alpha)^m|}{m!(n - m)!} \int_a^x |d f^{(n-1)}(t)|
\]

\[
+ \frac{|(t - b)^{n-m}(t - \beta)^m|}{m!(n - m)!} \int_x^b |d f^{(n-1)}(t)|
\]

\[
= \sup_{0 < \tau < 1} \frac{\tau^{n-m}|\tau - \lambda|^m}{m!(n - m)!} \left[\int_a^x (f^{(n-1)})|x - a|^n + \int_x^b (f^{(n-1)})|x - b|^n \right]
\]

\[
\leq \sup_{0 < \tau < 1} \frac{\tau^{n-m}|\tau - \lambda|^m}{(n - m)!} \int_a^b (f^{(n-1)}) \max\{|x - a|^n, |x - b|^n\}.
\]

According to Lemma 1, we derive (2.1) and the proof is completed. \(\square \)

Remark 2. Theorem 3 contains many classical formulas. The advantage of this theorem is that we have three parameters \(\lambda, x \) and \(m \) to choose.

Corollary 1. Let \(f \) be defined as in Theorem 3. Suppose that \(n \in \mathbb{Z}_+, \lambda \in [0, 1] \). Then we have

\[
\left| \int_a^b f(t) \, dt - \frac{1}{n} \left\{ \lambda(x - a) f(a) + \lambda(b - x) f(b) + \sum_{j=0}^{n-1} \left(\sum_{i=\max\{0,j-1\}}^{i} C_j^i C_{n-j}^{l-i} (1 - \lambda)^{i+1-j} \right) \right\} \frac{(b - x)^{n-j} - (a - x)^{n-j}}{(n - j)!} f^{(n-1)}(x) \right| \leq C_n \int_a^b (f^{(n-1)}) \max\{|x - a|^n, |x - b|^n\}
\]

(2.2)

where

\[
C_n = \begin{cases} \max\{\lambda, 1 - \lambda\}, & n = 1; \\ \frac{1}{n!} \max\left\{ \frac{n-1}{n^n} \lambda^n, 1 - \lambda \right\}, & n > 1. \end{cases}
\]
Proof. Let $g(\tau) = \tau^{n-1}(\tau - \lambda)$, $\tau \in [0, 1]$. Hence
\[
g'(\tau) = \begin{cases}
1, & n = 1; \\
n^{n-2}(n\tau - \lambda), & n > 1.
\end{cases}
\]
Clearly, we can obtain the following inequality:
\[
|g(\tau)| \leq \max \{ |g(0)|, |g(1)| \} = \max \{ n\lambda, 1 - \lambda \},
\]
\[
\quad n = 1; \quad \quad \max \left\{ \frac{1}{n^n} \left(\frac{\lambda}{n} \right)^n, |g(1)| \right\} = \max \left\{ \frac{n-1}{n^{n-1}}, 1 - \lambda \right\}, \quad n > 1.
\]
Therefore, setting $m = 1$ in Theorem 3 we have (2.2) and the proof is completed. \hfill \Box

Corollary 2. Let f be defined as in Theorem 3. Suppose that $n \in \mathbb{Z}^+$ and $0^0 = 1$. Then we have
\[
\int_a^b f(t) \, dt = - \frac{1}{n} \sum_{j=1}^{n-1} \frac{n - j}{j!} \left(\lambda \int_a^1 f^{(j-1)}(t) \, dt \right) + \frac{1}{n} \sum_{j=0}^{n-1} \frac{\lambda^{n-j}}{(n-j)!} \left(\int_a^b f^{(n-j)}(t) \, dt \right)
\]
\[
\leq \frac{(n-1)^{n-1}}{n^{n-1}n!} \int_a^b (f^{(n-1)}) \max \{|x-a|^n, |x-b|^n\}.
\]
(2.3)

Proof. We consider the case $m = n - 1, \alpha = \beta = x$ in Theorem 3. In this case, we can get $\lambda = 1$. Let $g(\tau) = \tau^{n-1}(\tau - 1)$, $\tau \in [0, 1]$. Hence
\[
g'(\tau) = \begin{cases}
1, & n = 1; \\
(\tau-1)^{n-2}(n\tau - 1), & n > 1.
\end{cases}
\]
We can obtain the following inequality:
\[
|g(\tau)| \leq \max \{ 1, g \left(\frac{1}{n} \right) \} = \frac{(n-1)^{n-1}}{n^n}, \quad n = 1; \quad \quad \frac{1}{n^n} \left(\frac{\lambda}{n} \right)^n \leq \frac{1}{n!} \max \{ \lambda^n, (1-\lambda)^n \} \int_a^b (f^{(n-1)}) \max \{|x-a|^n, |x-b|^n\}.
\]
(2.4)

Proof. We take $m = n$ in Theorem 3, and the corollary is proved. \hfill \Box

Corollary 3. Let f be defined as in Theorem 3, $n \in \mathbb{Z}^+$, $\lambda \in [0, 1]$. Then
\[
\int_a^b f(t) \, dt = - \frac{1}{n} \sum_{j=0}^{n-1} \frac{(1-\lambda)^{n-j}(b-x)^{n-j} - (a-x)^{n-j}}{(n-j)!} f^{(n-1-j)}(x)
\]
\[
- \frac{1}{n} \sum_{j=0}^{n-1} \frac{\lambda^{n-j}}{(n-j)!} \left[(x-a)^{n-j} f^{(n-1-j)}(a) - (x-b)^{n-j} f^{(n-1-j)}(b) \right]
\]
\[
\leq \frac{1}{n!} \max \{ \lambda^n, (1-\lambda)^n \} \int_a^b (f^{(n-1)}) \max \{|x-a|^n, |x-b|^n\}.
\]
(2.4)

Proof. We take $m = n$ in Theorem 3, and the corollary is proved. \hfill \Box

Remark 3. For $n = 1$, we have
\[
\int_a^b f(t) \, dt = (1-\lambda)(b-a) f(x) - (x-a) f(a) - (b-x) f(b)
\]
\[
\leq \max \{ \lambda, 1-\lambda \} \int_a^b (f) \left[\frac{b-a}{2} + \frac{x-a+b}{2} \right].
\]
(2.5)

Choosing $\lambda = 1$, we can obtain (1.1). Furthermore, when $x = (a+b)/2$, for $\lambda = 0$, $\lambda = 1$ and $\lambda = \lambda = 1/3$ we obtain the estimates for the errors of the mid-point rule, trapezoid rule and Simpson rule respectively.
Theorem 4. Suppose that $X := \{x_i \mid i = 0, 1, \ldots, k - 1, k \in \mathbb{Z}_+\}$ is a set of k points satisfying $a \leq x_0 < x_1 < \cdots < x_{k-1} \leq b$. Let $p_i \geq 0$, $\sum_{i=0}^{k-1} p_i = 1$, and $f^{(n-1)}$ be a function of bounded variation. Moreover, when $n = 1$, $f(t)$ is continuous at x_i, $i = 0, 1, \ldots, k - 1$, then we have

$$
\int_a^b f(t) \, dt - (b - a) \sum_{i=0}^{k-1} p_i \frac{x_i - t}{b - a} + \sum_{j=1}^{n-1} \frac{(b - a)^j}{j!} \left[f^{(j-1)}(b) - f^{(j-1)}(a) \right] \sum_{i=0}^{k-1} p_i B_j \left(\frac{x_i - a}{b - a} \right)
\leq K_n (b - a)^n \int_a^b (f^{(n-1)}),
$$

(2.6)

where

$$
K_n = \frac{1}{n!} \sup_{a < t < b} \left[\sum_{i=0}^{k-1} p_i \left[B_n^* \left(\frac{x_i - t}{b - a} \right) - B_n \left(\frac{x_i - a}{b - a} \right) \right] \right],
$$

and B_n^* is a 1-periodic function that coincides with the Bernoulli polynomial B_n on $[0, 1]$.

Proof. To prove this theorem, we set $m = 0$ in Lemma 1 and take

$$
k_n(x, t) = (-1)^n \frac{(b - a)^n}{n!} B_n^* \left(\frac{x - t}{b - a} \right).
$$

Hence we have

$$
\int_a^b f(t) \, dt = f(x)(b - a) - \sum_{j=1}^{n-1} \frac{(b - a)^j}{j!} B_j \left(\frac{x - a}{b - a} \right) \left[f^{(j-1)}(b) - f^{(j-1)}(a) \right]
+ \frac{(b - a)^n}{n!} \int_a^b \left[B_n^* \left(\frac{x - t}{b - a} \right) - B_n \left(\frac{x - a}{b - a} \right) \right] df^{(n-1)}(t).
$$

Making the change of variables $x = x_i$, $i = 0, 1, \ldots, k - 1$, and using $\sum_{i=0}^{k-1} p_i = 1$, we obtain

$$
\int_a^b f(t) \, dt = (b - a) \sum_{i=0}^{k-1} p_i f(x_i) + \sum_{j=1}^{n-1} \frac{(b - a)^j}{j!} \left[f^{(j-1)}(b) - f^{(j-1)}(a) \right] \sum_{i=0}^{k-1} p_i B_j \left(\frac{x_i - a}{b - a} \right)
+ \frac{(b - a)^n}{n!} \int_a^b \left[B_n^* \left(\frac{x_i - t}{b - a} \right) - B_n \left(\frac{x_i - a}{b - a} \right) \right] df^{(n-1)}(t).
$$

Since

$$
\int_a^b \sum_{i=0}^{k-1} p_i \left[B_n^* \left(\frac{x_i - t}{b - a} \right) - B_n \left(\frac{x_i - a}{b - a} \right) \right] \, df^{(n-1)}(t)
\leq \sup_{a < t < b} \left| \sum_{i=0}^{k-1} p_i \left[B_n^* \left(\frac{x_i - t}{b - a} \right) - B_n \left(\frac{x_i - a}{b - a} \right) \right] \right| \int_a^b | df^{(n-1)}(t) |
= \sup_{a < t < b} \left| \sum_{i=0}^{k-1} p_i \left[B_n^* \left(\frac{x_i - t}{b - a} \right) - B_n \left(\frac{x_i - a}{b - a} \right) \right] \right| \int_a^b (f^{(n-1)})
$$

We can easily derive (2.6) and the proof is completed. □

We define $h = (b - a) / k$. Setting $p_i = 1/k$, $x_i = a + (i + x) h$, $i = 0, 1, \ldots, k - 1$, in Theorem 4, we obtain the Euler–Maclaurin formula;
Trapezoid rule:

\[\left| \int_a^b f(t) \, dt - h \sum_{i=0}^{k-1} f(a + (i + \frac{1}{2})h) \right| \leq \frac{(b-a)^n}{n!k^n} \sup_{0 < t < 1} |B_n(t) - B_n(x)| \frac{b}{a} \left(f^{(n-1)} \right) . \]

As regards applications of the Euler–Maclaurin formula, one can see [4]. Now, we consider the general quadrature

\[\int_a^b f(t) \, dt = (b-a) \sum_{i=0}^{k-1} p_i f(x_i) + R_n(f) \] (2.7)

and obtain the following corollary.

Corollary 4. Let \(x_i \in [a, b] \) and \(p_i \geq 0 \) be such that

\[\sum_{i=0}^{k-1} p_i x_i^j = \frac{b^{j+1} - a^{j+1}}{(j+1)(b-a)}, \quad j \in \{0, 1, \ldots, n-1\}, \] (2.8)
i.e. (2.7) is exact for any polynomial of degree less than \(n \); then we have

\[\left| \int_a^b f(t) \, dt - (b-a) \sum_{i=0}^{k-1} p_i f(x_i) \right| \leq K_n (b-a)^n \frac{b}{a} \left(f^{(n-1)} \right), \] (2.9)

where \(K_n = \frac{1}{n!} \sup_{a < t < b} \sum_{i=0}^{k-1} B_n^\ast \left(\frac{x_i-a}{b-a} \right) - B_n \left(\frac{x_i-a}{b-a} \right) \).

Proof. We first note that \(B_j((t-a)/(b-a)) \) is a polynomial of degree \(j \). By (2.8), we obtain

\[\sum_{i=0}^{k-1} p_i B_j \left(\frac{x_i-a}{b-a} \right) = \frac{1}{b-a} \int_a^b B_j \left(\frac{t-a}{b-a} \right) \, dt = 0, \quad j \in \{1, 2, \ldots, n-1\}. \]

According to (2.6), we derive (2.9) and complete the proof. \(\square \)

Remark 4. It is worth mentioning that the result was derived by Wang [5] in 1978. Further, if \(f \) is discontinuous at \(x_i \) when \(n = 1 \), Corollary 4 also holds. We can generalize it to the functions of bounded \(p \)-variation [6]. Theorem 4 generalizes the classical Euler–Maclaurin formula as can be found in [7,8]. It is also a generalization of Euler trapezoid formulas [3]. In particular, we can evaluate the error constants for some quadrature formulas which are well known.

1. Mid-point rule: \(k = 1, p_0 = 1, x_0 = \frac{b+a}{2}, K_1 = \frac{1}{2}, K_2 = \frac{1}{8} \).
2. Trapezoid rule: \(k = 2, p_0 = p_1 = \frac{1}{2}, x_0 = a, x_1 = b, K_1 = \frac{1}{2}, K_2 = \frac{1}{8} \).
3. Simpson rule: \(k = 3, p_0 = p_2 = \frac{1}{6}, p_1 = \frac{1}{2}, x_0 = a, x_1 = \frac{a+b}{2}, x_2 = b, K_1 = \frac{1}{2}, K_2 = \frac{1}{24}, K_3 = \frac{1}{324}, K_4 = \frac{1}{1152} \).

All constants of the errors are sharp. It is obvious that \(f(t) \) is of bounded variation if \(|f'(t)| < \infty \) or \(f(t) \) is Lipschitz continuous. For further investigation of these cases, one can refer to Ostrowski’s inequality and its extensions ([9–13]).

We define \(\hat{h} = (b-a)/r, a_j = a + j\hat{h}, \quad (j = 0, 1, \ldots, r) \). We apply Corollary 4 on the interval \([a_j, a_{j+1}]\) and we have the following corollary.

Corollary 5 (Cf. [5]). Let \(0 \leq t_0 < t_1 < \cdots < t_{k-1} \leq 1 \). Suppose that the following quadrature rule:

\[\int_0^1 f(t) \, dt = \sum_{i=0}^{k-1} p_i f(t_i) \]
is exact for any polynomial of degree less than \(n \). Let \(f : [a, b] \rightarrow \mathbb{R} \) be such that \(f^{(n-1)} \) is a function of bounded variation. Then we have

\[
\int_a^b f(t) \, dt = \hat{h} \sum_{j=0}^{r-1} \sum_{i=0}^{k-1} p_i f(a_j + t_i \hat{h}) + R(f),
\]

(2.10)

where

\[
R(f) = \hat{h}^n \int_a^b G_n \left(\frac{t - a}{b - a} \right) \, df^{(n-1)}(t)
\]

and

\[
G_n(t) = \frac{1}{n!} \sum_{i=0}^{k-1} p_i (B^n_n(t_i - t) - B_n(t_i)).
\]

Moreover,

\[
|R(f)| \leq \frac{1}{n!} \left(\frac{b - a}{r} \right)^n \max_{a \leq t \leq b} |f^{(n-1)}(t)| \sup_{0 < \xi < 1} \left| \sum_{i=0}^{k-1} p_i (B^n_n(t_i - t) - B_n(t_i)) \right|.
\]

References

