Volume 15 (2008), Number 1, 189–194

A GENERALIZED MANDELBROT SET OF POLYNOMIALS OF TYPE E_d FOR BICOMPLEX NUMBERS

AHMAD ZIREH

Abstract. We use a commutative generalization of complex numbers called bicomplex numbers to introduce the bicomplex dynamics of *polynomials of* $type E_d, f_c(w) = w(w+c)^d$. Rochon [9] proved that the Mandelbrot set of quadratic polynomials in bicomplex numbers of the form $w^2 + c$ is connected. We prove that our generalized Mandelbrot set of polynomials of type E_d , $f_c(w) = w(w+c)^d$, is connected.

2000 Mathematics Subject Classification: Primary 37F45; Secondary 30D05, 30C10.

Key words and phrases: Bicomplex Numbers, Mandelbrot set, Connectedness locus, polynomial dynamics, Douady–Hubbard's theorem.

1. INTRODUCTION

In 1982, A. Norton [8] gave some straightforward algorithms for generation and display fractal shapes in 3-D. For the first time, iteration by quaternions appeared. Subsequently, theoretical results were obtained in [5] for the quaternionic Mandelbrot set defined by quadratic polynomial in quaternions of the form $q^2 + c$. Rochon [9] used a commutative generalization of complex numbers called bicomplex numbers to give a new version of the Mandelbrot set in dimensions three and four. Moreover, he proved that the generalization in dimention four is connected.

In this article, we introduce a one-parameter family of polynomials of type E_d , $f_c(z) = z(z+c)^d$. First, in the complex dynamics of f_c , we consider the connectedness locus or, what is the same, the *Mandelbrot set*,

 $C_d = \{ c \in \mathbb{C} : \text{the filled Julia set} \quad K(f_c) \text{ is connected} \},$

and prove that the connectedness locus C_d of polynomials of type E_d is connected:

Theorem 1. The Mandelbrot set C_d is connected.

Finally, by using the concept of filled Julia set for bicomplex numbers, we give a version of the connectedness locus for a bicomplex number and prove that our generalization of the Mandelbrot set for bicomplex numbers is connected:

Theorem 2. The generalized Mandelbrot set C_d^2 is connected.

ISSN 1072-947X / \$8.00 / © Heldermann Verlag www.heldermann.de

A. ZIREH

2. Polynomials of Type E_d

Let us recall (see [2]) the terminology and definitions in the monic family of higher degree polynomials. Consider the monic family of complex polynomials $f_c(z) = z(z+c)^d$, where $c \in \mathbb{C}$ and $d \geq 2$. Each f_c has degree d+1 and has exactly two critical points: -c with multiplicity d-1, and $c_0 = \frac{-c}{d+1}$ with multiplicity 1. Moreover, $f_c(-c) = 0$ and 0 is fixed. It is proved (see [2]) that polynomials with these features can always be expressed in the form f_c .

Definition 1 ([2]). A monic polynomial f of degree $d \ge 2$ is of type E_d if it satisfies the following properties:

- 1. f has two critical points: -c of multiplicity d-1 and c_0 of multiplicity 1.
- 2. f has a fixed point at z = 0.
- 3. f(-c) = 0.

Proposition 1. Any monic polynomial f(z) of degree d + 1 which is of type E_d is of the form

$$f_c(z) = z(z+c)^d.$$

Moreover, if f_c and $f_{c'}$ of type E_d are affine conjugate with $d \ge 2$, then c = c'.

The proof is straightforward and is omitted.

Notation. Denote \mathbb{D} as the unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$

3. Connectedness

As we know, the Mandelbrot set of quadratic polynomials is connected. In this section we are going to prove that the Mandelbrot set C_d of polynomials of type E_d is connected. For this purpose, we need slight modifications of some well known results and methods.

If we apply the Böttcher theorem([3]) to the polynomial f_c , for a sufficiently large positive number R_c , we get a *Böttcher function* $\phi_c(z)$ on $D_c = \{z \in \mathbb{C} : |z| \geq R_c\}$, such that $\phi_c(f_c(z)) = (\phi_c(z))^{d+1}$.

Let us recall (see [3]) that, in general, a Böttcher function $\phi_c(z)$ cannot be continued analytically to the whole of $A_c(\infty)$. However, since $A_c(\infty) = \bigcup_{n=1}^{\infty} (f_c^n)^{-1}(D_c)$, we can extend the harmonic function $G_c(z) = \log |\phi_c(z)|$ to the whole of $A_c(\infty)$ by setting

$$G_c(z) = \frac{1}{(d+1)^{n+1}} G_c(f_c^n(z))$$
 if $z \in (f_c^n)^{-1}(D_c)$.

This extension is well defined and $G_c(z)$ is clearly harmonic on $A_c(\infty)$. Moreover, we set $G_c(z) = 0$ for every $z \in K_c$. Then $G_c(z)$ is a continuous subharmonic function on \mathbb{C} , which is called the *Green function* associated to $K(f_c)$.

Proposition 2 (Sibony's Theorem). For every $A \ge 0$ there exists $\alpha = \alpha(A) \ge 0$ such that the restriction of the Green function G_c to the disk $|c| \le A$ is $\alpha - H\ddot{o}lder$.

Proof. We repeat the arguments given in the proof of Theorem 3.2, page 138 of [3], by making necessary modifications. Assume that $A \ge 10$. Let $z \in \mathbb{C} - K(f_c)$ and let $\delta(z) = dist(z, K(f_c))$. Let us take the closest point $z_0 \in K_c$ to z, and let $S = \{z_0 + t(z - z_0) : 0 \le t \le 1\}$. Take N = N(z) to satisfy $|f_c^n(w)| < A^2$ for all $w \in S$ and all n < N, while $|f_c^N(z_1)| \ge A^2$ for some $z_1 \in S$. Using $f'_c(z) = (z + c)^{d-1}((d + 1)z + c)$ and the chain rule, we see that $|(f_c^n)'(w)| \le ((A^2 + A)^{d-1}((d + 1)A^2 + A))^n$ for all n < N and $w \in S$. Also, $|f_c^n(z_0)| < 2A$ for all n, or else the iterates

$$|f_c^{n+1}(z_0)| \ge |f_c^n(z_0)| (|f_c^n(z_0)| - |c|)^d \ge |f_c^n(z_0)| A^d > |f_c^n(z_0)|$$

would tend to ∞ . The mean value theorem then implies that

$$|f_c^N(z_1) - f_c^N(z_0)| \le ((A^2 + A)^{d-1}((d+1)A^2 + A))^N \delta(z_1).$$

Then we have

$$\begin{split} |f_c^N(z_1)| &\leq 2A + ((A^2 + A)^{d-1}((d+1)A^2 + A))^N \delta(z_1).\\ \text{But } |f_c^N(z_1)| &\geq A^2, \text{ hence } ((A^2 + A)^{d-1}((d+1)A^2 + A))^N \delta(z_1) \geq 1, \text{ and } ((A^2 + A)^{d-1}((d+1)A^2 + A))^N \delta(z) \geq 1.\\ \text{For } \alpha &= \frac{\log(d+1)}{\log((A^2 + A)^{d-1}((d+1)A^2 + A))} \text{ we have } \delta(z)^\alpha > (d+1)^{-N} \text{ so that } \\ G_c(z) &= G_c(f_c^N(z))(d+1)^{-N} \leq M\delta(z)^\alpha, \end{split}$$

where M depends only on A. Consider two points z_1, z_2 and suppose $\delta(z_1) \geq \delta(z_2)$. We would like to prove

$$|G_c(z_1) - G_c(z_2)| \le C|z_1 - z_2|^{\alpha}$$

If $|z_1 - z_2| > \frac{1}{2}\delta(z_1)$, this follows from the above estimate. If $|z_1 - z_2| \le \frac{1}{2}\delta(z_1)$, we use the Harnack inequality for the positive harmonic function $G_c(z)$ in the disk $D(z_1, \delta(z_1))$ to conclude that

$$|G_c(z_1) - G_c(z_2)| \le C_0 M \delta(z_1)^{\alpha} \frac{|z_1 - z_2|}{\delta(z_1)} \le C|z_1 - z_2|^{\alpha}.$$

Proposition 3. If $c_n \to c$, then the corresponding Green functions $G_{c_n}(z)$ converge uniformly on \mathbb{C} to G_c . Thus $G_c(z)$ is jointly continuous in c and z.

Proof. Proposition 2 guarantees the equicontinuity of the sequence $G_c(z)$ and the arguments of [3], page 139, can be reproduced.

Finally we have

Theorem 1. The Mandelbrot set C_d is connected.

Proof. As $\hat{\mathbb{C}} - \overline{\mathbb{D}}$ is simply connected, it is enough to find a homeomorphism from $\hat{\mathbb{C}} - \mathcal{C}_d$ onto $\hat{\mathbb{C}} - \overline{\mathbb{D}}$. We will need to find a conformal map

$$\Phi: \mathbb{C} - \mathcal{C}_d \to \mathbb{C} - \overline{\mathbb{D}}.$$

Let $\Omega = \{(z,c) \in \mathbb{C} \times \mathbb{C} : c \in \mathbb{C} - \mathcal{C}_d, G_c(z) > G_c(c_0)\}$. For every $n \ge 0$ the pre-critical points, as $(z,c) \in \mathbb{C}^2$ such that $f_c^n(z) = c_0$, and the pre-images of the origin, as $(z,c) \in \mathbb{C}^2$ such that $f_c^n(z) = 0$, do not belong to Ω . Hence the

Böttcher function $\phi(z,c) := \phi_c(z)$ is well defined and analytic on Ω . It has the following representation

$$\begin{split} \phi(z,c) &= \lim_{n \to \infty} (f_c^n(z))^{\frac{1}{(d+1)^n}} = z \prod_{n=1}^\infty \frac{(f_c^n(z))^{\frac{1}{(d+1)^n}}}{(f_c^{n-1}(z))^{\frac{1}{(d+1)^{n-1}}}} \\ &= z \prod_{n=1}^\infty \left(\frac{f_c^{n-1}(z)(f_c^{n-1}(z)+c)^d}{(f_c^{n-1}(z))^{d+1}} \right)^{\frac{1}{(d+1)^n}} = z \prod_{n=0}^\infty \left(1 + \frac{c}{f_c^n(z)} \right)^{\frac{d}{(d+1)^{n+1}}} \end{split}$$

We obviously have $(f_c(c_0), c) \in \Omega$. Now we define

$$\Phi: \mathbb{C} - \mathcal{C}_d \to \mathbb{C} - \overline{\mathbb{D}}, \quad \Phi(c) = \phi(f_c(c_0), c),$$

and prove that the function Φ is onto and conformal. By the representation

$$\phi(z,c) = z \prod_{n=0}^{\infty} \left(1 + \frac{c}{f_c^n(z)} \right)^{\frac{d}{(d+1)^{n+1}}}$$

the Böttcher function $\phi(z, c)$ is analytic of two variables in Ω . It follows that Φ is analytic on $\mathbb{C} - \mathcal{C}_d$. Furthermore, for $c \in \mathbb{C} - \mathcal{C}_d$ we have

$$\log |\Phi(c)| = \log |\phi_c(f_c(c_0))| = G_c(f_c(c_0)) = (d+1)G_c(c_0) > 0,$$

and $|\Phi(c)| > 1$. On the other hand, by Proposition 3, the Green function G_c is continuous. Since $G_c|_{\mathcal{C}_d} = 0$, we conclude that $G_c(f_c(c_0)) \to 0$ as c tends to the boundary of $\mathbb{C} - \mathcal{C}_d$. Consequently $|\Phi(c)| \to 1$ as c tends to the boundary of $\mathbb{C} - \mathcal{C}_d$. Near infinity we have $\phi_c(f_c(c_0)) = (\phi_c(c_0))^{d+1} \sim \frac{-c}{d+1}$, which implies that Φ is injective near ∞ , has a simple pole at ∞ , and has no zero in $\mathbb{C} - \mathcal{C}_d$. The argument principle can apply: Φ assumes every value in $\mathbb{C} - \overline{\mathbb{D}}$ exactly once on $\mathbb{C} - \mathcal{C}_d$. Hence Φ maps $\hat{\mathbb{C}} - \mathcal{C}_d$ conformally onto $\hat{\mathbb{C}} - \overline{\mathbb{D}}$. In particular, $\hat{\mathbb{C}} - \mathcal{C}_d$ is simply connected, which implies the assertion.

4. **BICOMPLEX NUMBERS**

We recall some of the basic results of the theory of bicomplex numbers. The bicomplex numbers are defined as follows:

$$\mathbb{C}_2 := \{ a + bi_1 + ci_2 + dj : i_1^2 = i_2^2 = -1, j^2 = 1, \\ i_2 j = ji_2 = -i_1, i_1 j = ji_1 = -i_2, i_2 i_1 = i_1 i_2 = j \}$$

where $a, b, c, d \in \mathbb{R}$. The norm used on \mathbb{C}_2 will be the Euclidean norm (also denoted by | |) of \mathbb{R}^4 .

We remark that we can write a bicomplex number as

$$a + bi_1 + ci_2 + dj$$
 as $(a + bi_1) + (c + di_1)i_2 = z_1 + z_2i_2$,

where $z_1; z_2 \in \mathbb{C}_1 := \{x + yi_1 : i_1^2 = -1\}$. Thus, \mathbb{C}_2 can be viewed as the complexification of the usual complex numbers \mathbb{C}_1 and a bicomplex number can be regarded as an element of \mathbb{C}_2 . Moreover, the norm of the bicomplex number is the same as the norm of the associated element (z_1, z_2) of \mathbb{C}_2 . It is easy to see that \mathbb{C}_2 is a commutative unitary ring with the following characterization for noninvertible elements.

Proposition 4. Let $w = a + bi_1 + ci_2 + dj \in \mathbb{C}_2$. Then w is noninvertible if and only if (a = -d and b = c) or (a = d and b = -c) if and only if $z_1^2 + z_2^2 = 0$.

It is also important to know that every bicomplex number $z_1 + z_2 i_2$ has the following unique idempotent representation:

$$z_1 + z_2 i_2 = (z_1 - z_2 i_1)e_1 + (z_1 + z_2 i_1)e_2$$
, where $e_1 = \frac{1+j}{2}$ and $e_2 = \frac{1-j}{2}$

This representation is very useful because: addition, multiplication and division can be done term-by-term. Also, an element will be noninvertible if and only if $z_1 - z_2i_1 = 0$ or $z_1 + z_2i_1 = 0$. The next definition will be useful to construct a natural "disc" in \mathbb{C}_2 .

Definition 2. We say that $X \subset \mathbb{C}_2$ is a \mathbb{C}_2 -Cartesian set determined by X_1 and X_2 if $X = X_1 \times_e X_2 := \{z_1 + z_2 i_2 \in \mathbb{C}_2 : z_1 + z_2 i_2 = w_1 e_1 + w_2 e_2; (w_1; w_2) \in X_1 \times X_2\}.$

It is shown that if X_1 and X_2 are domains of \mathbb{C}_1 , then $X_1 \times_e X_2$ is also a domain of \mathbb{C}_2 . Then, a manner to construct a natural "disc" in \mathbb{C}_2 is to take the \mathbb{C}_2 -Cartesian product of two discs in \mathbb{C}_1 . Hence, we define the natural "disc" of \mathbb{C}_2 as follows:

$$D(0;r) := B^{1}(0;r) \times_{e} B^{1}(0;r)$$
$$= \{z_{1} + z_{2}i_{2} : z_{1} + z_{2}i_{2} = w_{1}e_{1} + w_{2}e_{2}; |w_{1}| < r, |w_{2}| < r\}$$
where $B^{n}(0;r)$ is an open ball of $\mathbb{C}_{1}^{n} \equiv \mathbb{C}^{n}$ with radius r .

5. The Generalized Bicomplex Mandelbrot Set of Polynomials of Type E_d

In this section, we want to give a version of the Mandelbrot set of polynomials of type E_d for bicomplex numbers.

Now, to give a version of the Mandelbrot set of polynomials of type E_d for bicomplex numbers we have only to reproduce the algorithm of Definition 2 for bicomplex numbers. This is the next definition.

Definition 3. Let $f_c(w) = w(w+c)^d$ where $w; c \in \mathbb{C}_2$ and $f_c^n(w) := (f_c^{(n-1)} \circ f_c)(w)$. Then the generalized Mandelbrot set for bicomplex numbers is defined as follows: $\mathcal{C}_d^2 = \{c \in \mathbb{C}_2 : f_c^n(c_0) \text{ is bounded for every } n \in \mathbb{N}\}.$

The next lemma is a characterization of C_d^2 using only C_d . This lemma will be useful to prove that C_d^2 is also a connected set.

Proposition 5. $C_d^2 = C_d \times_e C_d$.

Proof. First, we prove that $\mathcal{C}_d^2 \subset \mathcal{C}_d \times_e \mathcal{C}_d$. Let $c_2 \in \mathbb{C}_2$ such that $f_c^n(c_0)$ is bounded for every $n \in \mathbb{N}$. We have $f_c(w) = w(w+c)^d = [(z_1 - z_2i_1)((z_1 - z_2i_1) + (c_1 - c_2i_1))^d]e_1 + [(z_1 + z_2i_1)((z_1 + z_2i_1) + (c_1 + c_2i_1))^d]e_2$, where $w = (z_1 - z_2i_1)e_1 + (z_1 + z_2i_1)e_2$ and $c = (c_1 - c_2i_1)e_1 + (c_1 + c_2i_1)e_2$. Then $f_c^n(w) = f_{(c_1-c_2i_1)}^n(z_1 - z_2i_1)e_1 + f_{(c_1+c_2i_1)}^n(z_1 + z_2i_1)e_2$.

By hypothesis, $f_c^n(c_0) = f_{(c_1-c_2i_1)}^n(c_0)e_1 + f_{(c_1+c_2i_1)}^n(c_0)e_2$ is bounded for every $n \in \mathbb{N}$.

Hence, $f_{(c_1-c_2i_1)}^n(c_0)$ and $f_{(c_1+c_2i_1)}^n(c_0)$ are also bounded for $\forall n \in \mathbb{N}$. Then $c_1 - c_2i_1, c_1 + c_2i_1 \in \mathcal{C}_d$ and $c = (c_1 - c_2i_1)e_1 + (c_1 + c_2i_1)e_2 \in \mathcal{C}_d \times_e \mathcal{C}_d$.

Conversely, if we take $c \in C_d \times_e C_d$, we have $c = (c_1 - c_2 i_1)e_1 + (c_1 + c_2 i_1)e_2$ with $c_1 - c_2 i_1, c_1 + c_2 i_1 \in C_d$. Hence $f^n_{(c_1 - c_2 i_1)}(c_0)$ and $f^n_{(c_1 + c_2 i_1)}(c_0)$ are also bounded for every $n \in \mathbb{N}$. Then $f^n_c(c_0)$ is bounded for every $n \in \mathbb{N}$, that is $c \in C^2_d$. \Box

Theorem 2. The generalized Mandelbrot set C_d^2 of polynomials of type E_d is connected.

Proof. Define a mapping e as follows:

$$e: \mathbb{C}_1 \times \mathbb{C}_1 \to \mathbb{C}_1 \times_e \mathbb{C}_1, \quad (w_1; w_2) \mapsto w_1 e_1 + w_2 e_2.$$

The mapping e is clearly a homeomorphism. Then, if X_1 and X_2 are connected subsets of \mathbb{C}_1 , we have that $e(X_1 \times X_2) = X_1 \times_e X_2$ is also connected. Now, by Proposition 5, $\mathcal{C}_d^2 = \mathcal{C}_d \times_e \mathcal{C}_d$. Moreover, by Theorem 1, \mathcal{C}_d is connected. It follows, if we let $X_1 = X_2 = \mathcal{C}_d$, that \mathcal{C}_d^2 is connected. \Box

Acknowledgements

This work was partially supported by the research grant from Shahrood University of Technology. The author thanks the referee for some helpful comments.

References

- S. BEDDING and K. BRIGGS, Iteration of quaternion maps. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5(1995), No. 3, 877–881.
- B. BRANNER and N. FAGELLA, Homeomorphisms between limbs of the Mandelbrot set. J. Geom. Anal. 9(1999), No. 3, 327–390.
- 3. L. CARLESON and T. W. GAMELIN, Complex dynamics. Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993.
- A. DOUADY and J. H. HUBBARD, Itération des polynômes quadratiques complexes. C. R. Acad. Sci. Paris Sér. I Math. 294(1982), No. 3, 123–126.
- J. GOMATAM, J. DOYLE, B. STEVES, and I. MCFARLANE, Generalization of the Mandelbrot set: quaternionic quadratic maps. *Chaos Solitons Fractals* 5(1995), No. 6, 971–986.
- J. A. R. HOLBROOK, Quaternionic Fatou–Julia sets. Ann. Sci. Math. Quebec 11(1987), No. 1, 79–94.
- 7. J. MILNOR, Dynamics in one complex variable. Third edition. Annals of Mathematics Studies, 160. Princeton University Press, Princeton, NJ, 2006.
- 8. A. NORTON, Generation and display of geometric fractals in 3-D. Computer Graphics 16(1982), 61–67.
- D. ROCHON, A generalized Mandelbrot set for bicomplex numbers. Fractals 8(2000), No. 4, 355–368.

(Received 4.12.2006)

Author's address:

Department of Mathematics Shahrood University of Technology Shahrood, Iran E-mail: azireh@gmail.com

194