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A GENERALIZED MANDELBROT SET OF POLYNOMIALS
OF TYPE Ed FOR BICOMPLEX NUMBERS

AHMAD ZIREH

Abstract. We use a commutative generalization of complex numbers called
bicomplex numbers to introduce the bicomplex dynamics of polynomials of
type Ed, fc(w) = w(w + c)d. Rochon [9] proved that the Mandelbrot set of
quadratic polynomials in bicomplex numbers of the form w2 +c is connected.
We prove that our generalized Mandelbrot set of polynomials of type Ed,
fc(w) = w(w + c)d, is connected.
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1. Introduction

In 1982, A. Norton [8] gave some straightforward algorithms for generation
and display fractal shapes in 3-D. For the first time, iteration by quaternions
appeared. Subsequently, theoretical results were obtained in [5] for the quater-
nionic Mandelbrot set defined by quadratic polynomial in quaternions of the
form q2 + c. Rochon [9] used a commutative generalization of complex numbers
called bicomplex numbers to give a new version of the Mandelbrot set in dimen-
sions three and four. Moreover, he proved that the generalization in dimention
four is connected.

In this article, we introduce a one-parameter family of polynomials of type
Ed, fc(z) = z(z + c)d. First, in the complex dynamics of fc, we consider the
connectedness locus or, what is the same, the Mandelbrot set,

Cd = {c ∈ C : the filled Julia set K(fc) is connected},
and prove that the connectedness locus Cd of polynomials of type Ed is con-
nected:

Theorem 1. The Mandelbrot set Cd is connected.

Finally, by using the concept of filled Julia set for bicomplex numbers, we
give a version of the connectedness locus for a bicomplex number and prove that
our generalization of the Mandelbrot set for bicomplex numbers is connected:

Theorem 2. The generalized Mandelbrot set C2
d is connected.

ISSN 1072-947X / $8.00 / c© Heldermann Verlag www.heldermann.de



190 A. ZIREH

2. Polynomials of Type Ed

Let us recall (see [2]) the terminology and definitions in the monic family of
higher degree polynomials. Consider the monic family of complex polynomials
fc(z) = z(z + c)d, where c ∈ C and d ≥ 2. Each fc has degree d + 1 and
has exactly two critical points: −c with multiplicity d − 1, and c0 = −c

d+1
with

multiplicity 1. Moreover, fc(−c) = 0 and 0 is fixed. It is proved (see [2]) that
polynomials with these features can always be expressed in the form fc.

Definition 1 ([2]). A monic polynomial f of degree d ≥ 2 is of type Ed if it
satisfies the following properties:

1. f has two critical points: −c of multiplicity d−1 and c0 of multiplicity 1.
2. f has a fixed point at z = 0.
3. f(−c) = 0.

Proposition 1. Any monic polynomial f(z) of degree d + 1 which is of type
Ed is of the form

fc(z) = z(z + c)d.

Moreover, if fc and fc′ of type Ed are affine conjugate with d ≥ 2, then c = c′.

The proof is straightforward and is omitted. ¤

Notation. Denote D as the unit disc D = {z ∈ C : |z| < 1}.

3. Connectedness

As we know, the Mandelbrot set of quadratic polynomials is connected. In
this section we are going to prove that the Mandelbrot set Cd of polynomials of
type Ed is connected. For this purpose, we need slight modifications of some
well known results and methods.

If we apply the Böttcher theorem([3]) to the polynomial fc, for a sufficiently
large positive number Rc, we get a Böttcher function φc(z) on Dc = {z ∈ C :
|z| ≥ Rc}, such that φc(fc(z)) = (φc(z))d+1.

Let us recall (see [3]) that, in general, a Böttcher function φc(z) cannot
be continued analytically to the whole of Ac(∞). However, since Ac(∞) =⋃∞

n=1(f
n
c )−1(Dc), we can extend the harmonic function Gc(z) = log |φc(z)| to

the whole of Ac(∞) by setting

Gc(z) =
1

(d + 1)n+1
Gc(f

n
c (z)) if z ∈ (fn

c )−1(Dc).

This extension is well defined and Gc(z) is clearly harmonic on Ac(∞). More-
over, we set Gc(z) = 0 for every z ∈ Kc. Then Gc(z) is a continuous subhar-
monic function on C, which is called the Green function associated to K(fc).

Proposition 2 (Sibony’s Theorem). For every A ≥ 0 there exists α =
α(A) ≥ 0 such that the restriction of the Green function Gc to the disk |c| ≤ A
is α− Hölder .
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Proof. We repeat the arguments given in the proof of Theorem 3.2, page 138 of
[3], by making necessary modifications. Assume that A ≥ 10. Let z ∈ C−K(fc)
and let δ(z) = dist(z, K(fc)). Let us take the closest point z0 ∈ Kc to z, and
let S = {z0 + t(z − z0) : 0 ≤ t ≤ 1}. Take N = N(z) to satisfy |fn

c (w)| < A2

for all w ∈ S and all n < N , while |fN
c (z1)| ≥ A2 for some z1 ∈ S. Using

f ′c(z) = (z + c)d−1((d + 1)z + c) and the chain rule, we see that |(fn
c )′(w)| ≤

((A2 + A)d−1((d + 1)A2 + A))n for all n < N and w ∈ S. Also, |fn
c (z0)| < 2A

for all n, or else the iterates

|fn+1
c (z0)| ≥ |fn

c (z0)|(|fn
c (z0)| − |c|)d ≥ |fn

c (z0)|Ad > |fn
c (z0)|

would tend to ∞. The mean value theorem then implies that

|fN
c (z1)− fN

c (z0)| ≤ ((A2 + A)d−1((d + 1)A2 + A))Nδ(z1).

Then we have

|fN
c (z1)| ≤ 2A + ((A2 + A)d−1((d + 1)A2 + A))Nδ(z1).

But |fN
c (z1)| ≥ A2, hence ((A2 + A)d−1((d + 1)A2 + A))Nδ(z1) ≥ 1, and ((A2 +

A)d−1((d + 1)A2 + A))Nδ(z) ≥ 1.

For α = log(d+1)
log((A2+A)d−1((d+1)A2+A))

we have δ(z)α > (d + 1)−N so that

Gc(z) = Gc(f
N
c (z))(d + 1)−N ≤ Mδ(z)α,

where M depends only on A. Consider two points z1, z2 and suppose δ(z1) ≥
δ(z2). We would like to prove

|Gc(z1)−Gc(z2)| ≤ C|z1 − z2|α.

If |z1 − z2| > 1
2
δ(z1), this follows from the above estimate. If |z1 − z2| ≤ 1

2
δ(z1),

we use the Harnack inequality for the positive harmonic function Gc(z) in the
disk D(z1, δ(z1)) to conclude that

|Gc(z1)−Gc(z2)| ≤ C0Mδ(z1)
α |z1 − z2|

δ(z1)
≤ C|z1 − z2|α. ¤

Proposition 3. If cn → c, then the corresponding Green functions Gcn(z)
converge uniformly on C to Gc. Thus Gc(z) is jointly continuous in c and z.

Proof. Proposition 2 guarantees the equicontinuity of the sequence Gc(z) and
the arguments of [3], page 139, can be reproduced. ¤

Finally we have

Theorem 1. The Mandelbrot set Cd is connected.

Proof. As Ĉ − D is simply connected, it is enough to find a homeomorphism
from Ĉ− Cd onto Ĉ− D. We will need to find a conformal map

Φ : C− Cd → C− D.

Let Ω = {(z, c) ∈ C × C : c ∈ C − Cd, Gc(z) > Gc(c0)}. For every n ≥ 0 the
pre-critical points, as (z, c) ∈ C2 such that fn

c (z) = c0, and the pre-images of
the origin, as (z, c) ∈ C2 such that fn

c (z) = 0, do not belong to Ω. Hence the
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Böttcher function φ(z, c) := φc(z) is well defined and analytic on Ω. It has the
following representation

φ(z, c) = lim
n→∞

(fn
c (z))

1
(d+1)n = z

∞∏
n=1

(fn
c (z))

1
(d+1)n

(fn−1
c (z))

1
(d+1)n−1

= z

∞∏
n=1

(
fn−1

c (z)(fn−1
c (z) + c)d

(fn−1
c (z))d+1

) 1
(d+1)n

= z

∞∏
n=0

(
1 +

c

fn
c (z)

) d
(d+1)n+1

.

We obviously have (fc(c0), c) ∈ Ω. Now we define

Φ : C− Cd → C− D, Φ(c) = φ(fc(c0), c),

and prove that the function Φ is onto and conformal. By the representation

φ(z, c) = z

∞∏
n=0

(
1 +

c

fn
c (z)

) d
(d+1)n+1

the Böttcher function φ(z, c) is analytic of two variables in Ω. It follows that Φ
is analytic on C− Cd. Furthermore, for c ∈ C− Cd we have

log |Φ(c)| = log |φc(fc(c0))| = Gc(fc(c0)) = (d + 1)Gc(c0) > 0,

and |Φ(c)| > 1. On the other hand, by Proposition 3, the Green function Gc

is continuous. Since Gc|Cd
= 0, we conclude that Gc(fc(c0)) → 0 as c tends to

the boundary of C − Cd. Consequently |Φ(c)| → 1 as c tends to the boundary
of C − Cd. Near infinity we have φc(fc(c0)) = (φc(c0))

d+1 ∼ −c
d+1

, which implies
that Φ is injective near ∞, has a simple pole at ∞, and has no zero in C− Cd.
The argument principle can apply: Φ assumes every value in C−D exactly once
on C−Cd. Hence Φ maps Ĉ−Cd conformally onto Ĉ−D. In particular, Ĉ−Cd

is simply connected, which implies the assertion. ¤

4. Bicomplex Numbers

We recall some of the basic results of the theory of bicomplex numbers. The
bicomplex numbers are defined as follows:

C2 := {a + bi1 + ci2 + dj : i21 = i22 = −1, j2 = 1,

i2j = ji2 = −i1, i1j = ji1 = −i2, i2i1 = i1i2 = j}
where a, b, c, d ∈ R. The norm used on C2 will be the Euclidean norm (also
denoted by | |) of R4.

We remark that we can write a bicomplex number as

a + bi1 + ci2 + dj as (a + bi1) + (c + di1)i2 = z1 + z2i2,

where z1; z2 ∈ C1 := {x + yi1 : i21 = −1}. Thus, C2 can be viewed as the
complexification of the usual complex numbers C1 and a bicomplex number can
be regarded as an element of C2. Moreover, the norm of the bicomplex number
is the same as the norm of the associated element (z1, z2) of C2. It is easy to
see that C2 is a commutative unitary ring with the following characterization
for noninvertible elements.
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Proposition 4. Let w = a + bi1 + ci2 + dj ∈ C2. Then w is noninvertible if
and only if (a = −d and b = c) or (a = d and b = −c) if and only if z2

1 +z2
2 = 0.

It is also important to know that every bicomplex number z1 + z2i2 has the
following unique idempotent representation:

z1 + z2i2 = (z1 − z2i1)e1 + (z1 + z2i1)e2, where e1 =
1 + j

2
and e2 =

1− j

2
.

This representation is very useful because: addition, multiplication and division
can be done term-by-term. Also, an element will be noninvertible if and only if
z1 − z2i1 = 0 or z1 + z2i1 = 0. The next definition will be useful to construct a
natural ”disc” in C2.

Definition 2. We say that X ⊂ C2 is a C2-Cartesian set determined by X1

and X2 if X = X1×e X2 := {z1 + z2i2 ∈ C2 : z1 + z2i2 = w1e1 +w2e2; (w1; w2) ∈
X1 ×X2}.

It is shown that if X1 and X2 are domains of C1, then X1 ×e X2 is also a
domain of C2. Then, a manner to construct a natural “disc” in C2 is to take the
C2-Cartesian product of two discs in C1. Hence, we define the natural “disc”
of C2 as follows:

D(0; r) := B1(0; r)×e B1(0; r)

= {z1 + z2i2 : z1 + z2i2 = w1e1 + w2e2; |w1| < r, |w2| < r}
where Bn(0; r) is an open ball of Cn

1 ≡ Cn with radius r.

5. The Generalized Bicomplex Mandelbrot Set of Polynomials
of Type Ed

In this section, we want to give a version of the Mandelbrot set of polynomials
of type Ed for bicomplex numbers.

Now, to give a version of the Mandelbrot set of polynomials of type Ed for
bicomplex numbers we have only to reproduce the algorithm of Definition 2 for
bicomplex numbers. This is the next definition.

Definition 3. Let fc(w) = w(w+ c)d where w; c ∈ C2 and fn
c (w) := (f

(n−1)
c ◦

fc)(w). Then the generalized Mandelbrot set for bicomplex numbers is defined
as follows: C2

d = {c ∈ C2 : fn
c (c0) is bounded for every n ∈ N}.

The next lemma is a characterization of C2
d using only Cd. This lemma will

be useful to prove that C2
d is also a connected set.

Proposition 5. C2
d = Cd ×e Cd.

Proof. First, we prove that C2
d ⊂ Cd ×e Cd. Let c2 ∈ C2 such that fn

c (c0) is
bounded for every n ∈ N. We have fc(w) = w(w + c)d = [(z1 − z2i1)((z1 −
z2i1) + (c1 − c2i1))

d]e1 + [(z1 + z2i1)((z1 + z2i1) + (c1 + c2i1))
d]e2, where w =

(z1− z2i1)e1 + (z1 + z2i1)e2 and c = (c1− c2i1)e1 + (c1 + c2i1)e2. Then fn
c (w) =

fn
(c1−c2i1)(z1 − z2i1)e1 + fn

(c1+c2i1)(z1 + z2i1)e2.

By hypothesis, fn
c (c0) = fn

(c1−c2i1)(c0)e1 + fn
(c1+c2i1)(c0)e2 is bounded for every

n ∈ N.
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Hence, fn
(c1−c2i1)(c0) and fn

(c1+c2i1)(c0) are also bounded for ∀n ∈ N. Then

c1 − c2i1, c1 + c2i1 ∈ Cd and c = (c1 − c2i1)e1 + (c1 + c2i1)e2 ∈ Cd ×e Cd.
Conversely, if we take c ∈ Cd×eCd, we have c = (c1−c2i1)e1+(c1+c2i1)e2 with

c1 − c2i1, c1 + c2i1 ∈ Cd. Hence fn
(c1−c2i1)(c0) and fn

(c1+c2i1)(c0) are also bounded

for every n ∈ N. Then fn
c (c0) is bounded for every n ∈ N, that is c ∈ C2

d . ¤
Theorem 2. The generalized Mandelbrot set C2

d of polynomials of type Ed is
connected.

Proof. Define a mapping e as follows:

e : C1 × C1 → C1 ×e C1, (w1; w2) 7→ w1e1 + w2e2.

The mapping e is clearly a homeomorphism. Then, if X1 and X2 are connected
subsets of C1, we have that e(X1 × X2) = X1 ×e X2 is also connected. Now,
by Proposition 5, C2

d = Cd ×e Cd.. Moreover, by Theorem 1, Cd is connected. It
follows, if we let X1 = X2 = Cd, that C2

d is connected. ¤
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