International Journal of Geosciences (IJG )

Publisher: Scientific Research Publishing


International Journal of Geosciences is a peer reviewed journal dedicated to the latest advancement of geosciences. The goal of this journal is to keep a record of the state-of-the-art research and to promote study, research and improvement within its various specialties.All manuscripts submitted to IJG must be previously unpublished and may not be considered for publication elsewhere at any time during IJG's review period. Additionally, accepted ones will immediately appear online followed by printed in hard copy.

  • Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
  • ISSN

Publisher details

Scientific Research Publishing

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The evolution of the Mediterranean area since the Oligocene-Lower Miocene has been driven by the convergence of the surrounding plates. This implies that the observed deformation pattern in that region must be the most convenient shortening pattern, i.e. the one controlled by the mini- mum action principle. To understand why the fulfilment of such condition has required a complex spatio-temporal distribution of major tectonic events, such as uplift, lateral displacement and bending of orogenic belts, consumption of large lithospheric domains and formation of back arc basins, it may be very useful to take into account a basic tectonic concept, which helps to identify the process that can minimize the resistance of tectonic forces. Such concept starts from the fact that the most convenient consumption process is the one that involves low buoyancy oceanic lithosphere (Tethyan domains). However, such process is highly favoured where the oceanic li- thosphere is stressed by vertical forces, a situation that develops when orogenic wedges are forced to over thrust and load the oceanic domain to be consumed. This interpretation can pro- vide plausible and coherent explanations for the complex pattern of the observed deformations. In this view, the generation of back arc basins is taken as a side effect of an extrusion process, as suggested by numerical and mechanical experiments.
    International Journal of Geosciences 10/2014; 5(5):1062-1079.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerro Uturuncu, southwest Bolivia, is a high-K, calc-alkaline, composite volcano constructed upon extremely thick continental crust approximately 125 km behind the arc-front of the Andean Central Volcanic Zone (CVZ). Eruptive activity occurred between 890 - 271 ka in a single phase of volcanism lasting ~620,000 years. The edifice consists of a central cone and several flank vents where dacitic and andesitic lava flows and domes erupted. Volumes of individual eruptive units range from 0.1 to ~10 km3; the composite volume of Uturuncu is ~89 km3. In this paper, we present new field, petrographic, and geochemical data in an effort to understand the volcanic and magmatic evolution of Uturuncu. Lava flows and domes have a restricted range in whole rock compositions ranging from 61 wt% - 67 wt% SiO2; magmatic inclusions contained within these units have a larger range from 53 wt% - 64 wt% SiO2. Typical phenocryst assemblages are plagioclase > orthopyroxene > biotite >> quartz and Fe-Ti oxides. Pb isotope ratios are characteristic of the southern CVZ by containing high 207Pb/204Pb and 206Pb/204Pb and moderate to high 208Pb/204Pb. Sr and Nd isotope ratios indicate that Uturuncu magmas were modified by high 87Sr/86Sr and low 143Nd/144Nd felsic basement lithology during magma migration and differentiation. In all eruptive units, there is petrographic and geochemical evidence for magma mixing and mingling. In this regard, magma mixing and mingling is considered to be responsible for the small range in lava flow and dome compositions throughout the eruptive history of the center.
    International Journal of Geosciences 09/2014; 5(11):1263-1281.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The shallow reflection surveys were carried out in 2007 and 2010 austral summers in East Ongul Island, the Lützow-Holm Complex (LHC), East Antarctica. LHC is identified by geologically as one of the Pan-African terrains of Eastern Dronning Maud Land. The multi-channel reflection surveys targeted to achieve the image of laminated layering of metamorphic rocks near the surface (the depths down to a few hundreds of meters) of the crystalline crust. Two surveys were conducted in total length of the profiles about 500 m along a main traffic load across the East Ongul Island. The multi-channel acquisition systems were utilized with combining the dense geophones along the profiles. Seismic sources were adopted by combining the boom of a power shovel, a weight drop and hammer shots with their intervals in a few tens of meters. The obtained data include clear first P-arrivals in far offset distance. The energy of P-S converted waves was enhanced because of the characteristics of the seismic sources. Pre-stacked images could be expected to the information on metamorphic layering for several lithological structure composed by hornblende gneiss, garnet gneiss and pyroxene gneiss appearing as the surface bedrocks. The conducted shallow reflection surveys would give rise to one step for understanding tectonic formation of LHC, as one of the Pan-African mobile belts in Gondwana super-continent.
    International Journal of Geosciences 08/2014; 2014(5):1037-1047.