Food & Function


  • Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • ISSN

Publications in this journal

  • [show abstract] [hide abstract]
    ABSTRACT: This study examined the effects of the dietary amount and source of protein on bone status in rats. 140 male Wistar rats aged 8 weeks were randomly allocated to 4 groups (n = 35) fed normal-protein (NP, 10% richness) or high-protein (HP, 45% richness) diets based on whey protein (WP) or soy protein (SP) sources for 12 weeks. Plasma urea was 46% higher for the HP compared to the NP diet (p < 0.001). Urinary calcium was 65% higher for the HP compared to the NP and 60% higher for the WP compared to the SP diets (all, p < 0.001). Urinary pH was 8% more acidic in the HP compared to the NP diet (p < 0.001) and 4% in the WP compared to the SP diet (p < 0.01). The plasma osteocalcin concentration was 19% higher for the NP compared to the HP (p < 0.05) and 25% for the SP compared to the WP diets (p < 0.01). Femur ash, metaphyseal and diaphyseal cross-sectional, trabecular and cortical areas were 3% higher in the HP compared to the NP diet (all, p < 0.05). Femur diaphyseal periosteal and endocortical perimeters were also 3% higher in the HP compared to the NP diet (both, p < 0.01). Groups fed the SP diet showed 2% higher femur ash percentage, 7% higher calcium content (both, p < 0.001), and 3% higher diaphyseal cortical area and thickness (both, p < 0.05) than those fed the WP diet. Some interactions were found, such as the greater effects of the SP diet on decreasing the higher plasma urea concentration promoted by the intake of the HP diet (p < 0.001). Under adequate Ca intake, HP diets could better maintain bone properties than NP diets, even with increasing some acidity markers, which could be reduced by the intake of SP sources.
    Food & Function 02/2014;
  • Food & Function 11/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: There is an upsurge of interest in the use of nano-particles to fabricate emulsions and modulate their functionality, with particular emphasis on modulating emulsion digestive fate. Food grade nano-particles formed through controlled processing and electrostatic biopolymer interactions are yet to be systematically studied for their ability to stabilize emulsions and modulate emulsion digestibility. This study focused on the responsiveness of emulsions stabilized by lactoferrin (LF) nano-particles (NPs) and dietary fibers to key digestive parameters. Compared to native LF, LF-NPs comprised emulsion exhibited elevated creaming rates as evident from accelerated stability tests performed by analytical centrifugation. The electrostatic deposition of alginate or carrageenan onto the LF-NPs significantly improved the stability of the corresponding emulsions. Further, the use of various nano-particles showed to have both beneficial and deleterious effects on emulsion responsiveness to pH (2.0 < pH < 10.0), CaCl2 (0-40 mM) and bile (0-25 mg mL(-1)). Simulated pH-stat lipolysis experiments show that the use of LF or LF-NPs had no marked effect on lipolysis. Intriguingly, the use of LF-NPs and alginate reduced emulsion lipolysis by 14% while the use of LF-NPs and carrageenan increased lipolysis by 10%. Microscopy images as well as droplet characterization in terms of size and charge indicate that the altered emulsion responsiveness may be due to physical differences in emulsion properties (e.g. droplet size) and overall organization during digestion (e.g. aggregation vs. coalescence). Overall, this study's insights could prospectively be used to harness protein nano-particles to tweak emulsion behavior during digestion.
    Food & Function 11/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: The structure and composition of starch play an important role as co-factors affecting raw starch digestibility: such features were investigated in raw acorn starch from the most diffused oak trees in the Mediterranean basin. A total of 620 whole ripe acorns from Holm (Quercus ilex L., n = 198), Downy (Quercus pubescens Willd., n = 207) and Cork (Quercus suber L., n = 215) oaks sampled on the Sardinia Isle (40° 56' 0'' N; 9° 4' 0'' E; 545 m above the mean sea level) in the same geographical area, were analyzed for their chemical composition. The starch contents ranged between 51.2% and 53.5% of dry matter. The starch granules displayed a spheroid/ovoid and cylindrical shape; on scanning electron microscopic (SEM) analyses, a bimodal distribution of starch granule size was observed both for Holm and Cork oak acorns, whereas the starch granules of Downy oak acorns showed diameters between 10.2 and 13.8 μm. The specific amylose to amylopectin ratio of acorn starch was 25.8%, 19.5% and 34.0% in the Holm, Downy and Cork oaks, respectively. The (13)C Nuclear Magnetic Resonance (NMR) signal analysis displayed a pivotal spectrum for the identification of the amylose peaks in raw acorn starch, as a basis for the amylose to amylopectin ratio determination.
    Food & Function 05/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: Our aim was to investigate the effects of Maillard reaction products (MRPs) from bread crust (BC) on bone composition and its mechanical properties, determining whether any such effects are related to the molecular weight of different MRPs. For 88 days after weaning rats were fed a control diet or diets containing BC, or its soluble low molecular weight (LMW), soluble high molecular weight (HMW) or insoluble fractions. Animals' food consumption and body weights were monitored. After sacrifice, the femur, pelvic bone and tibia were removed for composition, physical and biomechanical properties analysis. It was found that body and femur weights, density, volume and organic matrix decreased, whereas pentosidine increased after consumption of experimental diets, especially in the HMW and insoluble groups (104.7 and 102.9 mmol mol(-1) collagen) vs. the control group (41.7 mmol mol(-1) collagen). Bone stiffness fell by 50% in the LMW, HMW and insoluble groups and failure load and energy to failure tended to decrease in the same animals after MRPs intake. Consumption of diets containing assayed MRPs during growth leads to lower bone size and introduces some changes in its mechanical behavior which appear to be related to an increase in the pentosidine level of bone.
    Food & Function 04/2013; 4(4):549-556.

Related Journals