Modifying Authentication Techniques in Mobile Communication Systems

Zakaria Zakaria Hassan
Communication Engineering
Department
Higher Technological Institute
Cairo, Egypt
zakariahassan@windowslive.com

Talaat A. Elgarf
Communication Engineering
Department
Higher Technological Institute
Cairo, Egypt
talaatelgarf@yahoo.com

Abdelhalim Zekry
Communication Engineering
Department
Faculty of Engineering
Ain shams University
Cairo, Egypt
AAAzekry@hotmail.com

Abstract—Milenage algorithm applies the block cipher Rijndael (AES) with 128 bit key and 128 bit block size. This algorithm is used in the 3GPP authentication and key generation functions (f1, f1*, f2, f3, f4, f5 and f5*) for mobile communication systems (GSM/UMTS/LTE). In this paper a modification of Milenage algorithm is proposed through a dynamic change of S-box in AES depending on secret key. To get a new secret key for every authentication process we add the random number (RAND) transmitted from the authentication center (AUC) to the contents of the fixed stored secret key (Ki) and thus the initialization of the AES will be different each new authentication process. For every change in secret key a new S-box is derived from the standard one by permuting its rows and columns with the help of a new designed PN sequence generator. A complete simulation of modified Milenage and PN sequence generator is done using Microcontroller (PIC18F452). Security analysis is applied using Avalanche test to compare between the original and modified Milenage. Tests proved that the modified algorithm is more secure than the original one due to the dynamic behavior of S-box with every change of the secret key and immunity against linear and differential cryptanalysis using Avalanche tests. This makes the modified Milenage more suitable for the applications of authentication techniques specially for mobile communication systems.

Keywords—Authentication vector (AV), Modified MILENAGE Algorithm for AKA Functions (F1,F1*,F2,F3,F4,F5,F5*), AES , Dynamic S-BOX and PN Sequence Generator(LFSR).

I. INTRODUCTION

Authentication includes the authenticity of the subscriber as well as the network. Authentication of mobile subscribers and network operators is a challenge of future researchers due to increasing security threats and attacks with the enhanced volume of wireless traffic. Authentication schemes in mobile communication systems are initiated during international mobile subscriber identity attach, location registration, location update with serving network change, call setup, activation of connectionless supplementary services and short message services (SMS).

Milenage algorithm is used for generating authentication and key agreement of cryptographic generating functions (MAC, XRES, CK and IK). The main core of Milenage algorithm is the Advanced Encryption Standard (AES) [1] which launched as a symmetrical cryptographic standard algorithm by the National Institute of Standard and Technology (NIST) in October 2000, after a four year effort to replace the aging DES. The Rijndael proposal for AES defined a cipher in which the key length can be independently specified to be 128, 192 or 256 bits but the input and output block length is 128 bits [2],[3]. Four different stages are used in AES: Sub Byte transformation, Shift Rows, Mix Columns and Add Round Key. For both encryption and decryption, the cipher begins with an Add Round Key stage, followed by nine rounds that each includes all four stages, followed by a tenth round of three stages. [4].

This paper is organized as follows: In Section II, authentication schemes in mobile communications are described. In Section III, a proposed authentication scheme is presented depending on the dynamic change of S-box in AES, the new secret key for every authentication process and the new PN sequence generator. In Section IV, a complete simulation of the modified Milenage algorithm and the Avalanche test results are introduced. Discussions and Conclusions are presented in Section V.
II. AUTHENTICATION SCHEMES IN MOBILE COMMUNICATIONS.

A. (i) Global System for Mobile Communication(GSM) / General Packet Radio Service(GPRS) Authentication and Key Agreement vectors.

There exists a permanent, shared secret key K_i for Agreed vectors. Service(GPRS) Authentication and Key Communication(GSM) / General Packet Radio System (UMTS)/ Long Term Evolution (LTE) (i) Global System for Mobile Communications.

There is an existence of a permanent, shared secret key K_i for each subscriber. This permanent key is stored in two locations: in the subscriber’s SIM card and in the Authentication Centre (AuC). The key K_i is never moved from either of these two locations. Authentication of the subscriber is done by checking that the subscriber has access to K_i. This can be achieved by challenging the subscriber by sending a random 128-bit string random sequence number (RAND) to the terminal. The terminal has to respond by computing a one-way function with inputs of RAND and the key K_i, and returning the 32-bit output Signed Response (SRES) to the network. Inside the terminal, the computation of this one-way function, denoted by $A3$, happens in the Subscriber Identity Module (SIM) card. During the authentication procedure, a temporary session key K_c is generated as an output of another one-way function $A8$. The input parameters for $A8$ are the same as for $A3$: K_i and RAND. The session key K_c is subsequently used to encrypt communication on the radio interface. The serving network does not have direct access to the permanent key K_i, so it cannot perform the authentication alone. Instead, all relevant parameters, so called the authentication triplet (RAND, SRES and K_c) are sent to the serving network element Mobile Switching Centre/Visitor Location Register (MSC/VLR) or Serving GPRS Support Node (SGSN) in the case of General Packet Radio Service (GPRS) from the authentication center (AuC) [5], [6].

B. (ii) Universal Mobile Telecommunications System (UMTS)/ Long Term Evolution (LTE) /Advanced LTE Authentication and Key Agreement Vectors.

- Universal Mobile Telecommunications System (UMTS) Generation of Authentication vectors (Quintets) in the authentication center (AUC).

Upon the receipt of the authentication data request from the Visitor Location Register (VLR) / Serving GPRS Support Node (SGSN), The Home Location Register (HLR) / Authentication Centre (AuC) sends an authentication response back to the VLR/SGSN that contains an ordered array of n authentication vectors AV (1...n). The HLR/AuC starts with generating a fresh sequence number SQN and an unpredictable challenge RAND. The authentication vectors are ordered based on sequence number. [5].

There are eight Cryptographic functions used in UMTS/LTE/Advanced LTE Authentication and Key Agreement to generate Authentication vector (AV). f_i is the random challenge-generating function. It should be a pseudo random number-generating function and map the internal state of the generator to the challenge value RAND, the length of RAND is 128 bits. The f_1 is the network authentication function, f_1^* is the re-synchronization message authentication function, it is used to provide data origin authentication for synchronization failure information sent by the USIM to the AuC, f_2 is the user authentication function, f_3 is the cipher key derivation function, f_4 is the integrity key derivation function, f_5 is the anonymity key derivation function for normal operation and f_5^* is the anonymity key derivation function for re-synchronization, f_5^* is only used to provide user identity confidentiality during resynchronization. K is the subscriber authentication key stored in the USIM and at the AuC, The length of K is 128 bits. [5], [7], [8].

To generate authentication quintuple, the HLR/AuC computes a message authentication code for authentication MAC-A = $f_6(SQN \oplus RAND \oplus AMF)$, the length of MAC-A is 64bits. an expected response $XRES = f_7(RAND)$, the length of $XRES$ is 64bits. a cipher key $CK = f_8(RAND)$, the length of CK is 128bits. An integrity key $IK = f_9(RAND)$ the length of IK is 128bits and an anonymity key $AK = f_{10}(RAND)$, the length of AK is 48bits that is used to conceal sequence number SQN, the length of SQN is 48bits, $SQN= SQN \oplus AK$. The HLR/AuC aggregates the authentication token AUTN = $SQN \oplus AK \oplus AMF$ (16bits) || MAC-A, the lengths of AUTN is 128bits that forms the quintet $Q = AV = (RAND, XRES, CK, IK, AUTN)$. [7], [8], [9].

- Authentication and key derivation in the Universal Subscriber Identity Module (USIM).

Upon receipt of a (RAND, AUTN), the USIM computes the anonymity key $AK = f_{10}(RAND)$ and retrieves the unconcealed sequence number $SQN = (SQN \oplus AK) \oplus AK$, XMAC-A = $f_1(SQN \oplus RAND \oplus AMF)$, the response RES = $f_2(RAND)$, the cipher key $CK = f_3(RAND)$ and the integrity key $IK = f_4(RAND)$ as shown in fig.2 . [5], [6].
The LTE architecture is built on the existing architecture from UMTS. LTE standards reuse the authentication and key-agreement of UMTS. The LTE/Advanced LTE Authentication and Key Agreement (AKA) protocol also known as the Evolved Packet System (EPS) AKA protocol. The EPS-AKA protocol is executed between UE and the MME instead of between the USIM and the VLR/SGSN. The AuC generates UMTS AVs for EPS AKA in exactly the same format as for UMTS AKA. The Home Subscriber Server (HSS) part outside the AuC derives Local Master Key in EPS (KASME) from the CK and IK. EPS AV consists of [RAND, XRES, a local master key KASME and an AUTN] as shown in fig.1. [10], [11], [12].

A modification of Milenage algorithm is proposed through a dynamic change of S-box in AES depending on the new secret key. To get a new secret key for every authentication process we add the random number (RAND) transmitted from the authentication center (AUC) to the contents of the fixed stored secret key (K_i) and so, the initialization of the AES will be different for each authentication process. For every change in secret key a new S-box is derived from the standard one by permuting its columns and rows with the help of a new designed PN sequence generator. Finally to get a strong Milenage algorithm generating all functions f_1, f_1*, f_2, f_3, f_4, f_5 and f_5* and the outputs of the various functions used in User Authentication, Network Authentication, Data Integrity Check and Ciphering data. The outputs of the various functions are then defined as shown in fig.3.

- Output of f_1 = MAC-A, where MAC-A[0 .. MAC-A[63] = OUT1[0] .. OUT1[63]
- Output of f_1* = MAC-S, where MAC-S[0 .. MAC-S[63] = OUT1[64] .. OUT1[127]
- Output of f_2 = RES, where RES[0 .. RES[63] = OUT2[64] .. OUT2[127]
- Output of f_3 = CK, where CK[0 .. CK[127] = OUT3[0] .. OUT3[127]
- Output of f_4 = IK, where IK[0 .. IK[127] = OUT4[0] .. OUT4[127]
- Output of f_5 = AK, where AK[0 .. AK[47] = OUT5[0] .. OUT5[47]
- Output of f_5* = AK, where AK[0 .. AK[47] = OUT5[0] .. OUT5[47]
Upgrade of S-box (Dynamic S-box) depends on the new secret key (Key ⊕ RAND) for every authentication process and the new PN Random sequence generator [14]. The suggested generator consists of three Maximal lengths Linear Feedback Shift Register (LFSR) with thirty two, seventeen and fifteen taps. The period of this PN sequence = (2^{32} - 1)(2^{17} - 1)(2^{15} - 1) the 1st 128 bits of the PN sequence generator is taken as the secret key to upgrade the S-box. The 1st 64 bits to rearrange the columns and the 2nd 64 bits to rearrange the rows of original S-box. The feedback functions of the LFSRs are: [15].

LFSR 1: \(F_1 = X^{15} + X^{14} + 1\)

LFSR 2: \(F_2 = X^{32} + X^{22} + X^2 + X + 1\)

LFSR 3: \(F_3 = X^{17} + X^{14} + 1\)

To initialize the PN sequence generator as shown fig.4, the new secret key is divided into two vectors of 64 bit length that are XORed to produce the initial state of the generator (64bits). Let the authentication key \(K_i = \text{F6BE38BA65C49FEEC01FE2C87}\) and the initialization vector of the PN sequence generator be \([\text{E756FA48SDC57A6958DFE57AC87}]\). The first 64 bits of the PN sequence generator will be [09AE48DB37F5612] used to rearrange columns of S-box and the 2nd 64 bits of the PN sequence generator will be\([\text{B9DE60C327458F1A}]\) used to rearrange the rows of original S-box to have the final modified form.

![Figure 4. PN random sequence generator.](image)

Table 1. AES STANDARD S-BOX.

Plain text = [CF5747102773651A6E238818 A27CB9EF], Secret Key = [885C3649 B840D9E06D061F5F6FC0646] and Cipher Text = [B218A58FA18EB4B764737D51 83378B4E].

(i) For AES standard – 128

(ii) For Modified AES-128

![Table 2. FOR COLUMNS DYNAMIC S-BOX AFTER ARRANGEMENT = [09AE48DB37F5612].](image)

![Table 3. FINAL S-BOX ROWS AFTER ARRANGEMENT = [B9DE60C327458F1A] THAT USED IN MODIFIED MILENAGE ALGORITHM DURING THE NEW SECRET KEY TO GENERATE A NEW S-BOX SO CALLED [DYNAMIC KEY (S-BOX)].](image)

IV. SIMULATION AND RESULTS

A complete simulation of the modified Milenage algorithm is achieved using Microcontroller (PIC18F452). The Avalanche tests are introduced to compare between the original and modified milenage.

(i) For AES standard – 128

Plain text = [CF5747102773651A6E238818 A27CB9EF], Secret Key = [885C3649 B840D9E06D061F5F6FC0646] and Cipher Text = [B218A58FA18EB4B764737D51 83378B4E].

(ii) For Modified AES-128

[Dynamic S-box] using PN sequence random generator. Reshaped Secret Key 64 bit= [8E8C57BC4EBCB9A6], Columns dynamic S-box after arrangement = [09AE48DB37F5612] and final dynamic S-box ROWs after arrangement = [A14FC8D65B90E372].

TABLE 5. RESULTS OF AVALANCHE TEST DUE TO CHANGE ONE BIT IN PLAIN TEXT IN STANDARD AES.

Changed one bit (1)	Plain text = 4F 57 47 10 27 73 65 1A 6E 23 88 18 A2 7C 9B EF	Cipher Text = 17 7F 74 7C 5D AD FE 11 02 F4 13 1C 5E 62	Difference value = 67 5D 09 BC 4D 44 DB 25 AD 1C DC 1B A4 81 55 DB	Ratio = 50.00%
Changed one bit (69)	Plain text = CF 57 47 10 27 73 65 1A 6E 23 88 18 A2 7C 99 EF	Cipher Text = F5 EC 44 96 CB F4 36 S2 F2 12 7E 25 21 9B	Difference value = 6E 67 80 08 9E D3 8C F1 17 F5 73 6A 74 63 28 47	Ratio = 50.00%
Changed one bit (115)	Plain text = CF 57 47 10 27 73 65 1A 6E 23 88 18 A2 7C 79 EF	Cipher Text = FE D8 17 7F 74 CF 36 AE 4B 01 9B 80 2D 2A	Difference value = 39 AF C7 11 C4 FD EC 9E 5C D3 53 98 CB 9F 50 B7	Ratio = 54.68%

TABLE 6. RESULTS OF AVALANCHE TEST DUE TO CHANGE ONE BIT IN PLAIN TEXT IN MODIFIED AES.

| Changed one bit (1) | Plain text = CF 57 47 10 27 73 65 1A 6E 23 88 18 A2 7C 79 EF | Cipher Text = FE D8 17 7F 74 CF 36 AE 4B 01 9B 80 2D 2A | Difference value = 39 AF C7 11 C4 FD EC 9E 5C D3 53 98 CB 9F 50 B7 | Ratio = 54.68% |
| Changed one bit (100) | Plain text = CF 57 47 10 27 73 65 1A 6E 23 88 18 A2 7C 79 EF | Cipher Text = FE D8 17 7F 74 CF 36 AE 4B 01 9B 80 2D 2A | Difference value = 39 AF C7 11 C4 FD EC 9E 5C D3 53 98 CB 9F 50 B7 | Ratio = 54.68% |

TABLE 7. SAMPLES OF AVALANCHE TEST DUE TO CHANGE ONE BIT IN SECRET KEY OF AES-128 STANDARD.

| Changed one bit (1) | Plain text = CF 57 47 10 27 73 65 1A 6E 23 88 18 A2 7C 9B EF | Cipher Text = FE D8 17 7F 74 CF 36 AE 4B 01 9B 80 2D 2A | Difference value = 39 AF C7 11 C4 FD EC 9E 5C D3 53 98 CB 9F 50 B7 | Ratio = 54.68% |
| Changed one bit (2) | Plain text = CF 57 47 10 27 73 65 1A 6E 23 88 18 A2 7C 79 EF | Cipher Text = FE D8 17 7F 74 CF 36 AE 4B 01 9B 80 2D 2A | Difference value = 39 AF C7 11 C4 FD EC 9E 5C D3 53 98 CB 9F 50 B7 | Ratio = 54.68% |

Figure 5. Avalanche effects of AES standard due to change one bit in Secret Key.

Figure 6. Avalanche effects of Modified AES due to change one bit in Secret Key.
TABLE 9. RESULT OUTPUTS OF MODIFIED MILENAGE ALGORITHM TO DERIVE A STRONGER AUTHENTICATION VECTOR (AV) THAN OUTPUT OF STANDARD MILENAGE ALGORITHM (AUTHENTICATION VECTOR) IN 3GPP. [16], [17].

| Key | Random Key | Dynamic Key | SQN | AMF | OP | OPC | TEMP | OUT1 | OUT2 | OUT3 | OUT4 | OUT5 | F1(MAC-A) | F1*(MAC-S) | F2(RES) | F3(CK) | F4(IIK) | F5(AK) | F5*(AK) | AUTN | AV |
|-----|------------|-------------|-----|-----|----|-----|------|------|------|------|------|------|------|----------|----------|--------|-------|--------|------|-------|-----|-----|
| 9E5944AF | 094B8116 5C82BF9 F32DB751 | 50DA9F6BE38BA65C49FEEC01FE2CCC87 | 0B604A81 ECA8 | 9E09 | 223014C5806694C0 07CA1EEE F57F004F | 1B3D2E3E625213D9BC49DBC552BCDE 4C | C8B662E237F3E580D24L785A9632CC3F | BA328BB5831B7105911ACB5332E862 | 13DD09518BE63818E23EDE87AC73F109 | EF3523C87886D0637FD2B501D02E3BA2 | 0FE930F07931B15882B88BE4F4DE654 | 93A92189A493A876BBF1801A9F8AB8C3 | 111AC8D2332E862 | E233ED87AC73F109 | EF3523C87886D0637FD2B501D02E3BA2 | 0FE930F07931B15882B88BE4F4DE654 | 13DD09518BE63818E23EDE87AC73F109 | 93A92189A493A876BBF1801A9F8AB8C3 | BA328BB5831B7102 |

V. DISCUSSION AND CONCLUSIONS

(i) The main weakness in Milenage, as stated by the cryptanalysts, is the use of bit rotations and constant XORs in the middle part of the milenage. Specially, if the kernel block cipher in milenage algorithm is susceptible to differential cryptanalysis, then an attacker is capable to do a variety of attacks on milenage algorithm. An attacker cannot predict any useful information if the kernel block cipher in milenage algorithm is a strong secure.

This paper modifies the standard Milenage Authentication algorithm through the dynamic change of the kernel block cipher AES. For every Authentication process a new S-box will be generated using a combination of received random sequence number (RAND), stored Authentication key (K_i) and PN sequence generator to rearrange the columns and rows of standard S-box in AES. Tests proved that the modified AES is more secure than the standard one, due to its dynamic structure. In addition to increasing its immunity to linear and differential cryptanalysis as shown by avalanche test results in table 10.

TABLE 10. AVERAGE VALUE OF AVALANCHE TESTS FOR (PLAIN TEXT – SECRET KEY) IN AES AND MODIFIED AES.

<table>
<thead>
<tr>
<th>Input type of data</th>
<th>Type of algorithm</th>
<th>Avalanche average value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaintext</td>
<td>Modified AES</td>
<td>50.15%</td>
</tr>
<tr>
<td>Plaintext</td>
<td>AES</td>
<td>49.71%</td>
</tr>
<tr>
<td>Secret key</td>
<td>Modified AES</td>
<td>49.86%</td>
</tr>
<tr>
<td>Secret key</td>
<td>AES</td>
<td>49.84%</td>
</tr>
</tbody>
</table>

(ii) Execution time can be reduced as follows:

The implementation of the modified authentication algorithm required more operations than the standard one due to the dynamic nature of its S-box. Using the PIC18F452 microcontroller, the execution time of the modified algorithm can be greatly decreased to about 50.333 ms (instead of 500ms taken by the standard algorithm using IC card. [19]).

REFERENCES

