Nano Research (NANO RES )

Publisher: Springer Verlag

Description

  • Impact factor
    7.39
    Show impact factor history
     
    Impact factor
  • 5-year impact
    7.80
  • Cited half-life
    2.80
  • Immediacy index
    0.98
  • Eigenfactor
    0.02
  • Article influence
    2.30
  • Other titles
    Nano res
  • ISSN
    1998-0124
  • OCLC
    243625588
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors own final version only can be archived
    • Publisher's version/PDF cannot be used
    • On author's website or institutional repository
    • On funders designated website/repository after 12 months at the funders request or as a result of legal obligation
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (The original publication is available at www.springerlink.com)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [show abstract] [hide abstract]
    ABSTRACT: Nanocrystal coalescence has attracted paramount attention in nanostructure fabrication in the past decades. Tremendous endeavor and progress have been made in understanding its mechanisms, benefiting from the development of transmission electron microscopy. However, many mechanisms still remain unclear, especially for nanocrystals that lack a permanent dipole moment standing on a solid substrate. Here, we report an in situ coalescence of Pt nanocrystals on an amorphous carbon substrate induced by electron-excitation-enhanced van der Waals interactions studied by transmission electron microscopy and first principles calculations. It is found that the electron-beam-induced excitation can significantly enhance the van der Waals interaction between Pt nanocrystals and reduce the binding energy between Pt nanocrystals and the carbon substrate, both of which promote the coalescence. This work extends our understanding of the nanocrystal coalescence observed in a transmission electron microscope and sheds light on a potential pathway toward practical electronbeam-controlled nanofabrication.
    Nano Research 01/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: The sacrificial templates used in galvanic replacement reactions dictate the properties of the hollow metal nanostructures formed. Here, we demonstrate that substrate-based Au-Ag nanoshells with radically altered properties are obtained by merely coating silver templates with an ultrathin layer of gold prior to their insertion into the reaction vessel. The so-formed nanoshells exhibit much smoother surfaces, a higher degree of crystallinity and are far more robust. Dealloying the nanoshells results in the first demonstration of substrate-based nanocages. Such cages exhibit a well-defined pattern of geometric openings in directions corresponding to the {111}-facets of the starting template material. The ability to engineer the cage geometry through adjustments to the orientational relationship between the crystal structure of the starting template and that of underlying substrate is demonstrated. Together these discoveries provide the framework to advance our understanding of the mechanisms governing substratebased galvanic replacement reactions.
    Nano Research 01/2014;
  • Nano Research 07/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: Ultra-narrow (1.5 nm diameter) and long gold nanowires forming nano-scale bundles are connected to gold electrodes. The electronic transport is dominated by charging effects mediated by the temperature and the bias voltage. At low temperature, the current flow is governed by cooperative electron motions between the weakly coupled Au-nanowires. We extract a 1D localization length of the electronic wave function along the nanowires of the order of 120 nm, which is remarkably large, considering the ultra-narrow diameter of the wires. This result confirms the high cristallinity of the nanowires, in consistency with high resolution transmission electron microscopy.
    Nano Research 06/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: Noble metals such as Pt are a perfect substrate for the catalytic growth of monolayer graphene. However, the requirements of the subsequent transfer process are not compatible with the traditional etching method. In this work, we find that the interaction of graphene with Pt foil can be weakened through the intercalation of carbon monoxide (CO) under ambient pressure. This intercalation process occurs on both hexagonal-shape graphene islands and irregular graphene patches on changing the CO partial pressure from 0 to 0.6 MPa, as observed by scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoemission spectroscopy. We demonstrate that, on a practical timescale, the intercalation ratio is proportional to the partial pressure of CO. Furthermore, we develop a clean transfer method of CO-intercalated graphene with water as a peeling agent. We show that this method enables the transfer of tens of micrometer-scale graphene patches onto SiO2 /Si, which are free from metal or oxide particle contamination. This transfer method should be a significant step towards the clean transfer of graphene, as well as the recyclable use of noble metal substrates.
    Nano Research 06/2013; 6(9):671-678.
  • [show abstract] [hide abstract]
    ABSTRACT: Galvanic replacement reactions have been widely used to transform solution dispersed silver template structures into intricate nanoshell geometries. Here, we report on the use of these same reactions to form hollow substrate-supported Au-Ag nanoshells from silver templates having a heteroepitaxial relationship with the underlying single crystal substrate. The structures obtained exhibit a nanohut geometry, show highly tunable plasmonic properties and are formed as periodic arrays using a lithography-free technique. When removed from the substrate the inverted nanohuts appear as nanobowls with a notch in the rim. The study lays the groundwork for wafer-based devices utilizing nanoshells located at site-specific locations.
    Nano Research 06/2013; 6(6):418-428.
  • [show abstract] [hide abstract]
    ABSTRACT: Electronic structure and transport properties of highly defective two-dimensional (2D) sp2 graphene are investigated theoretically. Classical molecular dynamics are used to generate large graphene planes containing a considerable amount of defects. Then, a tight-binding Hamiltonian validated by ab initio calculations is constructed in order to compute quantum transport within a real-space order-N Kubo-Greenwood approach. In contrast to pristine graphene, the highly defective sp2 carbon sheets exhibit a high density of states at the charge neutrality point raising challenging questions concerning the electronic transport of associated charge carriers. The analysis of the electronic wavepacket dynamics actually reveals extremely strong multiple scattering effects giving rise to mean free paths as low as 1 nm and localization phenomena. Consequently, highly defective graphene is envisioned as a remarkable prototype of 2D Anderson insulating materials.
    Nano Research 04/2013; 6(5):326.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We report a systematic study of the etching of MoS2 crystals by using XeF2 as a gaseous reactant. By controlling the etching process, monolayer MoS2 with uniform morphology can be obtained. The Raman and photoluminescence spectra of the resulting material were similar to those of exfoliated MoS2. Utilizing this strategy, different patterns such as a Hall bar structure and a hexagonal array can be realized. Furthermore, the etching mechanism was studied by introducing graphene as an etching mask. We believe our technique opens an easy and controllable way of etching MoS2, which can be used to fabricate complex nanostructures, such as nanoribbons, quantum dots and transistor structures. This etching process using XeF2 can also be extended to other interesting two-dimensional crystals.
    Nano Research 03/2013; 6(3).

Related Journals