Georgian Mathematical Journal

Volume 15 (2008), Number 1, 189-194

A GENERALIZED MANDELBROT SET OF POLYNOMIALS OF TYPE E_{d} FOR BICOMPLEX NUMBERS

AHMAD ZIREH

Abstract

We use a commutative generalization of complex numbers called bicomplex numbers to introduce the bicomplex dynamics of polynomials of type $E_{d}, f_{c}(w)=w(w+c)^{d}$. Rochon [9] proved that the Mandelbrot set of quadratic polynomials in bicomplex numbers of the form $w^{2}+c$ is connected. We prove that our generalized Mandelbrot set of polynomials of type E_{d}, $f_{c}(w)=w(w+c)^{d}$, is connected.

2000 Mathematics Subject Classification: Primary 37F45; Secondary 30D05, 30C10.
Key words and phrases: Bicomplex Numbers, Mandelbrot set, Connectedness locus, polynomial dynamics, Douady-Hubbard's theorem.

1. Introduction

In 1982, A. Norton [8] gave some straightforward algorithms for generation and display fractal shapes in 3-D. For the first time, iteration by quaternions appeared. Subsequently, theoretical results were obtained in [5] for the quaternionic Mandelbrot set defined by quadratic polynomial in quaternions of the form $q^{2}+c$. Rochon [9] used a commutative generalization of complex numbers called bicomplex numbers to give a new version of the Mandelbrot set in dimensions three and four. Moreover, he proved that the generalization in dimention four is connected.

In this article, we introduce a one-parameter family of polynomials of type $E_{d}, f_{c}(z)=z(z+c)^{d}$. First, in the complex dynamics of f_{c}, we consider the connectedness locus or, what is the same, the Mandelbrot set,

$$
\mathcal{C}_{d}=\left\{c \in \mathbb{C}: \text { the filled Julia set } K\left(f_{c}\right) \text { is connected }\right\},
$$

and prove that the connectedness locus \mathcal{C}_{d} of polynomials of type E_{d} is connected:

Theorem 1. The Mandelbrot set \mathcal{C}_{d} is connected.
Finally, by using the concept of filled Julia set for bicomplex numbers, we give a version of the connectedness locus for a bicomplex number and prove that our generalization of the Mandelbrot set for bicomplex numbers is connected:

Theorem 2. The generalized Mandelbrot set \mathcal{C}_{d}^{2} is connected.

2. Polynomials of Type E_{d}

Let us recall (see [2]) the terminology and definitions in the monic family of higher degree polynomials. Consider the monic family of complex polynomials $f_{c}(z)=z(z+c)^{d}$, where $c \in \mathbb{C}$ and $d \geq 2$. Each f_{c} has degree $d+1$ and has exactly two critical points: $-c$ with multiplicity $d-1$, and $c_{0}=\frac{-c}{d+1}$ with multiplicity 1. Moreover, $f_{c}(-c)=0$ and 0 is fixed. It is proved (see [2]) that polynomials with these features can always be expressed in the form f_{c}.

Definition 1 ([2]). A monic polynomial f of degree $d \geq 2$ is of type E_{d} if it satisfies the following properties:

1. f has two critical points: $-c$ of multiplicity $d-1$ and c_{0} of multiplicity 1.
2. f has a fixed point at $z=0$.
3. $f(-c)=0$.

Proposition 1. Any monic polynomial $f(z)$ of degree $d+1$ which is of type E_{d} is of the form

$$
f_{c}(z)=z(z+c)^{d} .
$$

Moreover, if f_{c} and $f_{c^{\prime}}$ of type E_{d} are affine conjugate with $d \geq 2$, then $c=c^{\prime}$.
The proof is straightforward and is omitted.
Notation. Denote \mathbb{D} as the unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.

3. Connectedness

As we know, the Mandelbrot set of quadratic polynomials is connected. In this section we are going to prove that the Mandelbrot set \mathcal{C}_{d} of polynomials of type E_{d} is connected. For this purpose, we need slight modifications of some well known results and methods.

If we apply the Böttcher theorem([3]) to the polynomial f_{c}, for a sufficiently large positive number R_{c}, we get a Böttcher function $\phi_{c}(z)$ on $D_{c}=\{z \in \mathbb{C}$: $\left.|z| \geq R_{c}\right\}$, such that $\phi_{c}\left(f_{c}(z)\right)=\left(\phi_{c}(z)\right)^{d+1}$.

Let us recall (see [3]) that, in general, a Böttcher function $\phi_{c}(z)$ cannot be continued analytically to the whole of $A_{c}(\infty)$. However, since $A_{c}(\infty)=$ $\bigcup_{n=1}^{\infty}\left(f_{c}^{n}\right)^{-1}\left(D_{c}\right)$, we can extend the harmonic function $G_{c}(z)=\log \left|\phi_{c}(z)\right|$ to the whole of $A_{c}(\infty)$ by setting

$$
G_{c}(z)=\frac{1}{(d+1)^{n+1}} G_{c}\left(f_{c}^{n}(z)\right) \quad \text { if } \quad z \in\left(f_{c}^{n}\right)^{-1}\left(D_{c}\right)
$$

This extension is well defined and $G_{c}(z)$ is clearly harmonic on $A_{c}(\infty)$. Moreover, we set $G_{c}(z)=0$ for every $z \in K_{c}$. Then $G_{c}(z)$ is a continuous subharmonic function on \mathbb{C}, which is called the Green function associated to $K\left(f_{c}\right)$.

Proposition 2 (Sibony's Theorem). For every $A \geq 0$ there exists $\alpha=$ $\alpha(A) \geq 0$ such that the restriction of the Green function G_{c} to the disk $|c| \leq A$ is $\alpha-$ Hölder .

Proof. We repeat the arguments given in the proof of Theorem 3.2, page 138 of [3], by making necessary modifications. Assume that $A \geq 10$. Let $z \in \mathbb{C}-K\left(f_{c}\right)$ and let $\delta(z)=\operatorname{dist}\left(z, K\left(f_{c}\right)\right)$. Let us take the closest point $z_{0} \in K_{c}$ to z, and let $S=\left\{z_{0}+t\left(z-z_{0}\right): \quad 0 \leq t \leq 1\right\}$. Take $N=N(z)$ to satisfy $\left|f_{c}^{n}(w)\right|<A^{2}$ for all $w \in S$ and all $n<N$, while $\left|f_{c}^{N}\left(z_{1}\right)\right| \geq A^{2}$ for some $z_{1} \in S$. Using $f_{c}^{\prime}(z)=(z+c)^{d-1}((d+1) z+c)$ and the chain rule, we see that $\left|\left(f_{c}^{n}\right)^{\prime}(w)\right| \leq$ $\left(\left(A^{2}+A\right)^{d-1}\left((d+1) A^{2}+A\right)\right)^{n}$ for all $n<N$ and $w \in S$. Also, $\left|f_{c}^{n}\left(z_{0}\right)\right|<2 A$ for all n, or else the iterates

$$
\left|f_{c}^{n+1}\left(z_{0}\right)\right| \geq\left|f_{c}^{n}\left(z_{0}\right)\right|\left(\left|f_{c}^{n}\left(z_{0}\right)\right|-|c|\right)^{d} \geq\left|f_{c}^{n}\left(z_{0}\right)\right| A^{d}>\left|f_{c}^{n}\left(z_{0}\right)\right|
$$

would tend to ∞. The mean value theorem then implies that

$$
\left|f_{c}^{N}\left(z_{1}\right)-f_{c}^{N}\left(z_{0}\right)\right| \leq\left(\left(A^{2}+A\right)^{d-1}\left((d+1) A^{2}+A\right)\right)^{N} \delta\left(z_{1}\right) .
$$

Then we have

$$
\left|f_{c}^{N}\left(z_{1}\right)\right| \leq 2 A+\left(\left(A^{2}+A\right)^{d-1}\left((d+1) A^{2}+A\right)\right)^{N} \delta\left(z_{1}\right) .
$$

But $\left|f_{c}^{N}\left(z_{1}\right)\right| \geq A^{2}$, hence $\left(\left(A^{2}+A\right)^{d-1}\left((d+1) A^{2}+A\right)\right)^{N} \delta\left(z_{1}\right) \geq 1$, and $\left(\left(A^{2}+\right.\right.$ $\left.A)^{d-1}\left((d+1) A^{2}+A\right)\right)^{N} \delta(z) \geq 1$.

For $\alpha=\frac{\log (d+1)}{\log \left(\left(A^{2}+A\right)^{d-1}\left((d+1) A^{2}+A\right)\right)}$ we have $\delta(z)^{\alpha}>(d+1)^{-N}$ so that

$$
G_{c}(z)=G_{c}\left(f_{c}^{N}(z)\right)(d+1)^{-N} \leq M \delta(z)^{\alpha},
$$

where M depends only on A. Consider two points z_{1}, z_{2} and suppose $\delta\left(z_{1}\right) \geq$ $\delta\left(z_{2}\right)$. We would like to prove

$$
\left|G_{c}\left(z_{1}\right)-G_{c}\left(z_{2}\right)\right| \leq C\left|z_{1}-z_{2}\right|^{\alpha}
$$

If $\left|z_{1}-z_{2}\right|>\frac{1}{2} \delta\left(z_{1}\right)$, this follows from the above estimate. If $\left|z_{1}-z_{2}\right| \leq \frac{1}{2} \delta\left(z_{1}\right)$, we use the Harnack inequality for the positive harmonic function $G_{c}(z)$ in the disk $D\left(z_{1}, \delta\left(z_{1}\right)\right)$ to conclude that

$$
\left|G_{c}\left(z_{1}\right)-G_{c}\left(z_{2}\right)\right| \leq C_{0} M \delta\left(z_{1}\right)^{\alpha} \frac{\left|z_{1}-z_{2}\right|}{\delta\left(z_{1}\right)} \leq C\left|z_{1}-z_{2}\right|^{\alpha} .
$$

Proposition 3. If $c_{n} \rightarrow c$, then the corresponding Green functions $G_{c_{n}}(z)$ converge uniformly on \mathbb{C} to G_{c}. Thus $G_{c}(z)$ is jointly continuous in c and z.

Proof. Proposition 2 guarantees the equicontinuity of the sequence $G_{c}(z)$ and the arguments of [3], page 139, can be reproduced.

Finally we have
Theorem 1. The Mandelbrot set \mathcal{C}_{d} is connected.
Proof. As $\hat{\mathbb{C}}-\overline{\mathbb{D}}$ is simply connected, it is enough to find a homeomorphism from $\hat{\mathbb{C}}-\mathcal{C}_{d}$ onto $\hat{\mathbb{C}}-\overline{\mathbb{D}}$. We will need to find a conformal map

$$
\Phi: \mathbb{C}-\mathcal{C}_{d} \rightarrow \mathbb{C}-\overline{\mathbb{D}} .
$$

Let $\Omega=\left\{(z, c) \in \mathbb{C} \times \mathbb{C}: c \in \mathbb{C}-\mathcal{C}_{d}, G_{c}(z)>G_{c}\left(c_{0}\right)\right\}$. For every $n \geq 0$ the pre-critical points, as $(z, c) \in \mathbb{C}^{2}$ such that $f_{c}^{n}(z)=c_{0}$, and the pre-images of the origin, as $(z, c) \in \mathbb{C}^{2}$ such that $f_{c}^{n}(z)=0$, do not belong to Ω. Hence the

Böttcher function $\phi(z, c):=\phi_{c}(z)$ is well defined and analytic on Ω. It has the following representation

$$
\begin{aligned}
\phi(z, c) & =\lim _{n \rightarrow \infty}\left(f_{c}^{n}(z)\right)^{\frac{1}{(d+1)^{n}}}=z \prod_{n=1}^{\infty} \frac{\left(f_{c}^{n}(z)\right)^{\frac{1}{(d+1)^{n}}}}{\left(f_{c}^{n-1}(z)\right)^{\frac{1}{(d+1)^{n-1}}}} \\
& =z \prod_{n=1}^{\infty}\left(\frac{f_{c}^{n-1}(z)\left(f_{c}^{n-1}(z)+c\right)^{d}}{\left(f_{c}^{n-1}(z)\right)^{d+1}}\right)^{\frac{1}{(d+1)^{n}}}=z \prod_{n=0}^{\infty}\left(1+\frac{c}{f_{c}^{n}(z)}\right)^{\frac{d}{(d+1)^{n+1}}} .
\end{aligned}
$$

We obviously have $\left(f_{c}\left(c_{0}\right), c\right) \in \Omega$. Now we define

$$
\Phi: \mathbb{C}-\mathcal{C}_{d} \rightarrow \mathbb{C}-\overline{\mathbb{D}}, \quad \Phi(c)=\phi\left(f_{c}\left(c_{0}\right), c\right),
$$

and prove that the function Φ is onto and conformal. By the representation

$$
\phi(z, c)=z \prod_{n=0}^{\infty}\left(1+\frac{c}{f_{c}^{n}(z)}\right)^{\frac{d}{(d+1)^{n+1}}}
$$

the Böttcher function $\phi(z, c)$ is analytic of two variables in Ω. It follows that Φ is analytic on $\mathbb{C}-\mathcal{C}_{d}$. Furthermore, for $c \in \mathbb{C}-\mathcal{C}_{d}$ we have

$$
\log |\Phi(c)|=\log \left|\phi_{c}\left(f_{c}\left(c_{0}\right)\right)\right|=G_{c}\left(f_{c}\left(c_{0}\right)\right)=(d+1) G_{c}\left(c_{0}\right)>0
$$

and $|\Phi(c)|>1$. On the other hand, by Proposition 3, the Green function G_{c} is continuous. Since $G_{c} \mid \mathcal{C}_{d}=0$, we conclude that $G_{c}\left(f_{c}\left(c_{0}\right)\right) \rightarrow 0$ as c tends to the boundary of $\mathbb{C}-\mathcal{C}_{d}$. Consequently $|\Phi(c)| \rightarrow 1$ as c tends to the boundary of $\mathbb{C}-\mathcal{C}_{d}$. Near infinity we have $\phi_{c}\left(f_{c}\left(c_{0}\right)\right)=\left(\phi_{c}\left(c_{0}\right)\right)^{d+1} \sim \frac{-c}{d+1}$, which implies that Φ is injective near ∞, has a simple pole at ∞, and has no zero in $\mathbb{C}-\mathcal{C}_{d}$. The argument principle can apply: Φ assumes every value in $\mathbb{C}-\overline{\mathbb{D}}$ exactly once on $\mathbb{C}-\mathcal{C}_{d}$. Hence Φ maps $\hat{\mathbb{C}}-\mathcal{C}_{d}$ conformally onto $\hat{\mathbb{C}}-\overline{\mathbb{D}}$. In particular, $\widehat{\mathbb{C}}-\mathcal{C}_{d}$ is simply connected, which implies the assertion.

4. Bicomplex Numbers

We recall some of the basic results of the theory of bicomplex numbers. The bicomplex numbers are defined as follows:

$$
\begin{aligned}
& \mathbb{C}_{2}:=\left\{a+b i_{1}+c i_{2}+d j: i_{1}^{2}=i_{2}^{2}=-1, j^{2}=1\right. \\
&\left.i_{2} j=j i_{2}=-i_{1}, \quad i_{1} j=j i_{1}=-i_{2}, \quad i_{2} i_{1}=i_{1} i_{2}=j\right\}
\end{aligned}
$$

where $a, b, c, d \in \mathbb{R}$. The norm used on \mathbb{C}_{2} will be the Euclidean norm (also denoted by $|\mid)$ of \mathbb{R}^{4}.

We remark that we can write a bicomplex number as

$$
a+b i_{1}+c i_{2}+d j \quad \text { as } \quad\left(a+b i_{1}\right)+\left(c+d i_{1}\right) i_{2}=z_{1}+z_{2} i_{2}
$$

where $z_{1} ; z_{2} \in \mathbb{C}_{1}:=\left\{x+y i_{1}: i_{1}^{2}=-1\right\}$. Thus, \mathbb{C}_{2} can be viewed as the complexification of the usual complex numbers \mathbb{C}_{1} and a bicomplex number can be regarded as an element of \mathbb{C}_{2}. Moreover, the norm of the bicomplex number is the same as the norm of the associated element $\left(z_{1}, z_{2}\right)$ of \mathbb{C}_{2}. It is easy to see that \mathbb{C}_{2} is a commutative unitary ring with the following characterization for noninvertible elements.

Proposition 4. Let $w=a+b i_{1}+c i_{2}+d j \in \mathbb{C}_{2}$. Then w is noninvertible if and only if $(a=-d$ and $b=c)$ or $(a=d$ and $b=-c)$ if and only if $z_{1}^{2}+z_{2}^{2}=0$.

It is also important to know that every bicomplex number $z_{1}+z_{2} i_{2}$ has the following unique idempotent representation:

$$
z_{1}+z_{2} i_{2}=\left(z_{1}-z_{2} i_{1}\right) e_{1}+\left(z_{1}+z_{2} i_{1}\right) e_{2}, \text { where } e_{1}=\frac{1+j}{2} \text { and } e_{2}=\frac{1-j}{2} .
$$

This representation is very useful because: addition, multiplication and division can be done term-by-term. Also, an element will be noninvertible if and only if $z_{1}-z_{2} i_{1}=0$ or $z_{1}+z_{2} i_{1}=0$. The next definition will be useful to construct a natural "disc" in \mathbb{C}_{2}.

Definition 2. We say that $X \subset \mathbb{C}_{2}$ is a \mathbb{C}_{2}-Cartesian set determined by X_{1} and X_{2} if $X=X_{1} \times{ }_{e} X_{2}:=\left\{z_{1}+z_{2} i_{2} \in \mathbb{C}_{2}: z_{1}+z_{2} i_{2}=w_{1} e_{1}+w_{2} e_{2} ;\left(w_{1} ; w_{2}\right) \in\right.$ $\left.X_{1} \times X_{2}\right\}$.

It is shown that if X_{1} and X_{2} are domains of \mathbb{C}_{1}, then $X_{1} \times_{e} X_{2}$ is also a domain of \mathbb{C}_{2}. Then, a manner to construct a natural "disc" in \mathbb{C}_{2} is to take the \mathbb{C}_{2}-Cartesian product of two discs in \mathbb{C}_{1}. Hence, we define the natural "disc" of \mathbb{C}_{2} as follows:

$$
\begin{gathered}
D(0 ; r):=B^{1}(0 ; r) \times_{e} B^{1}(0 ; r) \\
=\left\{z_{1}+z_{2} i_{2}: z_{1}+z_{2} i_{2}=w_{1} e_{1}+w_{2} e_{2} ;\left|w_{1}\right|<r,\left|w_{2}\right|<r\right\}
\end{gathered}
$$

where $B^{n}(0 ; r)$ is an open ball of $\mathbb{C}_{1}^{n} \equiv \mathbb{C}^{n}$ with radius r.

5. The Generalized Bicomplex Mandelbrot Set of Polynomials of Type E_{d}

In this section, we want to give a version of the Mandelbrot set of polynomials of type E_{d} for bicomplex numbers.

Now, to give a version of the Mandelbrot set of polynomials of type E_{d} for bicomplex numbers we have only to reproduce the algorithm of Definition 2 for bicomplex numbers. This is the next definition.

Definition 3. Let $f_{c}(w)=w(w+c)^{d}$ where $w ; c \in \mathbb{C}_{2}$ and $f_{c}^{n}(w):=\left(f_{c}^{(n-1)} \circ\right.$ $\left.f_{c}\right)(w)$. Then the generalized Mandelbrot set for bicomplex numbers is defined as follows: $\mathcal{C}_{d}^{2}=\left\{c \in \mathbb{C}_{2}: f_{c}^{n}\left(c_{0}\right)\right.$ is bounded for every $\left.n \in \mathbb{N}\right\}$.

The next lemma is a characterization of \mathcal{C}_{d}^{2} using only \mathcal{C}_{d}. This lemma will be useful to prove that \mathcal{C}_{d}^{2} is also a connected set.

Proposition 5. $\mathcal{C}_{d}^{2}=\mathcal{C}_{d} \times{ }_{e} \mathcal{C}_{d}$.
Proof. First, we prove that $\mathcal{C}_{d}^{2} \subset \mathcal{C}_{d} \times_{e} \mathcal{C}_{d}$. Let $c_{2} \in \mathbb{C}_{2}$ such that $f_{c}^{n}\left(c_{0}\right)$ is bounded for every $n \in \mathbb{N}$. We have $f_{c}(w)=w(w+c)^{d}=\left[\left(z_{1}-z_{2} i_{1}\right)\left(\left(z_{1}-\right.\right.\right.$ $\left.\left.\left.z_{2} i_{1}\right)+\left(c_{1}-c_{2} i_{1}\right)\right)^{d}\right] e_{1}+\left[\left(z_{1}+z_{2} i_{1}\right)\left(\left(z_{1}+z_{2} i_{1}\right)+\left(c_{1}+c_{2} i_{1}\right)\right)^{d}\right] e_{2}$, where $w=$ $\left(z_{1}-z_{2} i_{1}\right) e_{1}+\left(z_{1}+z_{2} i_{1}\right) e_{2}$ and $c=\left(c_{1}-c_{2} i_{1}\right) e_{1}+\left(c_{1}+c_{2} i_{1}\right) e_{2}$. Then $f_{c}^{n}(w)=$ $f_{\left(c_{1}-c_{2} i_{1}\right)}^{n}\left(z_{1}-z_{2} i_{1}\right) e_{1}+f_{\left(c_{1}+c_{2} i_{1}\right)}^{n}\left(z_{1}+z_{2} i_{1}\right) e_{2}$.

By hypothesis, $f_{c}^{n}\left(c_{0}\right)=f_{\left(c_{1}-c_{2} i_{1}\right)}^{n}\left(c_{0}\right) e_{1}+f_{\left(c_{1}+c_{2} i_{1}\right)}^{n}\left(c_{0}\right) e_{2}$ is bounded for every $n \in \mathbb{N}$.

Hence, $f_{\left(c_{1}-c_{2} i_{1}\right)}^{n}\left(c_{0}\right)$ and $f_{\left(c_{1}+c_{2} i_{1}\right)}^{n}\left(c_{0}\right)$ are also bounded for $\forall n \in \mathbb{N}$. Then $c_{1}-c_{2} i_{1}, c_{1}+c_{2} i_{1} \in \mathcal{C}_{d}$ and $c=\left(c_{1}-c_{2} i_{1}\right) e_{1}+\left(c_{1}+c_{2} i_{1}\right) e_{2} \in \mathcal{C}_{d} \times{ }_{e} \mathcal{C}_{d}$.

Conversely, if we take $c \in \mathcal{C}_{d} \times{ }_{e} \mathcal{C}_{d}$, we have $c=\left(c_{1}-c_{2} i_{1}\right) e_{1}+\left(c_{1}+c_{2} i_{1}\right) e_{2}$ with $c_{1}-c_{2} i_{1}, c_{1}+c_{2} i_{1} \in \mathcal{C}_{d}$. Hence $f_{\left(c_{1}-c_{2} i_{1}\right)}^{n}\left(c_{0}\right)$ and $f_{\left(c_{1}+c_{2} i_{1}\right)}^{n}\left(c_{0}\right)$ are also bounded for every $n \in \mathbb{N}$. Then $f_{c}^{n}\left(c_{0}\right)$ is bounded for every $n \in \mathbb{N}$, that is $c \in \mathcal{C}_{d}^{2}$.

Theorem 2. The generalized Mandelbrot set \mathcal{C}_{d}^{2} of polynomials of type E_{d} is connected.
Proof. Define a mapping e as follows:

$$
e: \mathbb{C}_{1} \times \mathbb{C}_{1} \rightarrow \mathbb{C}_{1} \times_{e} \mathbb{C}_{1}, \quad\left(w_{1} ; w_{2}\right) \mapsto w_{1} e_{1}+w_{2} e_{2}
$$

The mapping e is clearly a homeomorphism. Then, if X_{1} and X_{2} are connected subsets of \mathbb{C}_{1}, we have that $e\left(X_{1} \times X_{2}\right)=X_{1} \times_{e} X_{2}$ is also connected. Now, by Proposition $5, \mathcal{C}_{d}^{2}=\mathcal{C}_{d} \times{ }_{e} \mathcal{C}_{d}$. Moreover, by Theorem $1, \mathcal{C}_{d}$ is connected. It follows, if we let $X_{1}=X_{2}=\mathcal{C}_{d}$, that \mathcal{C}_{d}^{2} is connected.

Acknowledgements

This work was partially supported by the research grant from Shahrood University of Technology. The author thanks the referee for some helpful comments.

References

1. S. Bedding and K. Briggs, Iteration of quaternion maps. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5(1995), No. 3, 877-881.
2. B. Branner and N. Fagella, Homeomorphisms between limbs of the Mandelbrot set. J. Geom. Anal. 9(1999), No. 3, 327-390.
3. L. Carleson and T. W. Gamelin, Complex dynamics. Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993.
4. A. Douady and J. H. Hubbard, Itération des polynômes quadratiques complexes. C. R. Acad. Sci. Paris Sér. I Math. 294(1982), No. 3, 123-126.
5. J. Gomatam, J. Doyle, B. Steves, and I. McFarlane, Generalization of the Mandelbrot set: quaternionic quadratic maps. Chaos Solitons Fractals 5(1995), No. 6, 971-986.
6. J. A. R. Holbrook, Quaternionic Fatou-Julia sets. Ann. Sci. Math. Quebec 11(1987), No. 1, 79-94.
7. J. Milnor, Dynamics in one complex variable. Third edition. Annals of Mathematics Studies, 160. Princeton University Press, Princeton, NJ, 2006.
8. A. Norton, Generation and display of geometric fractals in 3-D. Computer Graphics 16(1982), 61-67.
9. D. Rochon, A generalized Mandelbrot set for bicomplex numbers. Fractals 8(2000), No. 4, 355-368.
(Received 4.12.2006)
Author's address:
Department of Mathematics
Shahrood University of Technology
Shahrood, Iran
E-mail: azireh@gmail.com
