Nano Research (NANO RES )

Publisher: Springer Verlag

Description

  • Impact factor
    7.39
    Show impact factor history
     
    Impact factor
  • 5-year impact
    7.80
  • Cited half-life
    2.80
  • Immediacy index
    0.98
  • Eigenfactor
    0.02
  • Article influence
    2.30
  • Other titles
    Nano res
  • ISSN
    1998-0124
  • OCLC
    243625588
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors own final version only can be archived
    • Publisher's version/PDF cannot be used
    • On author's website or institutional repository
    • On funders designated website/repository after 12 months at the funders request or as a result of legal obligation
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (The original publication is available at www.springerlink.com)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: We show that self-assembled vertically aligned gold nanorod (VA-GNRs) superlattices can serve as probes or substrates for ultra-high sensitive detection of various molecules. D-glucose and TNT (2,4,6-trinitrotoluene) have been chosen as model systems due to their very low Raman cross sections (5.6 x 10-30 cm2 molecule-1 sr-1 for D-glucose and 4.9x10-31 cm2 molecule-1 sr-1 for TNT) to show that the VA-GNR superlattice assembly offers as low as yoctomole sensitivity. Our experiment on mixed samples of Bovine Serum Albumin (BSA) and D-glucose solutions demonstrate sensitivity for the latter, and the possible extension to real samples. Self-assembled superlattices of VA-GNRs were achieved on a silicon wafer by depositing a drop of solvent containing the GNRs and subsequent solvent evaporation in ambient conditions. The advantage of VA-GNR monolayers as well as their superlattices is their extremely high reproducible morphology accompanied by ultrahigh sensitivity which would be generally useful in many fields where very small amount of analyte is available. Moreover the assembly can be reused number of times after removing the already present molecules. The method of obtaining VA-GNRs is simple, inexpensive and reproducible. With the help of simulations of monolayers and multilayers it has been shown that superlattices can achieve better sensitivity than the monolayers assembly of VA-GNRs.
    Nano Research 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: An atomic layer deposition (ALD) method has been employed to synthesize Fe3O4/graphene and Ni/graphene composites. The structure and microwave absorbing properties of the as-prepared composites are investigated. The surfaces of graphene are densely covered by Fe3O4 or Ni nanoparticles with a narrow size distribution, and the magnetic nanoparticles are well distributed on each graphene sheet without significant conglomeration or large vacancies. The coated graphene materials exhibit remarkably improved electromagnetic (EM) absorption properties compared to the pristine graphene. The optimal reflection loss (RL) reaches −46.4 dB at 15.6 GHz with a thickness of only 1.4 mm for the Fe3O4/graphene composites obtained by applying 100 cycles of Fe2O3 deposition followed by a hydrogen reduction. The enhanced absorption ability arises from the effective impedance matching, multiple interfacial polarization and increased magnetic loss from the added magnetic constituents. Moreover, compared with other recently reported materials, the composites have a lower filling ratio and smaller coating thickness resulting in significantly increased EM absorption properties. This demonstrates that nanoscale surface modification of magnetic particles on graphene by ALD is a very promising way to design lightweight and high-efficiency microwave absorbers.
    Nano Research 06/2014; 7(5):704.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Flexible lithium ion batteries (LIBs) have recently attracted increasing attention as they show unique promising advantages, such as flexibility, shape diversity, and light weight. Similar to conventional LIBs, flexible LIBs with long cycle life and high-rate performance are very important for applications of high performance flexible electronics. Herein, we report a three-dimensional (3D) web-like binderfree Li4Ti5O12 (LTO) anode assembled from numerous 1D nanowires exhibiting excellent cycling performance with high capacities of 153 and 115 mA·h·g−1 after 5,000 cycles at 2 C and 20 C, respectively, and excellent rate property with a capacity of 103 mA·h·g−1 even at a very high current rate of 80 C. Surprisingly, a flexible full battery assembled from the web-like LTO nanostructure and LiMn2O4 (LMO) nanorods exhibited a high capacity of 125 mA·h·g−1 at high current rate of 20 C, and showed excellent flexibility with little performance degradation even in seriously bent states.
    Nano Research 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Applications based on silicene as grown on substrates are of high interest toward actual utilization of this unique material. Here we explore, from first principles, the nature of carbon monoxide adsorption on semiconducting silicene nanoribbons and the resulting quantum conduction modulation with and without silver contacts for sensing applications. We find that quantum conduction is detectably modified by weak chemisorption of a single CO molecule on a pristine silicene nanoribbon. This modification can be attributed to the charge transfer from CO to the silicene nanoribbon and the deformation induced by the CO chemisorption. Moderate binding energies provide an optimal mix of high detectability and recoverability. With Ag contacts attached to a ∼1 nm silicene nanoribbon, the interface states mask the conductance modulations caused by CO adsorption, emphasizing length effects for sensor applications. The effects of atmospheric gases—nitrogen, oxygen, carbon dioxide, and water—as well as CO adsorption density and edge-dangling bond defects, on sensor functionality are also investigated. Our results reveal pristine silicene nanoribbons as a promising new sensing material with single molecule resolution.
    Nano Research 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: To improve the contact between platinum catalyst and titanium substrate, a layer of TiO2 nanotube arrays has been synthesized before depositing Pt nanoflowers by pulse electrodeposition. Dramatic improvements in electrocatalytic activity (3×) and stability (60×) for methanol oxidation were found, suggesting promising applications in direct methanol fuel cells. The 3× and 60× improvements persist for Pt/Pd catalysts used to overcome the CO poisoning problem.
    Nano Research 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to arbitrarily regulate semiconductor interfaces provides the most effective way to modulate the performance of optoelectronic devices. However, less work has been reported on piezo-modulated interface engineering in all-oxide systems. In this paper, an enhanced photoresponse of an all-oxide Cu2O/ZnO heterojunction was obtained by taking advantage of the piezotronic effect. The illumination density-dependent piezoelectric modulation ability was also comprehensively investigated. An 18.6% enhancement of photoresponse was achieved when applying a −0.88% compressive strain. Comparative experiments confirmed that this enhancement could be interpreted in terms of the band modification induced by interfacial piezoelectric polarization. The positive piezopotential generated at the ZnO side produces an increase in space charge region in Cu2O, thus providing an extra driving force to separate the excitons more efficiently under illumination. Our research provides a promising method to boost the performance of optoelectronics without altering the interface structure and could be extended to other metal oxide devices.
    Nano Research 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-temperature (150–220 °C) growth leads to the formation of some peptide nanotube/microtube (NT/MT) arrays but the NTs/MTs exhibit closed ends, irreversible phase modification and eliminations of piezoelectric and hydrophilic properties. Here we demonstrate the fabrication of unidirectionally aligned and stable diphenylalanine NT/MT arrays with centimeter scale area at room temperature by utilizing an external electric field. The interactions between the applied electric field and dipolar electric field on the NTs and surface positive charges are responsible for the formation. The unidirectionally aligned MT array exhibits a supercapacitance of 1,000 μF·cm−2 at a scanning rate of 50 mV·s−1; this is much larger than the values reported previously in peptide NT/MT arrays.
    Nano Research 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a novel, low-cost approach to fabricate flexible piezoelectric nanogenerators (NGs) consisting of ZnO nanowires (NWs) on carbon fibers and foldable Au-coated ZnO NWs on paper. By using such designed structure of the NGs, the radial ZnO NWs on a cylindrical fiber can be utilized fully and the electrical output of the NG is improved. The electrical output behavior of the NGs can be optionally controlled by increasing the fiber number, adjusting the strain rate and connection modes. For the single-fiber based NGs, the output voltage is 17 mV and the current density is about 0.09 μA·cm−2, and the electrical output is enhanced greatly compared to that of previous similar micro-fiber based NGs. Compared with the single-fiber based NGs, the output current of the multi-fiber based NGs made of 200 carbon fibers increased 100-fold. An output voltage of 18 mV and current of 35 nA are generated from the multi-fiber based NGs. The electrical energy generated by the NGs is enough to power a practical device. The developed novel NGs can be used for smart textile structures, wearable and self-powered nanodevices.
    Nano Research 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new method for growing silicon nanowires is presented. They were grown in an aqueous solution at a temperature of 85 °C under atmospheric pressure by using sodium methylsiliconate as a water-soluble silicon precursor. The structure, morphology, and composition of the as-grown nanowires were characterized by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectrometry. It was also confirmed by X-ray powder diffraction and Raman spectroscopy that the silicon nanowire has a hexagonal structure. It was possible to grow the crystalline silicon nanowires at low temperature under atmospheric pressure because potassium iodide, which was used as a gold etchant, sufficiently increased the surface energy and reactivity of gold as a metal catalyst for the reaction of the Si precursor even at low temperature.
    Nano Research 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticles can be involved in biological activities such as apoptosis, angiogenesis, and oxidative stress by themselves. In particular, inorganic nanoparticles such as gold and silica nanoparticles are known to inhibit vascular endothelial growth factor (VEGF)-mediated pathological angiogenesis. In this study, we show that anti-angiogenic effect of inorganic nanospheres is determined by their sizes. We demonstrate that 20 nm size gold and silica nanospheres suppress VEGF-induced activation of VEGF receptor-2, in vitro angiogenesis, and in vivo pathological angiogenesis more efficiently than their 100 nm size counterparts. Our results suggest that modulation of the size of gold and silica nanospheres determines their inhibitory activity to VEGF-mediated angiogenesis.
    Nano Research 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gated transport measurements are the backbone of electrical characterization of nanoscale electronic devices. Scanning gate microscopy (SGM) is one such gating technique that adds crucial spatial information, accessing the localized properties of semiconductor devices. Nanowires represent a central device concept due to the potential to combine very different materials. However, SGM on semiconductor nanowires has been limited to a resolution in the 50-100 nm range. Here, we present a study by SGM of newly developed III–V semiconductor nanowire InAs/GaSb heterojunction Esaki tunnel diode devices under ultra-high vacuum. Sub-5 nm resolution is demonstrated at room temperature via use of quartz resonator atomic force microscopy sensors, with the capability to resolve InAs nanowire facets, the InAs/GaSb tunnel diode transition and nanoscale defects on the device. We demonstrate that such measurements can rapidly give important insight into the device properties via use of a simplified physical model, without the requirement for extensive calculation of the electrostatics of the system. Interestingly, by precise spatial correlation of the device electrical transport properties and surface structure we show the position and existence of a very abrupt (<10 nm) electrical transition across the InAs/GaSb junction despite the change in material composition occurring only over 30-50 nm. The direct and simultaneous link between nanostructure composition and electrical properties helps set important limits for the precision in structural control needed to achieve desired device performance.
    Nano Research 06/2014;

Related Journals