Hermitian unitals are code words

Aart Blokhuis, Andries Brouwer and Henny Wilbrink

Department of Mathematics, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands

Received 7 March 1990

In memory of Egmont Köhler.

Abstract

Blokhuis, A., A. Brouwer and H. Wilbrink, Hermitian unitals are code words, Discrete Mathematics 97 (1991) 63-68.

We show that a unital PG(2, q^2) is Hermitian if and only if it is in the code generated by the lines of PG(2, q^3). This implies the truth of a conjecture made by Assmus and Key.

1. Introduction

In this paper, a unital in a projective plane of order \(m^2 \) will be a subset of size \(m^3 + 1 \) of the point set with the property that each line meets it in either \(m + 1 \) or 1 point(s). In the Desarguesian plane the set of isotropic points of a nondegenerate Hermitian form is the classical example of a unital. Such a unital is called an Hermitian unital. In [1] it is shown that a particular class of unitals in the Desarguesian plane PG(2, q^2) (the so-called Buekenhout-Metz unitals) always intersect a Hermitian unital in 1 mod \(p \) points (where \(p \) is prime and \(q = p^e \)), and the authors mention a conjecture by Assmus and Key that every unital has this property w.r.t. the Hermitian unital. Since the (characteristic vector of the) complement of any unital on \(m^3 + 1 \) points in any plane of order \(m^2 \) is in the orthogonal complement of the \(\mathbb{F}_p \)-code spanned by the (characteristic vectors of the) lines of the plane if \(p \mid m \), it clearly suffices to show that the Hermitian unital is in the code of the Desarguesian plane to prove the conjecture.

Theorem. Let \(q = p^e \) with \(p \) prime and \(e \in \mathbb{N} \). A unital in PG(2, q^2) is Hermitian if and only if it is in the \(\mathbb{F}_p \)-code spanned by the lines of PG(2, q^3).

The proof of this theorem will be given in Section 3. In the preparatory Section 2 we recall some basic facts about Abelian difference sets in planes of square order (cf. [5] and also [2] for the cyclic case), and prove a new result (Lemma 2) that will be helpful in the proof of the theorem.
2. Abelian difference sets in planes of square order

Consider an abelian group G (written multiplicatively) of order $n^2 + n + 1$ with a planar difference set D chosen in such a way that D is fixed by every multiplier. If $n = m^2$, then $\mu = m^3$ is a multiplier of order 2. We shall assume that μ is a multiplier of order 2 and show that $n = m^2$ and $\mu = m^3$. We shall then describe the geometrical implications of μ. Define subgroups A and B of G by

$$A = \{ x \in G \mid x^2 = x^{-1} \}, \quad B = \{ x \in G \mid x^n = x \},$$

and define homomorphisms $\alpha : G \rightarrow A$ and $\beta : G \rightarrow B$ by

$$g^\alpha := (g^{-\mu})^3, \quad g^\beta := (g^\mu)^3 \quad (g \in G).$$

Notice that $A \cap B = 1$ and that $g = g^\alpha g^\beta$ for every $g \in G$, i.e., G is the direct product of A and B, $G = A \times B$.

Since μ is a collineation of order two, it is either an elation (with $n + 1$ fixed points), a homology (with $n + 2$ fixed points), or a Baer involution (with $n + \sqrt{n} + 1$ fixed points). Since the number of fixed points $|B|$ divides $|G|$ it follows that μ is a Baer involution and that n is a perfect square, say $n = m^2$. It follows that $|A| = m^2 - m + 1$, $|B| = m^2 + m + 1$ and B is a Baer subplane. To show that $\mu = m^3$, observe that the orders of A and B are coprime so G has unique subgroups of order $m^2 - m + 1$ and $m^2 + m + 1$. Since m^3 is also an involutory multiplier, m^3 and μ have identical actions on A and B so $\mu = m^3$. Notice that $D \cap B$ is a difference set in B (D is fixed by μ and is therefore a Baer line).

Lemma 1. For all $d_1, d_2 \in D$ we have $d_1^\alpha = d_2^\beta \Leftrightarrow d_1 = d_2$ or $d_1 = d_2^\mu$.

Proof. If $d_1^\alpha = d_2^\beta$, then $d_1 d_2^{-1} = d_2^\alpha (d_1^\beta)^{-1}$, so since D is a planar difference set, $d_1 = d_2$ or $d_1 = d_2^\mu$. The converse is obvious. \square

This lemma can be used to show that A is an arc (i.e., no three points of A are collinear): If $d_1 g, d_2 g \in D g \cap A$, then $(d_1 g)^\beta = 1 = (d_2 g)^\beta$ so $d_1 = d_2$ or $d_1 = d_2^\mu$. (The same proof as in [2] can be used to show that A is in fact a maximal arc if $m > 2$.)

Let R be a commutative ring with identity and consider the group ring $R[G]$. We shall use the following notational conventions. We shall identify a subset $X = \{ x_1, x_2, \ldots, x_t \} \subseteq G$ with the element $X = x_1 + x_2 + \cdots + x_t$ in $R[G]$. Also, for a homomorphism γ of G, we define the R-homomorphism $[\gamma]$ of $R[G]$ by

$$(\sum_{g \in G} e_g g) [\gamma] := \sum_{g \in G} e_g g^\gamma.$$

Using these conventions our next lemma can be formulated as follows.

Lemma 2. $D^\beta + (D \cap B)^{\beta} = 2B$ in $\mathbb{Z}[G]$.

Proof. Notice that on the left hand side of this identity all terms certainly belong to B and are of the form $(d_1, d_2) \frac{1}{2}$ with d_1 and d_2 in D. There are $(m^2 + 1) + (m + 1)^2 = 2(m^2 + m + 1)$ terms on the left hand side. Since $(d_1, d_2) \frac{1}{2} = (d_3, d_4) \frac{1}{2}$ implies that $\{d_1, d_2\} = \{d_3, d_4\}$ and since the terms with $d_1 = d_2$ appear twice, once in $D^{(1)}$ and once in $(D \cap B)^{(1)}$, the identity follows. □

It is well known (and easy to check) that the correspondence

$$g \leftrightarrow Dg^{-1}, \quad g \in G$$

defines a polarity. The set of absolute points is $D^{[1]}$. (Thus, $(D \cap B)^{(1)}$ is an oval in B if n is odd and a line of B if n is even.) It is equally easy to check that the correspondence

$$g \leftrightarrow Dg^{-\mu}, \quad g \in G$$

also defines a polarity. Clearly, g is absolute w.r.t. this polarity if and only if $g^{2\beta} \in D$. Since $A = \ker(\beta)$ the following result is now clear.

Lemma 3. The polarity $g \leftrightarrow Dg^{-\mu}$ has $m^3 + 1$ absolute points namely the points of

$$U = A(D \cap B)^{(1)}.$$
3. Proof of the theorem

We shall now prove that U is in the \mathbb{F}-code spanned by the lines for every field \mathbb{F} in which $m^2 + 1 \neq 0$ (clearly this implies the ‘only if’ part of the theorem). We shall work in the group algebra $\mathbb{F}[G]$ and show that U is in the ideal generated by D. For this we have to show that

$$\chi(D) = 0 \Rightarrow \chi(U) = 0$$

for every absolutely irreducible \mathbb{F}-character χ of G. So assume $\chi(D) = 0$. Since $\chi(U) = \chi(A)\chi((D \cap B)^{[1]})$ by Lemma 3, we may assume that $\chi(A) \neq 0$. Now $\chi(g) = \phi(g^a)\psi(g^b)$, $g \in G$, where ϕ is a character of A and ψ is a character of B. Hence, $\chi(A) = \chi(A) \neq 0$ implies that $\phi = 1_A$ and so $\chi(g) = \psi(g^b)$ for all $g \in G$. In particular

$$\chi(D) = \psi(D^{[1]}) \quad \text{and} \quad \chi((D \cap B)^{[1]}) = \psi((D \cap B)^{[1]}).$$

Since $1_B(D^{[1]}) = m^2 + 1 \neq 0$, it follows that $\psi \neq 1_B$ and so, by Lemma 2,

$$(\psi((D \cap B)^{[1]}))^2 = \psi((D \cap B)^{[1]}) = \psi(2B) = \psi(D^{[1]}) = 0 - 0 = 0,$$

completing the proof that U is in the code.

For the converse, assume that U is a unital in the Desarguesian projective plane $PG(2, q^2)$, $q = p^e$, p prime, $e \in \mathbb{N}$, which is in the code spanned by the lines of the plane.

Proposition. Let X be a subset of $PG(2, q)$ which is in the \mathbb{F}_p-code of the plane and let P be a point not in X. Then the points Q for which the line PQ is tangent to X (i.e., $PQ \cap X = \{Q\}$) are all collinear.

Proof. If $q = 2$ this is easy to check so assume $q > 2$. Let Q_i, $i = 1, 2, 3$, be three distinct points of X for which PQ_i is a tangent line. Coordinatize the plane in such a way that $P = (1, 0, 0)$ and $Q_i = (x_i, y_i, 1)$, $i = 1, 2, 3$ (here we use $q > 2$). Notice that $y_i \neq y_j$ if $i \neq j$ since P, Q_i, Q_j are not collinear. Thus, there exist nonzero $w_1, w_2, w_3 \in \mathbb{F}_q$ such that

$$w_1 + w_2 + w_3 = 0, \quad w_1 y_1 + w_2 y_2 + w_3 y_3 = 0.$$

Give weight $w_i x$ to a point $(x, y_i, 1)$ on the horizontal line PQ_i, $x \in \mathbb{F}_q$, $i = 1, 2, 3$, and weight zero to all other points. This defines a word in the dual code (over \mathbb{F}_q) of the plane (e.g., a line $X = aY + bZ$ has innerproduct $\Sigma_i w_i(a y_i + b) = 0$, a line $Y = y_iZ$ has innerproduct $\Sigma x w_i x = 0$.) Since X is in the code, X has innerproduct zero with this word, i.e.,

$$w_1 x_1 + w_2 x_2 + w_3 x_3 = 0,$$

proving that Q_1, Q_2 and Q_3 are collinear. \(\square\)
Thus, for the unital \(U \) and a point \(P \) not in \(U \), the \(q + 1 \) points \(Q_i \) for which \(PQ_i \) is a tangent line, are all on one line which we shall denote by \(P^\perp \). For a point \(P \) in \(U \) we define \(P^\perp \) to be the tangent at \(P \). We want to show that this defines a (Hermitian) polarity. For this it suffices to show that \(Q \in P^\perp \) implies that \(P \in Q^\perp \) and the only difficult case is with \(P \) and \(Q \) not in \(U \). Assume that \(P \) and \(Q \) are points not in \(U \) such that \(Q \in P^\perp \). We can choose coordinates in such a way that \(P = (1, 0, 0) \) and \(P^\perp \) is the line \(X = 0 \). Let \(Q_i = (0, y_i, 1) \), \(i = 1, 2, \ldots, q + 1 \) be the points of \(U \) on \(P^\perp \) and let \(Q = (0, y_0, 1) \). Then \(Y = y_0Z \) is the equation of the line \(PQ \). There exist nonzero \(w_i \), \(i = 0, 1, \ldots, q + 1 \) such that

\[
\begin{pmatrix}
1 & 1 & \cdots & 1 \\
y_0 & y_1 & \cdots & y_{q+1} \\
y_0^2 & y_1^2 & \cdots & y_{q+1}^2 \\
\vdots & \vdots & \ddots & \vdots \\
y_0^q & y_1^q & \cdots & y_{q+1}^q
\end{pmatrix}
\begin{pmatrix}
w_0 \\
w_1 \\
w_2 \\
\vdots \\
w_{q+1}
\end{pmatrix}
= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.
\]

The \(w_i \) can be taken nonzero since deleting a column from the above matrix yields a nonsingular \((q + 1) \times (q + 1) \) matrix (Vandermonde). Let \(k \) be an integer, \(1 \leq k \leq q \). Give weight \(w_i x^k \) to a point \((x, y_i, 1) \), \(x \in \mathbb{F}_{q^2} \), \(i = 0, 1, 2, \ldots, q + 1 \), and weight zero to all other points. Again this defines a word in the dual code as one easily verifies. Hence, if the \(q + 1 \) points of the unital on the line \(Y = y_0Z \) are given by \(R_j = (x_j, y_0, 1) \), \(j = 1, 2, \ldots, q + 1 \), then it follows that

\[
\sum_{j=1}^{q+1} w_j x_j^k = 0.
\]

Define the powersums \(\pi_k \), \(k \geq 1 \), by

\[
\pi_k = \sum_{j=1}^{q+1} x_j^k.
\]

The generating functions

\[
\pi(z) = \sum_{k=1}^{\infty} \pi_k z^k, \quad \text{and} \quad \sigma(z) = \prod_{j=1}^{q+1} (1 - x_j z) = \sum_{k=0}^{\infty} \sigma_k z^k
\]

satisfy \(\sigma(z) \pi(z) + z \sigma'(z) = 0 \). From this one deduces the Newton identities

\[
\sum_{m=0}^{n-1} \pi_{n-m} \sigma_m + n \sigma_n = 0, \quad n \geq 1.
\]

Hence, since \(\pi_k = 0 \) for \(k = 1, \ldots, q \), it follows that \(\sigma_n = 0 \) for \(n \leq q \), \(n \not\equiv 0 \pmod{p} \). Using induction it then follows that \(\pi_k = 0 \) for \(k \geq q + 1 \), \(k \not\equiv 1 \pmod{p} \). In particular it follows that \(\pi_{q+1} z = 0 \) if \(p \neq 3 \) and \(\pi_{q-4} z = 0 \) if \(p = 3 \), i.e., (using \(x^{q^2-2} = x^{-1} \) and \(x^{q^2-4} = x^{-3} \) if \(x \in \mathbb{F}_{q^2} \)) \(\sum_{j=1}^{q+1} x_j^{-1} = 0 \).

Let \(R_0 = (x_0, y_0, 1) \) be any point on the line \(PQ \), \(R_0 \neq Q, P, R_j, j = 1, \ldots, q + 1 \).
and compute the cross ratio \((Q, P; R_j, R_0)\):
\[
(Q, P; R_j, R_0) = (0, \infty; x_j, x_0) = \frac{(0-x_j)(\infty-x_0)}{(\infty-x_j)(0-x_0)} = \frac{x_i}{x_0}.
\]

Thus we have shown that \(\sum_{j=1}^{q+1} (Q, P; R_j, R_0) = 0\). Hence, interchanging the rôles of \(P\) and \(Q\) and writing \(R = (x, y_0, 1)\) for the point of intersection of \(Q^\perp\) and \(PQ\) it follows that
\[
0 = \sum_{j=1}^{q+1} (R, Q; R_j, R_0) = \sum_{j=1}^{q+1} (x, 0; x_j, x_0) = \frac{x_0}{x-x_0} \left(\sum_{j=1}^{q+1} \frac{x}{x_j} - 1\right)
\]
\[
= \frac{-x_0}{x-x_0}.
\]

We conclude that \(x = \infty\), i.e., \(P = R \in Q^\perp\).

Added in proof. Our theorem was conjectured by Assmus and Key in [6].

References