Nanoscale Journal Impact Factor & Information

Publisher: Royal Society of Chemistry

Journal description

Current impact factor: 7.39

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 7.394
2013 Impact Factor 6.739
2012 Impact Factor 6.233
2011 Impact Factor 5.914

Impact factor over time

Impact factor

Additional details

5-year impact 7.76
Cited half-life 2.20
Immediacy index 1.50
Eigenfactor 0.10
Article influence 1.74
ISSN 2040-3372

Publisher details

Royal Society of Chemistry

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Pre-prints on non-commercial repositories and arXiv
    • Post-print on author's personal website
    • Author's post-print on institutional repository after 12 months from acceptance
    • Publisher's version/PDF may be used on author's personal website only
    • Publisher PDF will be supplied and may be used on author's personal website only
    • Publisher will deposit the authors post-print, if appropriate in non-commercial repositories, not limited to funder's repositories after 12 months
    • Restrictions on further re-use and further distribution to be noted
    • Publisher will deposit in Chemical Sciences Article Repository if requested, after 12 months
    • Publisher last reviewed on 21/07/2015
  • Classification
    ​ green

Publications in this journal

  • Seongpil An · Minho Liou · Kyo Yong Song · Hong Seok Jo · Min Wook Lee · Salem S Al-Deyab · Alexander L Yarin · Sam S Yoon
    [Show abstract] [Hide abstract]
    ABSTRACT: Coaxial electrospinning was used to fabricate two types of core-shell fibers: the first type with liquid resin monomer in the core and polyacrylonitrile in the shell, and the second type with liquid curing agent in the core and polyacrylonitrile in the shell. These two types of core-shell fibers were mutually entangled and embedded into two flexible transparent matrices thus forming transparent flexible self-healing composite materials. Such materials could be formed before only using emulsion electrospinning, rather than coaxial electrospinning. The self-healing properties of such materials are associated with release of healing agents (resin monomer and cure) from nanofiber cores in damaged locations with the subsequent polymerization reaction filing the micro-crack with polydimethylsiloxane. Transparency of these materials is measured and the anti-corrosive protection provided by them is demonstrated in electrochemical experiments.
    Nanoscale 10/2015; DOI:10.1039/c5nr04551g
  • Chloe Kim · Peter C Searson
    [Show abstract] [Hide abstract]
    ABSTRACT: Current diagnostic methods for traumatic brain injury (TBI), which accounts for 15% of all emergency room visits, are limited to neuroimaging modalities. The challenges of accurate diagnosis and monitoring of TBI have created the need for a simple and sensitive blood test to detect brain-specific biomarkers. Here we report on an assay for detection of S100B, a putative biomarker for TBI, using antibody-conjugated magnetic beads for capture of the protein, and antibody-conjugated quantum dots for optical detection. From Western Blot, we show efficient antigen capture and concentration by the magnetic beads. Using magnetic bead capture and quantum dot detection in serum samples, we show a wide detection range and detection limit below the clinical cut-off level.
    Nanoscale 10/2015; DOI:10.1039/c5nr05608j
  • Hui Long · Lili Tao · Chun Yin Tang · Bo Zhou · Yuda Zhao · Longhui Zeng · Siu Fung Yu · Shu Ping Lau · Yang Chai · Yuen Hong Tsang
    [Show abstract] [Hide abstract]
    ABSTRACT: To control the optical properties of two-dimensional (2D) materials is a long-standing goal, being of both fundamental and technological significance. Tuning nonlinear optical absorption (NOA) properties of 2D transition metal dichalcogenides in a cost effective way has emerged as an important research topic because of its possibility to custom design NOA properties, implying enormous applications including optical computers, communications, bioimaging, and so on. In this study, WS2 with different size and thickness distributions was fabricated. The results demonstrate that both NOA onset threshold, FON, and optical limiting threshold, FOL, of WS2 under the excitation of a nanosecond pulsed laser can be tuned over a wide range by controlling its size and thickness. The FON and FOL show a rapid decline with the decrease of size and thickness. Due to the edge and quantum confinement effect, WS2 quantum dots (2.35 nm) exhibit the lowest FON (0.01 J cm(-2)) and FOL (0.062 J cm(-2)) among all the samples, which are comparable to the lowest threshold achieved in graphene based materials, showing great potential as NOA materials with tunable properties.
    Nanoscale 10/2015; DOI:10.1039/c5nr04389a
  • Nicholas A Karker · Gnanaprakash Dharmalingam · Michael A Carpenter
    [Show abstract] [Hide abstract]
    ABSTRACT: Near-infrared (NIR) thermal energy harvesting has been demonstrated for gold nanorods (AuNRs), allowing concentration dependent, ppm-level, gas detection of H2, CO, and NO2 at 500 °C without using a white light source. Part-per-million detection capabilities of the gold nanorods are demonstrated with a factor of 11 reduction in collection times in the NIR as compared to measurements made in the visible light region. Decreased collection times are enabled by an increase in S : N ratio, which allowed a demonstration of selectivity through the use of both full spectral and a reduced spectral-based principal component analysis. Furthermore, low temperature thermal imaging spectra have been obtained at sample temperatures ranging from 275-500 °C, showing the possibility of energy harvested gas sensing at lower temperatures. These findings are promising in the area of miniaturizing plasmonic gas sensing technology and integration in areas such as gas turbines.
    Nanoscale 10/2015; DOI:10.1039/c5nr04732c
  • Jie S Zhu · Young-Seok Shon
    [Show abstract] [Hide abstract]
    ABSTRACT: Unsupported thiolate-capped palladium nanoparticle catalysts are found to be highly substrate-selective for alkene hydrogenation and isomerization. Steric and poisoning effects from thiolate ligands on the nanoparticle surface control reactivity and selectivity by influencing alkene adsorption and directing either di-σ or mono-σ bond formation. The presence of overlapping p orbitals and α protons in alkenes greatly influences the catalytic properties of deactivated palladium nanoparticles leading to easily predictable hydrogenation or isomerization products.
    Nanoscale 10/2015; DOI:10.1039/c5nr05090a
  • Bo Xiao · Moon Kwon Han · Emilie Viennois · Lixin Wang · Mingzhen Zhang · Xiaoying Si · Didier Merlin
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticle (NP)-based combination chemotherapy has been proposed as an effective strategy for achieving synergistic effects and targeted drug delivery for colon cancer therapy. Here, we fabricated a series of hyaluronic acid (HA)-functionalized camptothecin (CPT)/curcumin (CUR)-loaded polymeric NPs (HA-CPT/CUR-NPs) with various weight ratios of CPT to CUR (1 : 1, 2 : 1 and 4 : 1). The resultant spherical HA-CPT/CUR-NPs had a desirable particle size (around 289 nm), relative narrow size distribution, and slightly negative zeta potential. These NPs exhibited a simultaneous sustained release profile for both drugs throughout the time frame examined. Subsequent cellular uptake experiments demonstrated that the introduction of HA to the NP surface endowed NPs with colon cancer-targeting capability and markedly increased cellular uptake efficiency compared with chitosan-coated NPs. Importantly, the combined delivery of CPT and CUR in one HA-functionalized NP exerted strong synergistic effects. HA-CPT/CUR-NP (1 : 1) showed the highest antitumor activity among the three HA-CPT/CUR-NPs, resulting in an extremely low combination index. Collectively, our findings indicate that this HA-CPT/CUR-NP can be exploited as an efficient formulation for colon cancer-targeted combination chemotherapy.
    Nanoscale 10/2015; DOI:10.1039/c5nr04831a
  • M M Stylianakis · D Konios · G Kakavelakis · G Charalambidis · E Stratakis · A G Coutsolelos · E Kymakis · S H Anastasiadis
    [Show abstract] [Hide abstract]
    ABSTRACT: A graphene-based porphyrin molecule (GO-TPP) was synthesized by covalent linkage of graphene oxide (GO) with 5-(4-aminophenyl)-10,15,20-triphenyl porphyrin (TPP-NH2). The yielded graphene-based material is a donor-acceptor (D-A) molecule, exhibiting strong intermolecular interactions between the GO core (A) and the covalently anchored porphyrin molecule (D). To demonstrate the universal role of GO-TPP as an electron cascade material, ternary blend organic photovoltaics based on [6,6]-phenyl-C71-butyric-acid-methyl-ester (PC71BM) as an electron acceptor material and two different polymer donor materials, poly[N-9'-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) and the highly efficient poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7), were fabricated. The addition of GO-TPP into the active layer implies continuous percolation paths between the D-A interfaces, enhancing charge transport, reducing exciton recombination and thus improving the photovoltaic performance of the device. A simultaneous increase of short circuit current density (Jsc), open-circuit voltage (Voc) and fill factor (FF), compared to the PTB7:PC71BM reference cell, led to an improved power conversion efficiency (PCE) of 8.81% for the PTB7:GO-TPP:PC71BM-based device, owing mainly to the more efficient energy level offset between the active layer components.
    Nanoscale 10/2015; DOI:10.1039/c5nr05113d
  • Shuanhu Wang · Lvkuan Zou · Xu Zhang · Jianwang Cai · Shufang Wang · Baogen Shen · Jirong Sun
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on unique experimental setups, the temperature dependences of the longitudinal spin Seebeck effect (LSSE) and spin Hall magnetoresistance (SMR) of the Pt/yttrium iron garnet (Pt/YIG) hybrid structure are determined in a wide temperature range up to the Curie temperature of YIG. From a theoretical analysis of the experimental relationship between the SMR and temperature, the spin mixing conductance of the Pt/YIG interface is deduced as a function of temperature. Adopting the deduced spin mixing conductance, the temperature dependence of the LSSE is well reproduced based on the magnon spin current theory. Our research sheds new light on the controversy about the theoretical models for the LSSE.
    Nanoscale 10/2015; DOI:10.1039/c5nr05484b
  • [Show abstract] [Hide abstract]
    ABSTRACT: Large-area graphene films produced by means of chemical vapor deposition (CVD) are polycrystalline and thus contain numerous grain boundaries that can greatly degrade their performance and produce inhomogeneous properties. A better grain boundary engineering in CVD graphene is essential to realize the full potential of graphene in large-scale applications. Here, we report a defect-selective atomic layer deposition (ALD) for stitching grain boundaries of CVD graphene with ZnO so as to increase the connectivity between grains. In the present ALD process, ZnO with a hexagonal wurtzite structure was selectively grown mainly on the defect-rich grain boundaries to produce ZnO-stitched CVD graphene with well-connected grains. For the CVD graphene film after ZnO stitching, the inter-grain mobility is notably improved with only a little change in the free carrier density. We also demonstrate how ZnO-stitched CVD graphene can be successfully integrated into wafer-scale arrays of top-gated field-effect transistors on 4-inch Si and polymer substrates, revealing remarkable device-to-device uniformity.
    Nanoscale 10/2015; DOI:10.1039/c5nr05392g
  • Goli Nagaraju · G Seeta Rama Raju · Yeong Hwan Ko · Jae Su Yu
    [Show abstract] [Hide abstract]
    ABSTRACT: Hierarchical three-dimensional (3D) porous nanonetworks of nickel-cobalt layered double hydroxide (Ni-Co LDH) nanosheets (NSs) are grown and decorated on flexible conductive textile substrate (CTs) via a simple two-electrode system based electrochemical deposition (ED) method. By applying a proper external cathodic voltage of -1.2 V for 15 min, the Ni-Co LDH NSs are densely deposited over the entire surface of the CTs with good adhesion. The flexible Ni-Co LDH NSs on CTs (Ni-Co LDH NSs/CTs) architecture with high porosity facilitates enhanced electrochemical performance in 1 M KOH electrolyte solution. The effect of growth concentration and external cathodic voltage on the electrochemical properties of Ni-Co LDH NSs/CTs is also investigated. The Ni10Co5 LDH NSs/CTs electrode exhibits a high specific capacitance of 2105 F g(-1) at a current density of 2 A g(-1) as well as an excellent cyclic stability as a pseudocapacitive electrode due to the advantageous properties of 3D interconnected porous frameworks of Ni10Co5 LDH NSs/CTs. This facile fabrication of bimetallic hydroxide nanostructures on CTs can provide a promising electrode for low-cost energy storage device applications.
    Nanoscale 10/2015; DOI:10.1039/c5nr05643h
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this communication, a new class of photonic materials, namely, two-dimensional titanium oxide-based photonic crystals, are proposed and were fabricated with an electrochemical anodization method. The high structural periodicity of the nanostructures, and the feasible variability of the chemical compositions help to realize tunable photonic bandgaps for selective light absorption in broad wavelength regions.
    Nanoscale 10/2015; DOI:10.1039/c5nr05374a
  • L Arnal · G Longo · P Stupar · M F Castez · N Cattelan · R C Salvarezza · O M Yantorno · S Kasas · M E Vela
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions.
    Nanoscale 10/2015; DOI:10.1039/c5nr04644k
  • [Show abstract] [Hide abstract]
    ABSTRACT: Semiconducting two-dimensional materials appear to be excellent candidates for non-volatile memory applications. However, the limited controllability of charge trapping behaviors and the lack of multi-bit storage studies in two-dimensional based memory devices require further improvement for realistic applications. Here, we report a flash memory consisting of metal NPs-molybdenum disulphide (MoS2) as a floating gate by introducing a metal nanoparticle (NP) (Ag, Au, Pt) monolayer underneath the MoS2 nanosheets. Controlled charge trapping and long data retention have been achieved in a metal (Ag, Au, Pt) NPs-MoS2 floating gate flash memory. This controlled charge trapping is hypothesized to be attributed to band bending and a built-in electric field ξbi between the interface of the metal NPs and MoS2. The metal NPs-MoS2 floating gate flash memories were further proven to be multi-bit memory storage devices possessing a 3-bit storage capability and a good retention capability up to 10(4) s. We anticipate that these findings would provide scientific insight for the development of novel memory devices utilizing an atomically thin two-dimensional lattice structure.
    Nanoscale 10/2015; DOI:10.1039/c5nr05054e
  • [Show abstract] [Hide abstract]
    ABSTRACT: We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a "hot surface" for enhancing the Raman response of two-dimensional materials.
    Nanoscale 10/2015; DOI:10.1039/c5nr04500b
  • [Show abstract] [Hide abstract]
    ABSTRACT: Few-layer MoS2 film has been successfully assembled over an array of CNTs. Using different focused laser beams with different wavelengths, site selective patterning of either the MoS2 film or the supporting CNT array is achieved. This paves the way for applications and investigations into the fundamental properties of the hybrid MoS2/CNT material with a controlled architecture. Through Raman mapping, straining and electron doping of the MoS2 film as a result of interaction with the supporting CNT array are detected. The role of the MoS2 film was further emphasized with a lower work function being detected from Ultra-violet Photoelectron Spectrsocopy (UPS) measurements of the hybrid material, compared to the CNT array. The effect of the changes in the work function was illustrated through the optoelectronic behavior of the hybrid material. At 0 V, 3.49 nA of current is measured upon illuminating the sample with a broad laser beam emitting laser light with a wavelength of 532 nm. With a strong response to external irradiation of different wavelengths, and changes to the power of the excitation source, the hybrid material has shown potential for applications in optoelectronic devices.
    Nanoscale 10/2015; DOI:10.1039/c5nr04588f
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herein, using the light emitting component as the inner shell, we construct an advanced quantum-dot-quantum-well structure, ZnCdS/CdSe/CdZnSeS/ZnS, and use it for the fabrication of a light-emitting-diode. In comparison with the device containing conventional structured quantum dots, CdSe/CdZnSeS/ZnS, the advanced device possesses a superior performance in aspects of luminance, current efficiency, turn-on voltage and emitting wavelength tunability. Therefore, this paper indicates a promising strategy for the fabrication of light emitting devices based on quantum materials.
    Nanoscale 10/2015; DOI:10.1039/c5nr04340a
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm(-2) and an energy density of 4.8 mW h cm(-3). The battery is encapsulated using a simple lamination method that is economical and scalable. The laminated battery shows robust mechanical flexibility over 6000 bending cycles and excellent electrochemical performance in both flat and bent configurations. Finite element analysis (FEA) of the LIB provides critical insights into the evolution of mechanical stresses during lamination and bending.
    Nanoscale 10/2015; DOI:10.1039/c5nr04339e
  • [Show abstract] [Hide abstract]
    ABSTRACT: We show that the van der Waals heterostructure formed by MoSe2 and WS2 provides a unique system with near degenerate interlayer and intralayer excitonic states. Photoluminescence measurements indicate that the charge transfer exciton states are approximately 50 meV below the MoSe2 exciton states, with a significant spectral overlap. The transient absorption of a femtosecond pulse was used to study the dynamics of the charge transfer excitons at room temperature. We found a lifetime of approximately 80 ps for the charge transfer excitons. A diffusion coefficient of about 14 cm(2) s(-1) was deduced, which is comparable to individual excitons in transition metal dichalcogenides.
    Nanoscale 10/2015; DOI:10.1039/c5nr04723d