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Cognitive performance exhibits patterns of trial-to-trial variation that can be described as 1/f or pink
noise, as do repeated measures of locomotor performance. Although cognitive and locomotor perfor-
mances are known to interact when performed concurrently, it is not known whether concurrent
performance affects the tasks’ pink noise dynamical structure. In this study, participants performed a
cognitive task (repeatedly producing a temporal interval) and a motor task (walking on a treadmill) in
single- and dual-task conditions. In single-task conditions both tasks exhibited pink noise structure. For
concurrent performance the dynamical structure of the cognitive task changed reliably in the direction of
white (random) noise. The dynamical structure of locomotion remained pink noise. The change in
cognitive dynamics occurred despite no reliable changes in mean or standard deviation measures for
either task. The results suggest a functional reorganization of cognitive dynamics supporting successful
task performance in dual-task conditions.
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The time intervals between steps, when walking, vary from
stride to stride as pink noise in healthy individuals (also termed 1/f
noise; Hausdorff et al., 1996; Jordan, Challis, & Newell, 2006,
2007a, 2007b). A pink noise process is one in which the patterns
of variation at one time scale are similar to those found at other
scales, indicating the presence of long-range correlations. Long-
range correlations imply that fluctuations or variations throughout
the data series are positively correlated. The variability of stride
intervals is thus not random but possesses a particular type of
dynamical structure.

The structure of variability is informative about the processes of
coordination that underlie human performance (Riley & Turvey,
2002; Slifkin & Newell, 1998, 1999). For example, the statistics of
long-range correlated stride intervals can change when factors
relating to the task or the actor are varied. Stride intervals become
more random (less correlated) when healthy individuals walk to
the beat of a metronome, for instance. Apparently, entrainment to
the metronome constrains the timing of strides to suppress the
normal timing of gait (Hausdorff et al., 1996). Stride intervals are
also less correlated (more random) in participants with Hunting-
ton’s disease (Hausdorff et al., 1997). Changes in both the actor (as
in Huntington’s disease) and the task (as in introducing a metro-

nome) change the constraints that influence the organization of the
underlying motor synergy (Riley & Turvey, 2002).

Like locomotor performance, repeated measures of cognitive
performance in word naming, memory, production, and decision
tasks vary over time as pink noise in healthy individuals (Gilden,
2001; Kello, Beltz, Holden, & Van Orden, 2007; Van Orden,
Holden, & Turvey, 2003, 2005). The clearest signals of pink noise
are found in cognitive production tasks. For instance, clear pink
noise profiles appear in the variation across repeated temporal
estimates of 1 s or spatial estimates of 1 in (2.54 cm; Gilden,
Thornton, & Mallon, 1995). Pink noise is also found in the
performance variability of tasks that straddle the divide between
cognitive and motor performance, such as simple reaction time and
finger tapping (Chen, Ding, & Kelso, 1997, 2003; Ding, Chen, &
Kelso, 2001).

Research on the pink noise structure of variability in cognition
and motor coordination has been pursued independently. This is
surprising considering the easily appreciated interactions between
cognitive and motor performance: Consider anecdotal reports of
two people slowing down or stopping altogether when engaged in
an engrossing conversation while walking. Findings that mirror
these anecdotal cases have been demonstrated in rigorous labora-
tory experiments, which have shown, for instance, that concurrent
performance of locomotion and various cognitive tasks can result
in reduced walking speed (Springer, Ghiladi, Simon, & Hausdorff,
2004) and impaired cognitive performance (Lajoie, Teasdale,
Bard, & Fleury, 1996; see review by Woollacott & Shumway-
Cook, 2002). Previous research has not, however, examined the
structure of variability for concurrently performed locomotor and
cognitive tasks.

The importance of investigating the structure of performance
variability during concurrent task performance is twofold. First, it
is possible that dual-task performance requires reorganization of
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the underlying control to support stable performance on both tasks
(i.e., establishing new patterns of connectivity among the compo-
nent degrees of freedom that make up a motor synergy or that
make up a “cognitive synergy”; Pellecchia, Shockley, & Turvey,
2005; Shockley & Turvey, 2005). Contrasting the temporal struc-
ture in the variability of each task performed alone and concur-
rently is one way to determine if such reorganization occurs,
because the temporal structure is determined by the organization of
the underlying degrees of freedom (Riley, 2007).

Second, it is possible that changes in pink noise profiles may
provide an index of task demands analogous to how such changes
distinguish healthy versus impaired functioning (cf. Goldberger,
1996; Goldberger, Peng, & Lipsitz, 2002; Havlin et al., 1999;
Lipsitz & Goldberger, 1992). Lipsitz and Goldberger (1992) have
developed a perspective known as the loss of complexity hypoth-
esis, which postulates that “healthy” performance variability has
the complex, irregular pink noise profile, whereas “pathological”
performance is less complex. Loss of complexity stemming from
pathology can occur in two ways. Pathological dynamics can
appear as more rigidly and predictably deterministic. However,
pathology can also appear as a shift away from pink noise toward
random white noise, so a more inclusive hypothesis would concern
changes in direction away from healthy complexity, either more
random or more regular (Van Orden, 2007; West, 2006). Depar-
tures from healthy complexity have been widely confirmed in
cognitive, behavioral, and physiological deficits (e.g., Buxhoeve-
den, Fobbs, Roy, & Casanova, 2002; Gilden & Hancock, 2007;
Hausdorff et al., 1997; Thurner, Mittermaier, & Ehrenberger,
2002; Vaillancourt & Newell, 2002).

If pathological loss of complexity is a general phenomenon, then
even healthy participants may exhibit a loss of complexity under
challenging conditions, such as the dual-task conditions of the
present experiment. We investigated that hypothesis in an exper-
iment that required participants to produce repeated temporal es-
timates alone or concurrent with a motor task (walking on a
motorized treadmill) and compared the structure of performance
variability in the cognitive (temporal estimation) and motor (walk-
ing) tasks when performed alone or concurrently.

We expected to see stronger effects of dual-task performance on
the cognitive task compared with the motor task. Participants have
less freedom to adjust walking patterns when walking on a mo-
torized treadmill, because treadmill speed is fixed, whereas the
temporal estimation task is relatively less constrained. In addition,
there are stronger consequences for allowing locomotor perfor-
mance to degrade excessively, such as falling, than there are for
allowing performance of the cognitive task to degrade. The expec-
tation was that participants would prioritize locomotor perfor-
mance, in accordance with the posture-first principle (Woollacott
& Shumway-Cook, 2002)—a greater departure from healthy com-
plexity for cognitive performance dynamics in the dual-task con-
dition compared with the single-task cognitive dynamics and with
the locomotor dynamics. If concurrent locomotion has the effect of
perturbing cognitive performance, then the specific expectation
was that we would observe a whitening of the structure of cogni-
tive performance variability, consistent with other research dem-
onstrating that other types of perturbations whiten the profile of
cognitive performance variability (e.g., Kello et al., 2007).

We quantified the structure of locomotor and cognitive perfor-
mance variability in two ways, using detrended fluctuation anal-

ysis (DFA; Peng, Havlin, & Stanley, 1995) and standardized
dispersion analysis (SDA; Bassingthwaighte, Liebovitch, & West,
1994; Caccia, Percival, Cannon, Raymond, & Bassingthwaighte,
1997; Eke, Herman, Kocsis, & Kozak, 2002; Holden, 2005). The
computational steps of each method are described below. The
methods differ with regard to those computational details; so if
they produce converging results, then it is less likely that the
results reflect an artifact.

We also determined whether locomotor and cognitive perfor-
mance became synchronized at a stable phase relation. Although
we did not give participants any explicit instruction to synchronize,
it was possible that spontaneous coordination between these two
rhythmic behaviors occurred or that participants explicitly adopted
a strategy of timing the temporal estimation in relation to some
salient event in the gait cycle. Although the phase coupling (PC)
analysis we performed would not allow us to distinguish these two
possibilities, it did allow us to determine whether cognitive re-
sponses and walking became synchronized and to quantify the
strength of any such coordination.

Method

Participants

Participants were 10 healthy University of Cincinnati under-
graduates (5 men, 5 women) who received credit to fulfill a course
requirement. Participants ranged in age from 18 to 24 years, in
height from 1.67 m to 1.85 m, and in weight from 54.43 kg to
84.82 kg. Participants had no history of lower extremity injury or
neuromuscular disorders that would inhibit normal walking. This
experiment was approved by the University of Cincinnati Institu-
tional Review Board and adhered to guidelines for the ethical
treatment of participants.

Apparatus

A Sole TT8 motorized treadmill (Sole Treadmills, Jonesboro,
AR) was used for trials involving walking. The treadmill speed
could be varied in 0.1-mph increments. The treadmill was located
1 m from a wall in front of participants, and an occlusion screen
hung 30.5 cm in front of the treadmill. Walking performance was
quantified by measuring participants’ right knee flexion–extension
angles during the gait cycle with a twin-axis SG-150 goniometer
and DataLINK PC software Version 3.00 (Biometrics Ltd., Ladys-
mith, VA). The goniometer was secured to the leg with athletic
tape (Cover-Roll Stretch Adhesive Gauze). A handheld, digital
thumb button that was integrated with the goniometer hardware
and software was used to record estimates of temporal duration.
The data were sampled at a rate of 100 Hz and stored on a PC.

Procedure

Participants were tested individually in a laboratory setting.
During a 10-min treadmill familiarization period, prior to the
beginning of the experiment, participants were asked to select a
comfortable speed that they would adopt if they were out for a
stroll around campus. This walking speed was used for all subse-
quent trials. The treadmill speed was adjusted accordingly.

There were three conditions: temporal estimation performed
alone (while seated), walking performed alone, and temporal

1533DYNAMICS OF COGNITIVE ESTIMATES



estimation and walking performed concurrently. In all trials par-
ticipants were instructed to look straight ahead at a white screen,
to avoid talking, and to limit other nonessential body movements
(e.g., turning the head or performing unrelated arm movements).
Condition order was randomized for each participant. One trial per
condition was performed. Each trial lasted 16 min. Rest breaks
were allowed between trials as needed.

The temporal estimation task required participants to repeatedly
reproduce intervals of a fixed duration by pressing the handheld
button after they estimated the target interval had elapsed. Each
button press marked the beginning of a new interval. The target
duration was presented to participants repeatedly for 30 s prior to
the beginning of a trial. The target duration was presented with a
metronome set to a rate of 1 Hz (i.e., the interval participants had
to reproduce was 1 s long), but participants were not explicitly told
the duration. After the 30-s period the metronome was turned off,
and the participants were instructed to continue pressing a button
for the duration of the 16-min trial with the goal of repeatedly
reproducing the duration between the tones they had just heard.

The walking task simply required participants to walk for the
entire trial (also 16 min) with the treadmill set at each participant’s
self-selected comfortable speed (M ! 1.77 mph, SD ! 0.45 mph).
Treadmill speed was not changed once the trial was initiated. Data
collection was not initiated until the treadmill reached the specified
speed to eliminate the transient period during which the treadmill
belt was accelerating.

During the dual-task condition, participants were instructed to
perform the temporal estimation task while walking on the tread-
mill for the 16-min trial.

Data Reduction and Analysis

To create stride interval time series, customized MATLAB
(Mathworks, Inc., Natick, MA) routines that implemented a peak-
picking algorithm were used to identify the time of occurrence of
peak knee flexion on each stride. The times for adjacent strides
were subtracted from one another to obtain the time interval
between successive strides. MATLAB routines were also used to
determine intervals between button presses for the temporal esti-
mation task by identifying the time of onset of button pressing for
each response and subtracting the time between adjacent re-
sponses. The mean and standard deviation of the resulting stride
interval and temporal estimation interval time series were com-
puted to characterize walking and temporal estimation perfor-
mance (see Figure 1).

The interval time series were submitted to DFA (Goldberger et
al., 2000; Peng et al., 1995) and SDA to characterize the structure
of performance variability for each task. DFA quantifies the struc-
ture of variability by computing scaling exponents that relate a
measure of variability, the detrended fluctuation function (see
Equation 1), to the time scale over which the function was com-
puted. The first step in DFA is dividing the time series into
segments (boxes) of equal length. A trend line is fit to the data in
each box and the time series is detrended by subtracting the local
trend in each box. The variability of the detrended time series
within each box is quantified by the detrended fluctuation function
F(n), according to

F"n# ! ! 1
N

[y"k# " yn"k#]2. (1)

The detrended fluctuation function is then averaged across boxes
of the same size to obtain one average measure of variability for
that box size (i.e., time scale). The process is repeated for the next
largest box size and then for all possible box sizes (the smallest
box size is limited by the sampling rate, and the largest by trial
duration).

As commonly practiced, we dropped the smallest and largest
box sizes because they approach the small and large absolute size
limits of the data set, which may distort the outcome of the analysis
(see, e.g., Duarte & Zatsiorsky, 2001; Roerdink et al., 2006). The
result of these analysis steps is a characterization of the relation
between the magnitude of the detrended fluctuation function and
the size of the box (i.e., the time scale) over which the function was
computed. This relation is plotted in log–log coordinates (see
Figures 2A and 2B). A positive linear relation between the amount
of fluctuation and time scale suggests the presence of fractal (1/f$)
scaling, with the slope $ of a linear fit to the plot (the scaling
exponent) providing a quantitative index of the structure of per-
formance variability. A slope of $ ! .5 indicates white noise
(random fluctuations), $ ! 1.0 indicates “perfect” pink noise, and
.5 % $ % 1.0 indicates a stochastic process with a tendency toward
pink noise (the fluctuations are not random white noise, but the
correlations are weaker than perfect pink noise; see Riley &
Turvey, 2002, for a discussion of how scaling exponents index
degree of randomness).

Similar to DFA, SDA is used to characterize the relative coher-
ence of the patterns of fluctuations in the data by computing a
fractal dimension statistic. The fractal dimension is computed by
repeatedly resampling the same data with different box sizes and
calculating a dispersion statistic (standard deviation of the sample
mean) for each box size. The resulting pairs of dispersion statistics
and box sizes are graphed in log–log coordinates to depict the
function relating the measure of variability (standardized disper-
sion) to the time scale over which it was measured (box size),
similar to plotting the detrended fluctuation function versus box
size in DFA. The slope of a linear fit to that function is subtracted
from 1, yielding the fractal dimension (FD; see Figures 2C and
2D). An FD ! 1.5 indicates white noise, FD ! 1.2 indicates pink
noise, and 1.2 % FD % 1.5 indicates a stochastic process with a
tendency toward pink noise. We used SDA in addition to DFA to
provide converging evidence for any changes in fractal scaling of
cognitive or locomotor performance variability.

PC Analysis

We also determined whether spontaneous coupling occurred
between locomotion and temporal estimates, and determined the
strength of coupling when it occurred, using a PC analysis
(McDermott, Van Emmerik, & Hamill, 2003). We selected this
method rather than other measures of relative phase (RP; such as
continuous RP; see, e.g., Schmidt, Shaw, & Turvey, 1993) because
visual inspection of the data suggested the possibility of multifre-
quency coordination and because of the discrete nature of the
temporal estimation data. Using the original raw data time series,
we calculated discrete RP by indexing the time of occurrence of
each left knee flexion in relation to the time of occurrence of the
subsequent button press, using the following equation:

RP !
t # nT

T
! 360, (2)
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where n is the number of button presses between two successive
flexions of one knee, T is the time duration of the stride (the time
between successive flexions of the same knee) in which the time
estimation response occurred, and t is the time lag from the beginning
of the stride to the subsequent time estimation response.

The choice of peak knee flexion was somewhat arbitrary; we
did not assume that peak knee flexion was necessarily a salient
event in the gait cycle that would tend to become synchronized
with time estimates. Another event, such as heel strike, might
be more salient than peak knee flexion, but with our equipment
we could not measure heel strike. Nevertheless, peak knee
flexion also permits reliable calculations of RP between the gait
cycle and cognitive responding, and peak knee flexion was easy
to determine reliably with a peak-picking algorithm. Moreover,
we analyzed knee angles from the left leg, but if coordination
between locomotion and cognitive responding occurred, it
could have been between time estimate responses and some
event in the gait cycle of the right leg. Thus, although the value
of RP indicates the phase relation between one event in the gait

cycle and cognitive responding, the value should be interpreted
circumspectly. The value of the PC statistic, in contrast, pro-
vides a more easily interpretable quantification of coordination
between the gait cycle and cognitive responding; PC indexes
the strength of the coupling (i.e., coordination stability) be-
tween, in this case, the knee flexion and temporal estimation
signals.

The PC statistic was quantified by first plotting RP(i) as a
function of time-delayed RP(i & 'i), where the delay 'i corre-
sponds to the lag used in the return map to yield data that cluster
along the line of identity (McDermott et al., 2003) (see Figure 3).
The Euclidean distance (dn) was then taken for each point from the
line of identity and the distances were weighted (wd; dn $ 40 was
weighted as 0 and dn ( 40 was weighted to actual distance) and
summed:

wdn ! 1 "
"dn"

40 cos "45#
, (3)

Figure 1. Representative data from Participant 3: (a) raw time series for both tasks during concurrent task
performance, (B) locomotion interval data (indexed by time interval from peak knee flexion to subsequent peak
knee flexion) during single-task performance, (C) locomotion interval data during concurrent task performance,
(D) cognitive response interval data (indexed by time interval from cognitive response to subsequent cognitive
response) during single-task performance, and (E) cognitive response interval data during concurrent task
performance.
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PC !

#
n)1

m

wdn

m
% 100, (4)

with m equal to the number of points within the lowest range of the
return maps (via the weighted values) with their sum expressed as
a percentage of the highest possible sum.

A value of PC ! 0 indicates no PC, and PC ! 1 indicates
absolute PC between the two signals. PC is independent of the
phase relation (i.e., the value of RP) or frequency ratio (e.g., 1:1,
2:1) between the two signals. We computed both RP and PC a
second time using peak extension of the left knee as the relevant
gait event as a way of determining and enhancing the reliability of
these measures. Like peak knee flexion, peak knee extension is
also a somewhat arbitrary event during the gait cycle, although it
does occur fairly close in time to toe-off. Results with both knee
flexion and knee extension time series are presented.

Results

Indices of Performance

See Table 1 for a summary of each participant’s data. The mean
and standard deviation of stride and temporal estimation intervals
were submitted to paired-samples t tests to compare performance
in single- and dual-task conditions. For the stride intervals there

were no significant differences across single- and dual-task con-
ditions, t(9) ! 0.22, p ! .83, and t(9) ! 0.76, p ! .47, for mean
and standard deviation, respectively; nor were there any significant
differences for cognitive response intervals, t(9) ! )1.54, p ! .16,
and t(9) ! 1.08, p ! .31, for mean and standard deviation,
respectively. Although on average there were no differences in
these parameters, inspection of Table 1 suggests that some partic-
ipants exhibited substantial increases in temporal estimates across
single- and dual-task conditions, whereas others exhibited substan-
tial decreases, and a few participants (most notably Participant 5,
whose estimates were quite accurate) differed very little across
conditions.

Indices of the Dynamical Structure of
Performance Variability

DFA. Performed in isolation, both gait and temporal estima-
tion performance variability exhibited a tendency toward pink
(correlated) noise structure with respective mean $ ! .788 and
.752. Temporal estimation performance variability was signifi-
cantly less pink and more random ($ ! .581) when performed
while walking compared with the single-task condition, t(9) !
3.32, p ! .009. This result indicates a qualitative change in the
structure of cognitive performance variability—performance vari-
ability exhibited a structure less like pink noise and more akin to
white noise as intervals became less correlated with one another—

Figure 2. Representative data of cognitive responding from Participant 3: (A) detrended fluctuation analysis
(DFA) during single-task performance, (B) DFA during concurrent task performance, (C) standardized disper-
sion analysis (SDA) during single-task performance, and (D) SDA during concurrent task performance. DFF !
detrended fluctuation function.

1536 KIEFER, RILEY, SHOCKLEY, VILLARD, AND VAN ORDEN



when the temporal continuation task was performed while walk-
ing. One participant (Participant 5) who exhibited very accurate
temporal estimates exhibited an increase, rather than a decrease, in
alpha. During dual-task performance, the structure of gait variabil-
ity ($ ! .813) was not significantly affected by concurrently
performing the cognitive task, t(9) ! )0.836, p ! .425.

SDA. According to SDA, too, performance variability of both
the gait and temporal continuation tasks performed independently
exhibited a tendency toward pink noise with mean FD ! 1.174 and
1.179, respectively (FD ! 1.2 for ideal pink noise). Similar to the
DFA findings, SDA revealed that when the two tasks were per-
formed concurrently, cognitive performance exhibited a less pink
and more random profile, t(9) ! )3.064, p ! .013 (mean FD !
1.358; FD ! 1.5 for white noise), whereas gait dynamics did not
change reliably, t(9) ! 0.380, p ! .713 (mean FD ! 1.160). The
SDA results confirm the DFA results of a qualitative change in the

structure of cognitive performance variability when the temporal
estimation task was performed while walking.

Coupling Between Locomotion and Cognitive Responding

There was much disparity among participants regarding the
frequency ratios (stride frequency:temporal estimation response
frequency) and phase relations exhibited (see Figure 3). The ma-
jority of participants exhibited a 1:1 knee flexion:temporal esti-
mate or knee extension:temporal estimate frequency ratio (see
Figure 3A), but some participants alternated repeatedly between
particular 1:1 phase relations. Only one participant (Participant 7)
exhibited a 1:2 frequency ratio (see Figure 3C), performing with
less stability than the participants coordinating at 1:1 ratios (see
Table 2). Some participants’ temporal estimates were roughly
in-phase with left knee flexion, whereas others were roughly

Figure 3. Relative-phase time series during concurrent task performance for Participants 3, 7, and 5 (A, C, and
E, respectively) and return maps for Participants 3, 7, and 5 (B, D, and F, respectively). Dotted line represents
the line of identity—the temporal alignment of the abscissa and ordinate.
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antiphase (in-phase with the right leg). One participant (Participant
5) did not exhibit any discernibly stable phase relation or stable
frequency ratio at any point during the dual-task trial (see Figure
3E), although the apparent phase wandering exhibited by this
participant was largely constrained between 100° and 300°. As
described in more detail in the Discussion, the frequency ratio and
phase relation (or absence thereof) observed did not relate system-
atically to the changes observed in alpha or FD of cognitive
performance in the dual-task trial.

PC was somewhat variable among participants (see Table 2 and
Figures 3B, 3D, and 3F). The average PC value when performed
using peak knee flexion was .627 (SD ! .185), ranging from .293
to .804 across participants (recall that PC ! 0 indicates no PC and
PC ! 1 indicates a perfect, stable phase relation). When PC was
performed using peak knee extension, the PC values were slightly
lower and more variable (M ! .504, SD ! .225), ranging from
.128 to .767.

Correlations Among the Measures

Two-tailed Pearson product-moment correlations between mean
stride and temporal estimation intervals, standard deviation of
stride and temporal estimation intervals, DFA scaling exponents,
and PC values were computed. Five reliable correlations stand out
in this analysis. First, the mean intervals of the cognitive responses
during single-task performance and the standard deviation of the

cognitive responses during single-task performance were reliably
correlated, r(8) ! .93, p % .01. As response interval durations
increased, they also became more widely dispersed (e.g., Holden,
Van Orden, & Turvey, 2008; Luce, 1986; Wagenmakers & Brown,
2007). This is not surprising, as larger magnitudes of perceptual
estimates generally coincide with wider dispersion in human per-
formance (e.g., Ekman’s Law; Ekman, 1959).

Second, the mean intervals of the cognitive responses during
single-task performance were significantly correlated with the
scaling exponent of the cognitive response intervals during single-
task performance, r(8) ! .86, p % .01, indicating a relation
between the mean temporal estimates and the pink noise structure
of the temporal estimation performance variability. As the mean
temporal estimate duration increased, the structure of temporal
estimation variability exhibited a more pink (more correlated)
structure of variability.

Third, the standard deviation of the cognitive response intervals
during single-task performance was significantly correlated with
the scaling exponents of the cognitive response intervals during
single-task performance, r(8) ! .75, p % .05. This finding is
related to the first correlation discussed and indicates that clearer
signals of pink noise in temporal estimates are associated with a
greater amount of variability. This falls out of the relation between
the scaling exponent and the definition of a scaling relation in
variability. The 1/f scaling relation implies that variability will

Table 1
Mean and Standard Deviation Intervals, Scaling Exponents, and Fractal Dimensions for
All Participants

Participant

Locomotor task

Single-task condition Dual-task condition

M SD $ FD M SD $ FD

1 1.42 0.03 .79 1.29 1.40 0.02 .65 1.33
2 1.53 0.03 .66 1.28 1.58 0.04 .80 1.09
3 1.16 0.06 .78 1.08 1.10 0.06 .83 1.12
4 1.36 0.04 .84 1.06 1.36 0.03 .89 1.06
5 1.18 0.04 .86 1.14 1.15 0.04 .87 1.13
6 1.31 0.02 .72 1.21 1.21 0.02 .72 1.24
7 1.82 0.14 .87 1.04 1.95 0.09 .77 1.26
8 1.48 0.03 .87 1.17 1.42 0.04 .92 1.05
9 1.11 0.02 .70 1.27 1.09 0.02 .74 1.24

10 1.59 0.07 .78 1.20 1.64 0.08 .93 1.07
M 1.40 0.05 .79 1.17 1.39 0.04 .81 1.16

Cognitive task

1 0.84 0.12 .75 1.20 1.39 0.14 .50 1.52
2 0.86 0.10 .72 1.15 0.80 0.07 .46 1.46
3 0.83 0.09 .71 1.24 1.10 0.09 .60 1.32
4 1.81 0.65 .98 1.02 1.36 0.10 .60 1.25
5 1.01 0.12 .70 1.40 1.00 0.18 .87 1.31
6 0.80 0.09 .65 1.11 1.21 0.07 .37 1.39
7 1.12 0.17 .84 1.19 1.01 0.23 .53 1.51
8 1.05 0.07 .80 1.14 1.40 0.11 .56 1.11
9 0.83 0.16 .61 1.15 1.10 0.16 .54 1.58

10 1.40 0.34 .77 1.18 1.64 0.14 .76 1.14
M 1.06 0.19 .75 1.18 1.20 0.13 .58 1.36

Note. $ ! scaling exponent (obtained through detrended fluctuation analysis); FD ! fractal dimension (obtained
through standardized dispersion analysis).
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grow in a data set as more data are collected (e.g., see Van Orden
et al., 2005). The scaling exponent estimates how fast variability
grows in a data set (all other things equal), and a scaling exponent
close to that of pink noise predicts more rapid growth in variabil-
ity, and thus more variability, compared with exponents closer to
white noise (for data sets of the same size).

Fourth, the mean cognitive response intervals during dual-task
performance were correlated with PC during dual-task perfor-
mance—as temporal estimate durations became longer, PC be-
came stronger, r(8) ! .70, p % .05. However, this appears to have
been driven by data from Participants 2 and 7, who showed lower
PC values as well as 1:2 ratios.

The final noteworthy finding is that the scaling exponents ob-
tained from DFA and SDA were reliably correlated, r(18) ! ).64,
p % .01, providing evidence that the two measures deliver similar
indexes for quantifying the change in performance variability for
the temporal estimation task.

Discussion

The present study examined the reciprocal influences of two
behavioral performances that exhibit pink noise when performed
in isolation. The primary result was that temporal estimates
changed from clearer signals of long-range-correlated pink noise
in the single-task condition to less clear, whiter signals in the
dual-task condition in which participants performed the temporal
estimation task while walking on the treadmill. The structure of
variation in gait performance did not change from single- to
dual-task conditions. Both DFA and SDA revealed this pattern of
results, providing convergent evidence for the dramatic change in
the dynamical structure of cognitive performance while walking.

By contrast, means and standard deviations of both stride inter-
vals and temporal estimation intervals remained statistically un-

changed, irrespective of whether the tasks were performed con-
currently or in isolation. The latter two measures are typical
performance metrics, but they failed to capture changes in the
intrinsic dynamics of performance, changes that were revealed by
the fractal time series analyses (DFA and SDA).

The fact that this experiment involved treadmill walking re-
quires comment. Treadmill walking seems to affect the local
dynamic stability of gait compared with overground walking
(Dingwell, Cusumano, Cavanagh, & Sternad, 2001). During tread-
mill walking long-range correlations are still present, as demon-
strated in the present study and previous studies (Jordan et al.,
2007a, 2007b), though the strength of the correlations may be
reduced. Comparisons between treadmill and overground walking
are not a simple matter, however, because of a host of potential
confounds, so those differences might be due to other factors.
Nevertheless, the present results may not straightforwardly gener-
alize to overground walking.

The increased randomness of cognitive dynamics in the dual
task might be interpreted as supporting an account based on
limited attentional resource pools (Wickens, 2002). An argument
could be made that more random performance stems from an
impairment caused by competition for limited resources. However,
the absence of an overall performance decrement for standard
measures of either task is not consistent with this interpretation.
Limited attentional resources would more readily predict a perfor-
mance decrement than a change in performance dynamics.

Presently, to our knowledge, no existing model of dual-task
performance—whether cast in terms of limited attentional resource
pools or some other mechanism—has been articulated in such a
way as to predict changes in the dynamics of cognition under
dual-task conditions. The development of such a model will be
important to gain a better understanding of cognition. A model
developed in the context of concurrent walking and cognitive
performance should be informed by the posture-first principle
(Woollacott & Shumway-Cook, 2002), according to which partic-
ipants place greater priority on locomotor or balance performance
compared with cognitive performance because the danger of fall-
ing, for example, exists while walking on a motorized treadmill.

Another candidate cause of the change in cognitive dynamics
was entrainment of cognitive responses to the locomotor rhythm,
whether the result of an explicit strategy by participants or the
reflection of spontaneous coupling between two rhythms. It has
been demonstrated that fluctuations in finger tapping (Chen et al.,
1997) and locomotion (Hausdorff et al., 1996) become less pink
and more random or white when explicitly paced by a metronome.
Presumably, entrainment to the metronome supplements or substi-
tutes for purposeful coordination and overrides the intrinsic (pink
noise) dynamics of purposeful coordination. Consequently, fluc-
tuations in the data series come to reflect errors in synchronizing
to the pacing signal, exclusively (Van Orden et al., 2003).

If the locomotor rhythm had acted like a metronome in the
present experiment, however, we should have seen consistent
relations between the fractal scaling indices and measures of
coupling, which we did not. Among the 9 participants who showed
a decrease in the scaling exponent for temporal estimation in the
dual-task condition, there was no common trend in terms of
frequency ratio, RP relation, or PC. Moreover, Participants 5 and
7 were similar in exhibiting relatively low PC, but they exhibited
opposite changes in scaling exponent for the cognitive task (an

Table 2
Phase Coupling, Frequency Ratios, and Phase Modes for
Each Participant

Participant PC–KF PC–KE
Frequency

ratios
Representative

phase modea (°)

1 0.695 0.707 1:1 120, 170
2 0.540 0.265 1:2 (240, 280)
3 0.776 0.551 1:1 170
4 0.718 0.643 1:1 180, 120
5 0.308 0.207 Noneb Noneb

6 0.804 0.695 1:1 170, 120
7 0.293 0.128 1:2 220, 270
8 0.700 0.767 1:1 110, 200
9 0.711 0.528 1:1 180, 120

10 0.725 0.548 1:1 170

Note. PC–KF ! phase coupling indexed by consecutive peak knee flex-
ions; PC–KE ! phase coupling indexed by consecutive peak knee
extensions.
a Relative phase values were visually determined on the basis of relative
phase plots (see Figures 3A, 3C, and 3E) because mean relative phase is
not representative for bimodal distributions. When two values are listed,
adjacent values refer to the copresent phase modes defining the 1:2 fre-
quency ratio and values in parentheses refer to the phase modes between
which the participant alternated in a 1:1 frequency ratio, with the top value
corresponding to the dominant mode. b Denotes no discernible phase
relation for that particular participant.

1539DYNAMICS OF COGNITIVE ESTIMATES



increase in $ and FD from single-task to concurrent task perfor-
mance for Participant 5 vs. a decrease for Participant 7). This
failure occurred despite the perhaps optimal choice of “rhythm”
for the temporal estimation task (1 Hz), near the very center of the
range of what most participants adopted as a comfortable stride
frequency (Danion, Varraine, Bonnard, & Pailhous, 2003). In
short, the presence or absence of coupling between the cognitive
and locomotor tasks, or the strength of the coupling when it
occurred, did not explain changes in cognitive dynamics.

Given the status of the previous explanations, we favor an
alternative in which whitened variation in temporal estimations
indicates a reorganization of the underlying cognitive synergy
when temporal estimation was performed while walking. The
change in the dynamics results from a change in the underlying
organization of control, because it is the coordination of the
available degrees of freedom—the way components of the hypo-
thetical cognitive synergy are organized to work together—that
determines the patterns of variation exhibited by the coordinated
system (cf. Newell, 1998; Newell & Vaillancourt, 2001; Riley &
Turvey, 2002; Shockley & Turvey, 2005).

Increased randomness signals, in this case, a change in the
complexity of cognitive dynamics, a symptom of reduced flexibil-
ity or adaptability of cognitive performance (Van Orden, 2007).
Roughly speaking, cognitive dynamics are closer to inherent limits
on flexible adaptive performance when the temporal estimation
task is performed while walking but not past those limits. Perfor-
mance is sustained, but the component processes entailed by
production of temporal estimates are less integrated in their coor-
dinated activity; they acquire degrees of freedom and begin to vary
with greater independence (which we see as a whiter signal). Such
a hypothesis gains plausibility by the priority of dynamics in
system identification. That is, one must first identify the inherent
dynamics of a system before one can know reliably the nature of
system components or how to go about their discovery (Holden et
al., 2008; Kelso, 2003).

We speculate that past the limits of flexible adaptive perfor-
mance, coordinated activity can no longer be sustained, as when a
taxing or dangerous change in rough terrain stops a conversation
between hikers. If we are correct, then the dynamics of perfor-
mance yield more subtle prognostic information about dual-task
performances, prior to performance breakdowns, or amplification
of perturbations that shows up in more errors and reliably slower
response times. Given also that pink noise is usually more pro-
nounced in simple tasks compared with more difficult ones
(Gilden, 2001; Kello et al., 2007), measures of performance dy-
namics might have practical value in human factors research,
serving as indicators of pending performance breakdowns (Toll-
ner, 2006).

The inherent sensitivity of control processes to task demands
suggests a modeling strategy that assumes that synergies among
cognitive processes, however conceived, are temporarily assem-
bled or soft assembled to suit task demands (Hollis, Kloos, & Van
Orden, in press; Kloos & Van Orden, in press; Riley, 2007). This
strategy borrows from the motor control literature in which soft
assembly equals the temporary assembly of muscle synergies to
sustain motor coordination in real-time motor behavior, for exam-
ple (Bingham, 1988; Kugler & Turvey, 1987; Turvey & Carello,
1995; Withagen, 2004). Soft assembly could explain the subtle
changes in cognitive dynamics observed in the current experiment.

It provides an enhanced range of flexibility in how individuals
assemble cognition to suit a task and thus accommodates the
subtleties of context that dual tasks entail. Soft assembly also
allows that dual tasks may be better seen as larger integrated tasks;
the larger task differs in complexity from the sum of two tasks
alone (Pellecchia et al., 2005; Shockley & Turvey, 2005). The
participant does not perform two tasks, per se, but assembles
dynamic synergies across the brain and body to become a
temporal-estimating-while-locomoting device.
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