Food & Function Journal Impact Factor & Information

Publisher: Royal Society of Chemistry

Journal description

Current impact factor: 2.91

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 2.907
2012 Impact Factor 2.694
2011 Impact Factor 1.179

Impact factor over time

Impact factor
Year

Additional details

5-year impact 2.70
Cited half-life 1.60
Immediacy index 0.55
Eigenfactor 0.00
Article influence 0.60
ISSN 2042-6496

Publisher details

Royal Society of Chemistry

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Pre-prints on non-commercial repositories and arXiv
    • Post-print on author's personal website
    • Author's post-print on institutional repository after 12 months from acceptance
    • Publisher's version/PDF may be used on author's personal website only
    • Publisher PDF will be supplied and may be used on author's personal website only
    • RSC will deposit the authors post-print, if appropriate in non-commercial repositories, not limited to funder's repositories after 12 months
    • Restrictions on further re-use and further distribution to be noted
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The methanolic extract of the wild edible mushroom Cantharellus cibarius Fr. (chanterelle) was analyzed for in vitro antioxidative, cytotoxic, antihypertensive and antibacterial activities. Various primary and secondary metabolites were found. Phenols were the major antioxidant components found in the extract (49.8 mg/g), followed by flavonoids, whose content was approximately 86 % of total phenol content. Antioxidant activity, measured by four different methods, was high for inhibition of lipid peroxidation (EC50=1.21 mg/mL) and chelating ability (EC50=0.64 mg/mL). The antioxidant activity of C. cibarius methanol extract was achieved through chelating iron compared to hydrogen atom and/or electron transfer. The extract showed good selectivity in cytotoxicity on human cervix adenocarcinoma HeLa, breast carcinoma MDA-MB-453 and human myelogenous leukemia K562, compared to normal control human fetal lung fibroblasts MRC-5 and human lung bronchial epithelial cells BEAS-2B. The extract had inhibitory activity against angiotensin converting I enzyme (ACE) (IC50=0.063 mg/mL). Extract revealed selective antimicrobial activity against Gram-positive bacteria with the highest potential against E. faecalis. The medicinal and health benefits, observed in wild C. cibarius mushroom, seem an additional reason for its traditional use as a popular delicacy food.
    Food & Function 04/2015; DOI:10.1039/C5FO00312A
  • [Show abstract] [Hide abstract]
    ABSTRACT: Naringin (Nar) is a major and active flavanone glycoside derivative of several citrus species. The antioxidant properties of Nar have an important function in its cardioprotective effects in various models. However, the effects of Nar on Nrf2 activation and the expression of its downstream genes in myocardial cells are yet to be elucidated. This study was designed to investigate the protective effects of Nar against anoxia/reoxygenation (A/R)-induced injury in H9c2 cells and determine its effects on the activity of Nrf2 and the expression of phase II antioxidant enzymes. H9c2 cells were pretreated with Nar for 6 h before exposure to A/R. A/R treatment severely injured the H9c2 cells, which was accompanied by apoptosis. Nar also suppressed the A/R-induced mitochondrial membrane depolarization and caspase-3 activation. Nar pretreatment significantly reduced the apoptotic rate by enhancing the endogenous anti-oxidative activity of superoxide dismutase, glutathione peroxidase, and catalase, thereby inhibiting intracellular reactive oxygen species generation. Moreover, the presence of Nar alone in H9c2 cells increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, as well as consistently increased the protein levels of heme oxygenase (HO-1) and glutamate cysteine ligase (GCLC). Nar increased the phosphorylation of ERK1/2, PKCδ, and AKT. However, the Nar-mediated Nrf2 activation and cardioprotection were abolished through the genetic silencing of Nrf2 by siRNA and partially inhibited by specific inhibitors of ERK1/2, PKCδ, and AKT. Therefore, Nar provided cardioprotection by inducing the phosphorylation of ERK1/2, PKCδ, and AKT, which subsequently activated Nrf2 and its downstream genes.
    Food & Function 03/2015; 6(4). DOI:10.1039/c4fo01164c
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dysfunctional adipose tissue of rats fed a sucrose-rich diet was investigated following the time course of the development of oxidative stress, changes in proinflammatory cytokines and adiponectin levels, and their relationship with insulin resistance. We analyzed the morphometric characteristics of epididymal adipocytes, de novo lipogenesis enzyme activities and cellular antioxidant defense, inflammatory mediators, adiponectin levels and insulin resistance in rats fed a sucrose-rich diet for 3, 15 or 30 weeks and compared to those fed a control diet. The results showed a depletion of antioxidant enzyme activities in the fat pads of rats fed a sucrose-rich diet, with an increase in xanthine oxidase activity and lipid peroxidation after 3, 15 and 30 weeks on the diet. Superoxide dismutase activity and the redox state of glutathione showed a significant decrease at weeks 15 and 30. This was accompanied by visceral adiposity and enhanced lipogenic enzyme activities. An increase in the plasma levels of proinflammatory markers (TNF-α and IL-6) was recorded only after 30 weeks on the diet. A reduction in plasma adiponectin levels accompanied the time course of deterioration of whole-body insulin sensitivity. The results suggest that lipid peroxidation, depletion of antioxidant defenses and changes in inflammatory cytokines induced by a sucrose-rich diet contribute to the dysregulation of adipose tissue and insulin resistance. Finally, these results show that the progressive deterioration of adipose tissue function, which begins in the absence of both visceral adiposity and overweight, is highly dependent on the length of time on the diet.
    Food & Function 03/2015; 6(4). DOI:10.1039/c4fo00903g
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fish protein hydrolysates (FPH), produced from the six main discard species from the West Mediterranean Sea (sardine, horse mackerel, axillary seabream, bogue, small-spotted catshark and blue whiting) were tested for their bile acid binding capacity. This capacity is directly linked to the ability to inhibit bile reabsorption in the ileum and therefore to lower cholesterol levels in the bloodstream. From each species, FPH were obtained by three different enzymatic treatments employing two serine endoproteases (subtilisin and trypsin) sequentially or in combination. The results show statistically significant differences among the fish species, attaining interesting average values of bile acid binding capacity for blue whiting (27.32% relative to cholestyramine on an equal protein basis) and horse mackerel (27.42% relative to cholestyramine on an equal protein basis). The enzymatic treatments did not significantly affect the ability of a given species to bind bile acids. These results are similar to other protein sources, such as soy protein or casein, of proven hypocholesterolemic effect. It can be concluded that fish protein hydrolysates from these discard species are suitable as ingredients in the formulation of cholesterol-lowering supplements.
    Food & Function 03/2015; DOI:10.1039/c4fo01171f
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbon tetrachloride (CCl4)-induced hepatotoxicity is a common syndrome with simultaneous severe hepatocyte death and acute cholestasis. The purpose of the present study is to investigate the hepatoprotective effect of alisol B 23-acetate (AB23A), a natural triterpenoid from edible botanical Rhizoma alismatis, on acute hepatotoxicity induced by CCl4 in mice, and further to elucidate the involvement of farnesoid X receptor (FXR), signal transducers and activators of transcription 3 (STAT3) in the hepatoprotective effect. H&E staining, BrdU immunohistochemistry and TUNEL assay were used to identify the amelioration of histopathological changes, hepatocyte proliferation and apoptosis. Real-time PCR and western blot assay were used to elucidate the mechanisms underlying AB23A hepatoprotection. The results indicated that AB23A treatment in a dose-dependent manner resulted in protection against hepatotoxicity induced by CCl4via FXR activation. Through FXR activation, AB23A promoted hepatocyte proliferation via an induction in hepatic levels of FoxM1b, Cyclin D1 and Cyclin B1. AB23A also reduced hepatic bile acids through a decrease in hepatic uptake transporter Ntcp, bile acid synthetic enzymes Cyp7a1, Cyp8b1, and an increase in efflux transporter Bsep, Mrp2 expression. In addition, AB23A induced the expression of STAT3 phosphorylation, and STAT3 target genes Bcl-xl and SOCS3, resulting in decreased hepatocyte apoptosis. In conclusion, AB23A produces a protective effect against CCl4-induced hepatotoxicity, due to FXR and STAT3-mediated gene regulation.
    Food & Function 03/2015; 6(4). DOI:10.1039/c5fo00082c
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aims to examine the effect of the particle size of cellulose from sweet potato residues on lipid metabolism and cecal conditions in ovariectomized rats. Forty mature female Wistar rats were divided into five groups. The sham-operated group was used as the sham control. The other four groups were double-ovariectomized and assigned to the model, ordinary cellulose (100 g kg(-1) diet), microcrystalline cellulose (100 g kg(-1) diet), and cellulose nanocrystal (100 g kg(-1) diet) groups. As the cellulose particle size decreased, the body weight gain and food intake were decreased. The plasma lipids and hepatic lipids were decreased. In addition, the mRNA levels of cholesterol 7α-hydroxylase, farnesoid X receptor, and 3-hydroxy-3-methylglutaryl coenzyme A reductase were decreased, whereas those of ileal apical sodium-dependent bile acid transporter and intestinal bile acid binding protein were increased. The cecum weight, cecum content, and short-chain fatty acid concentration and the amount of total bile acids in the small intestinal content, as well as the bile acids and neutral steroids in fecal excretion, were increased. These results indicate that as the particle size decreased, cellulose was more effective in preventing ovarian hormone deficiency-induced hyperlipidemia and in improving intestinal health.
    Food & Function 02/2015; 6(4). DOI:10.1039/C4FO00799A
  • [Show abstract] [Hide abstract]
    ABSTRACT: Shortening is the essential component of high quality baked foods. Its effects on dough structure formation and the desired final product attributes depend mostly on its solid fat content and β' crystalline polymorphs. Saturated and trans fatty acids present in shortening pose some important negative health considerations. Hence, alternative plastic fats with lower or zero quantity of saturated and trans fatty acids are in high demand. Oleogels are gel networks of liquid edible oils with no trans and very low saturated fatty acids. In this study, sunflower wax (SW) and beeswax (BW) oleogels of hazelnut oil were used in cookie preparation against commercial bakery shortening (CBS) as the control, to compare the textural, sensory and stability properties of the cookies. The basic chemical composition, textural properties, and some physical attributes of the cookies were compared. Sensory texture/flavor profile analysis (T/FPA) and consumer hedonic tests were also accomplished. Furthermore, the changes in cookie texture and stability were monitored during 30 day storage at room temperature. It was found out that in almost all properties, the oleogel cookies resembled CBS cookies. T/FPA results present detailed data for literature. Consumer hedonic scores indicated that oleogel cookies were better than CBS cookies and were also well accepted by consumers. Wax oleogels can be used as cookie shortening successfully.
    Food & Function 02/2015; 6(4). DOI:10.1039/c5fo00019j
  • [Show abstract] [Hide abstract]
    ABSTRACT: Food processing offers various pathways to tailor food functionality and digestibility. This work sought to study the impact of thermally-induced Maillard reaction between bovine alpha-lactalbumin (α-la) and fructose or fructo-oligosacchrides on physicochemical properties, antioxidant capacity and in vitro digestive fate under simulated adult and infant conditions. Colloidal stability (measured by DLS) was decreased as a result of the Maillard glycation, while antioxidant capacity (determined by FRAP) and surface hydrophobicity (H0 measurements) were elevated. Semi-dynamic in vitro digestion of Maillard conjugates revealed a mixed trend as a result of postulated competing effects of glycation on α-la’s susceptibility to proteolysis; steric hindrance accompanied by protein unfolding could hinder or promote the availability of enzymatic cleavage sites. Results also showed thermal processing altered the digestive breakdown profile of α-la under infant conditions contrary to negligible effects observed under adult conditions. Evaluation of the antioxidant capacity during digestion (via DPPH assay) revealed that adult digesta possessed increased antioxidant activity throughout the gastric phase compared to infant digesta, whereas infant digesta of conjugates exhibited an increase in antioxidant capacity in the duodenum compared to adult. Moreover, during infant digestion of conjugates, an increase in antioxidant capacity was observed in the later stages of the digestion. Overall, this work demonstrates that controlled thermal processing of bovine α-la could potentially modulate its functionality and digestibility, particularly as it pertains to its ability to interfere with oxidative reactions in the lumen, possibly through the generation of bioactive peptides.
    Food & Function 02/2015; 6:1229 - 1240. DOI:10.1039/C4FO01165A
  • [Show abstract] [Hide abstract]
    ABSTRACT: Probiotics have been used as alternative therapies in intestinal inflammatory disorders. Many studies have shown that different bacterial probiotic strains possess immuno-modulatory and anti-inflammatory properties. However, there is an increasing interest in the use of non-viable bacteria to reduce the risk of microbial translocation and infection. The aim of this study was to evaluate whether the viability of L. fermentum CECT5716 is essential to exert its intestinal anti-inflammatory effect. We compared the preventative effects of viable and non-viable probiotic in the TNBS model of rat colitis. In vitro studies were also performed in Caco-2 and RAW 264.7 cells to evaluate the probiotic effects on IL-8, IL-1β and nitrite production, and p44/42 and p38 MAP kinase protein expressions. In vitro results revealed a decrease in the stimulated production of pro-inflammatory mediators regardless of the viability of the probiotic. Likewise, both forms of the probiotic administered to colitic rats produced a significant reduction of IL-1β and TNF-α levels and colonic iNOS expression. In conclusion, both live and dead L. fermentum CECT5716 have been demonstrated to attenuate the inflammatory process and diminish the production of some of the inflammatory mediators. In fact, the viability of this probiotic did not affect its immuno-modulatory and anti-inflammatory properties.
    Food & Function 02/2015; 6(4). DOI:10.1039/C4FO00938J
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Anthocyanins (ACNs) are the most prevalent flavonoids in berries and their health promoting effects on vascular functions are still discussed. The aim of the present study was to identify the anti-inflammatory effect of ACNs on activated human umbilical vein endothelial cells (HUVECs) after their transport across an epithelial monolayer. Study design: We established a transwell epithelial-endothelial co-culture system with Caco-2/HT29-B6 cells mimicking the intestinal layer and HUVECs as endothelial cells mimicking the vascular layer. Caco-2 were seeded alone (100%) or together with HT29-B6 cells (10 and 20%) on transwell inserts in order to simulate different metabolization sides of the gut. ACNs as well as malvidin-3-glucoside (M3G) were applied to the luminal compartment of the transwell-system. Transport and degradation rates were determined by high performance liquid chromatography with ultraviolet detection (HPLC-UV) or by ultra-PLC coupled to mass spectrometry (UPLC-MS). After 4 hours incubation time, co-cultured HUVECs were used immediately (short-term incubation) or after 20 hours (long-term incubation). Thereafter, HUVECs were stimulated for 3 hours with 1 ng mL(-1) TNF-α to mimic a low-grade or 10 ng mL(-1) to mimic a high-grade inflammation. Afterwards, (1.) leukocyte adhesion, (2.) expression of cell adhesion molecules (ICAM-1, VCAM-1 and E-selectin) and (3.) cytokine expression and secretion (IL-6 and IL-8) were determined using flow cytometry and real-time PCR. Results: Degradation and incubation studies revealed that ACNs were differently degraded depending on the ACN structure and the seeding densities. Incubation of ACNs and M3G to Caco-2 cells (100%) led to a fast decrease, which was not observed when HT29-B6 cells were co-cultured (10 and 20%). Concomitantly, anti-inflammatory effects were only observed using 100% Caco-2 cells, whereas mixtures of Caco-2 and HT29-B6 cells failed to induce an effect. ACN extract and M3G significantly attenuated TNF-α-stimulated low-grade leukocyte adhesion, expression of adhesion molecules E-selectin, VCAM-1 and ICAM-1 and cytokine expression and secretion (IL-8 and IL-6) as well as NF-κB mRNA expression. No effects were observed with high TNF-α (10 ng mL(-1)) or after short-term incubation (4 hours). Conclusions: ACNs in physiological concentrations reached the serosal compartment and reduced inflammation-related parameters, which were related to the initial steps during the pathogenesis of atherosclerosis.
    Food & Function 02/2015; 6(4). DOI:10.1039/C4FO00755G
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lycopene is widely used for nutritional supplementation, but the potential benefits in diabetic nephropathy (DN) remains unknown. This study aimed to highlight the therapeutic prospect of lycopene against streptozotocin (STZ)-induced kidney injury in mice. During the process of the experiments, biochemical kits were employed to determine the diabetes-metabolic parameters in STZ-lesioned mice. Routine pathological and ultrastructural observations were screened for the histological changes of kidney tissue. Moreover, immunohistochemical staining was used to investigate the inflammatory conditions expressed in kidney tissue. Furthermore, intrarenal heme oxygenase 1 (HO-1) mRNA level was assayed via RT-PCR and Western blot analyses. The results showed that lycopene alleviated the lesioned signs of DN mice induced by STZ, accompanied with the increase in body weight, reduced serum concentrations of blood sugar and low-density lipoprotein cholesterol (LDL-C), elevated high-density lipoprotein cholesterol (HDL-C) level, and the decrease in urine protein content. In addition, oxidative defense patterns in the kidneys of DN mice were ameliorated, as shown in augmented bioactivities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and in turn lowered malondialdehyde (MDA) content. The immunohistochemical experiment exhibited that lycopene intake contributed to attenuation of nuclear factor-kappa B (NF-κB) and tumor necrosis factor alpha (TNF-α) expressions in kidney tissue. Moreover, intrarenal HO-1 level was up-regulated in the presence of lycopene. Our findings provide the evidence that lycopene protects kidney cells from STZ-induced lesions via inhibiting NF-κB signal pathway for anti-inflammation and attenuating oxidative stress for anti-dysmetabolism.
    Food & Function 02/2015; 6(4). DOI:10.1039/c5fo00004a
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extra virgin olive oil has been shown to be effective against oxidative stress associated diseases. In addition to the high quantities of oleic acid, it is rich in phenolic compounds. We investigated the protective efficacy of extra virgin olive oil (EVOO) against the hepatotoxicity induced by both aluminum and acrylamide. Animals were divided into four groups containing six rats each: group 1, serving as controls, received distilled water; group 2 received drinking water containing aluminum chloride (50 mg kg(-1) body weight) and acrylamide (20 mg kg(-1) body weight) by gavage; group 3 received both aluminum and acrylamide in the same ways as well as EVOO (300 μl) by gavage; group 4 received only EVOO by gavage for 3 weeks. The rats exposed to both aluminum and acrylamide exhibited oxidative stress observed by an increase in MDA, AOPP and a decrease in GSH, NPSH and vitamin C levels. The activities of CAT and GPx were decreased, while SOD activity was increased. The liver metallothioneins, such as MT1 and MT2 genes expression, were also increased. EVOO supplementation improved all the parameters mentioned above. The plasma transaminases (AST and ALT), LDH activities, glucose and albumin levels, TC, LDL-C levels, TC/HDL-C and LDL-C/HDL-C ratios were increased, while high density lipoprotein-cholesterol (HDL-C) and TG decreased. The co-administration of EVOO to acrylamide and aluminum treated rats restored their hepatic markers to near-normal values. Liver histological studies confirmed the biochemical parameters and the beneficial role of EVOO. These results suggest that extra virgin olive oil, when added to the diet, may have a beneficial role in decreasing the liver damage induced by both aluminum and acrylamide.
    Food & Function 02/2015; 6(4). DOI:10.1039/c4fo01128g
  • [Show abstract] [Hide abstract]
    ABSTRACT: Some known mechanisms proposed for the reduction of blood cholesterol by dietary fibre are: binding with bile salts in the duodenum and prevention of lipid absorption, which can be partially related with the bile salt binding. In order to gain new insights into the mechanisms of the binding of dietary fibre to bile salts, the goal of this work is to study the main interactions between cellulose derivatives and two types of bile salts. Commercial cellulose ethers: methyl (MC), hydroxypropyl (HPC) and hydroxypropylmethyl cellulose (HPMC), have been chosen as dietary fibre due to their highly functional properties important in manufactured food products. Two types of bile salts: sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), have been chosen to understand the effect of the bile salt type. Interactions in the bulk have been investigated by means of differential scanning calorimetry (DSC) and linear mechanical spectroscopy. Results show that both bile salts have inhibitory effects on the thermal structuring of cellulose ethers and this depends on the number and type of substitution in the derivatised celluloses, and is not dependent upon molecular weight. Concerning the bile salt type, the more hydrophobic bile salt (NaTDC) has greater effect on these interactions, suggesting more efficient adsorption onto cellulose ethers. These findings may have implications in the digestion of cellulose-stabilised food matrices, providing a springboard to develop new healthy cellulose-based food products with improved functional properties.
    Food & Function 02/2015; 6(3). DOI:10.1039/c5fo00099h