Journal of analytical toxicology (J ANAL TOXICOL)

Publisher: Oxford University Press (OUP)

Journal description

Journal of Analytical Toxicology (JAT) is the international source for practical clinical/forensic applications for isolating, identifying and quantitating potentially toxic substances. The Journal of Analytical Toxicology (JAT) is an international publication devoted to the timely dissemination of scientific communications concerning the isolation, identification, and quantitation of drugs and other substances. Since its inception in 1977, JAT has striven to present state-of-the art techniques to address current issues in toxicology. The peer-review process provided by the distinguished members of the Editorial Advisory Board ensures the high quality and integrity of JAT articles. Timely presentation of the latest scientific developments is ensured through "Technical Notes", "Case Reports", and "Letters to the Editor". Worldwide readership of JAT includes toxicologists, pathologists, chemists, clinicians, researchers, and educators working in medical examiner and law enforcement laboratories, hospitals, university, and independent analytical laboratories, as well as the drug manufacturing industry. With an emphasis on practical application, JAT articles introduce improved and novel techniques for use in clinical, forensic, workplace, sports testing (doping), and other toxicology laboratories. Articles describe newly developed methods in immunoassay testing, gas chromatography, liquid chromatography, mass spectrometry, atomic absorption spectrometry, solid- and liquid-phase extraction techniques, and other analytical approaches. The methods published in JAT describe the chemical analysis of therapeutic drugs, drugs of abuse, pharmaceuticals, pesticides, industrial chemicals, and environmental toxins. The methods are generally applicable to the fields of forensic science, therapeutic drug monitoring, drug abuse testing, clinical and forensic toxicology, industrial hygiene.

Current impact factor: 2.63

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 2.627
2012 Impact Factor 2.107
2011 Impact Factor 2.022
2010 Impact Factor 1.545
2009 Impact Factor 1.867
2008 Impact Factor 1.665
2007 Impact Factor 2.068
2006 Impact Factor 1.242
2005 Impact Factor 1.785
2004 Impact Factor 1.722
2003 Impact Factor 1.782
2002 Impact Factor 1.256
2001 Impact Factor 1.417
2000 Impact Factor 1.592
1999 Impact Factor 2.221
1998 Impact Factor 1.834
1997 Impact Factor 2.168

Impact factor over time

Impact factor
Year

Additional details

5-year impact 1.76
Cited half-life 8.60
Immediacy index 0.43
Eigenfactor 0.00
Article influence 0.47
Website Journal of Analytical Toxicology (JAT) website
Other titles Journal of analytical toxicology, JAT
ISSN 1945-2403
OCLC 2942106
Material type Periodical
Document type Journal / Magazine / Newspaper

Publisher details

Oxford University Press (OUP)

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 2 years embargo for authors post-print
  • Conditions
    • Pre-print can only be posted prior to acceptance
    • Pre-print must be accompanied by set statement (see link)
    • Pre-print must not be replaced with post-print, instead a link to published version with amended set statement should be made
    • Pre-print on author's personal website, employer website, free public server or pre-prints in subject area
    • Post-print in Institutional repositories or Central repositories
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany archived copy (see policy)
    • Eligible authors may deposit in OpenDepot
    • This policy is an exception to the default policies of 'Oxford University Press (OUP)'
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The phosphodiesterase type 5 inhibitor, sildenafil, is not generally known for its use as a self-poisoning drug. However, intoxication cases with lethal outcome have been described. The case presented here is of a 56-year-old man who claimed to have undertaken an unsuccessful suicide attempt by mono-ingestion of 65 tablets of 100 mg sildenafil. He arrived at the emergency department 24 h after intake with severe vomiting and symptoms of blurred vision. Clinical examination revealed no priapism. Of note was a sinus tachycardia of 100 bpm without signs of hypotension. To quantify the sildenafil concentration in serum, an high-performance liquid chromatography photo-diode array method was developed and validated according to European Medicines Agency guidelines. The intoxicated patient had a serum concentration of 22.2 µg/mL sildenafil, at the time of presentation, which is far above the therapeutic peak concentration. The serum concentration further declined to 9.2 and 2.3 µg/mL, respectively, 5 and 14 h later, revealing a biological half-life of 4.2 h. To the best of our knowledge, this patient took the highest sildenafil dose, which resulted in the highest serum concentration, ever reported. In this subject, sildenafil showed good tolerability because few symptoms occurred and only moderate supportive therapy was needed for full recovery without sequelae. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Journal of analytical toxicology 07/2015; DOI:10.1093/jat/bkv071
  • [Show abstract] [Hide abstract]
    ABSTRACT: The increasing use of highly potent strains of cannabis prompted this new evaluation of human toxicology and subjective effects following passive exposure to cannabis smoke. The study was designed to produce extreme cannabis smoke exposure conditions tolerable to drug-free nonsmokers. Six experienced cannabis users smoked cannabis cigarettes [5.3% Δ(9)-tetrahydrocannabinol (THC) in Session 1 and 11.3% THC in Sessions 2 and 3] in a closed chamber. Six nonsmokers were seated alternately with smokers during exposure sessions of 1 h duration. Sessions 1 and 2 were conducted with no ventilation and ventilation was employed in Session 3. Oral fluid, whole blood and subjective effect measures were obtained before and at multiple time points after each session. Oral fluid was analyzed by ELISA (4 ng/mL cutoff concentration) and by LC-MS-MS (limit of quantitation) for THC (1 ng/mL) and total THCCOOH (0.02 ng/mL). Blood was analyzed by LC-MS-MS (0.5 ng/mL) for THC, 11-OH-THC and free THCCOOH. Positive tests for THC in oral fluid and blood were obtained for nonsmokers up to 3 h following exposure. Ratings of subjective effects correlated with the degree of exposure. Subjective effect measures and amounts of THC absorbed by nonsmokers (relative to smokers) indicated that extreme secondhand cannabis smoke exposure mimicked, though to a lesser extent, active cannabis smoking. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Journal of analytical toxicology 07/2015; DOI:10.1093/jat/bkv070
  • [Show abstract] [Hide abstract]
    ABSTRACT: At the global level, seizures of crystalline methamphetamine (MA) and MA tablets have risen to a new high, indicating that the substance is an imminent threat. MA enantiomer profiling was a useful tool to investigate the prevalence of MA abuse, the intrinsic characteristics of the seized samples and the trends of precursors. In this work, the distribution of enantiomers in clandestine MA crystals and tablets seized mainly in the Yangtze River Delta region, China, from 2008 to 2014 were identified. The MA samples were diluted with internal standard methanol solution, and analyzed by LC-MS-MS. The detection limits of the enantiomers were 0.04 μg/L. The limit of quantification was 0.1 μg/L. As little as 0.2% of the R-enantiomer ratio could be determined. Standard calibration curves of S- and R-MA showed good linearity in the range of 0.1-80 μg/L (r(2) > 0.995). All of the seizures were optically pure S-enantiomer in the years 2008 and 2009. Seized samples containing a slight amount of R-MA began to appear in 2010 and increased in the year 2014. No racemic mixture or R-isomer of MA was seized. From this study, we could find out that smuggling routes and/or precursors might be silently changing in the Yangtze River Delta region, China. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Journal of analytical toxicology 05/2015; DOI:10.1093/jat/bkv060
  • [Show abstract] [Hide abstract]
    ABSTRACT: Existing phenethylamines are a class of synthetic compounds that differ from each other only in small changes to a largely conserved chemical structure. The recreational and illicit use of phenethylamines is a widespread problem. A simple procedure for the simultaneous quantitative determination in hair of 11 phenethylamines that are officially recognized as illicit by Italian legislation (p-methoxyamphetamine; p-methoxymethamphetamine; 3,4,5-trimethoxyamphetamine; 2,5-dimethoxyamphetamine; 2,5-dimethoxy-4-methylamphetamine; 2,5-dimethoxy-4-ethylamphetamine; 2,5-dimethoxy-4-bromoamphetamine; 2,5-dimethoxy-4-bromophenethylamine; 2,5-dimethoxy-4-iodophenethylamine; 2,5-dimethoxy-4-ethylthiophenethylamine and 2,5-dimethoxy-4-n-propylthiophenethylamine) has been developed and validated. Extraction from the matrix was performed after incubation in methanolic HCl and filtered reconstituted extracts were injected into a liquid chromatography/tandem mass spectrometry system (LC-MS-MS) without any further purification steps. This validated LC-MS-MS method has been used to determine the in vivo accumulation/retention of the above target analytes in hair after repeat oral administration to rats. This experiment further permitted investigation of the effect of pigmentation on the uptake of these phenethylamines by hair and the effect of hair pigmentation. The developed method could potentially be used for forensic and toxicological purposes, in the detection and quantitation of these illicit substances in human hair in workplace drug testing; drug-facilitated crime investigation; driver re-licensing; determining drug abuse history and postmortem toxicology. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Journal of analytical toxicology 05/2015; DOI:10.1093/jat/bkv054
  • Journal of analytical toxicology 05/2015; DOI:10.1093/jat/bkv059
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of storage time and temperature on blood alcohol concentration were evaluated in this two-part study involving 34 ethanol-negative and 21 ethanol-positive volunteers. Multiple 10-mL Vacutainer(®) blood tubes containing 100 mg of sodium fluoride and 20 mg of potassium oxalate were collected from living persons and subjected to various storage conditions. The time from collection to analysis ranged from 0 to 60 days and storage temperatures ranged from 3 to 20°C. Regardless of the storage conditions, all ethanol-negative samples remained negative (<0.0025 g/100 mL) throughout the study. There was no increase in the concentration of ethanol-positive samples beyond the expected variability of the method, regardless of storage time or temperature. Many ethanol-positive samples demonstrated decreases in concentration during storage compared with the original immediate analysis. The findings from this study support previous research, which demonstrates that microbial formation of ethanol in properly collected antemortem blood is unlikely. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Journal of analytical toxicology 05/2015; DOI:10.1093/jat/bkv061
  • [Show abstract] [Hide abstract]
    ABSTRACT: Measurement of human exposure to the endocrine disruptor bisphenol-A (BPA) is hampered by the ubiquitous but transient exposure for most individuals, coupled with a short metabolic half-life which leads to high inter- and intra-individual variability. We investigated the possibility of measuring multiday exposure to BPA in human sweat among volunteer participants with the goal of identifying an exposure assessment method less affected by temporal variability. We recruited 50 participants to wear a sweat collection patch (PharmChek(®)) for 7 days with concurrent collection of daily first-morning urine. Urines and sweat patch extracts were analyzed with quantitative LC-MS-MS using a method we previously validated. In addition, a human volunteer consumed one can of commercially available soup (16 oz, 473 cm(3)) daily for 3 days and collected urine. Sweat patches (n = 2, 1 per arm) were worn for the 3 days of the study. BPA was detected in quality control specimens prepared by fortification of BPA to sweat patches, but was only detected at 5× above average background on three participant patches. Although the highest measured urine BPA concentration was 195 ng/mL for an individual with deliberate exposure, no BPA was detected above background in the corresponding sweat patches. In this preliminary investigation, the use of sweat patches primarily worn on the upper-outer arm did not detect BPA exposures that were documented by urine monitoring. The absence of BPA in sweat patches may be due to several factors, including insufficient quantity of specimen per patch, or extremely low concentrations of BPA in naturally occurring sweat, among others. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Journal of analytical toxicology 05/2015; DOI:10.1093/jat/bkv055
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Substance Abuse and Mental Health Services Administration (SAMHSA) is currently evaluating hydrocodone (HC) for inclusion in the Mandatory Guidelines for Federal Workplace Drug Testing Programs. This study evaluated the time course of HC, norhydrocodone (NHC), dihydrocodeine (DHC) and hydromorphone (HM) in paired oral fluid and whole blood specimens by liquid chromatography-tandem mass spectrometry (limit of quantitation = 1 ng/mL of oral fluid, 5 ng/mL of blood) over a 52-h period. A single dose of HC bitartrate, 20 mg, was administered to 12 subjects. Analyte prevalence was as follows: oral fluid, HC > NHC > DHC; and blood, HC > NHC. HM was not detected in any specimen. HC was frequently detected within 15 min in oral fluid and 30 min in blood. Mean oral fluid to blood (OF : BL) ratios and correlations were 3.2 for HC (r = 0.73) and 0.7 for NHC (r = 0.42). The period of detection for oral fluid exceeded blood at all evaluated thresholds. At a 1-ng/mL threshold for oral fluid, mean detection time was 30 h for HC and 18 h for NHC and DHC. This description of HC and metabolite disposition in oral fluid following single-dose administration provides valuable interpretive guidance of HC test results. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Journal of analytical toxicology 05/2015; DOI:10.1093/jat/bkv050
  • [Show abstract] [Hide abstract]
    ABSTRACT: A highly sensitive and fully validated method was developed for the quantification of buprenorphine in postmortem blood. After a two-step protein precipitation process using acetonitrile, buprenorphine was purified using mixed-mode (C8/cation exchange) solid-phase extraction cartridges. Endogenous water-soluble compounds and lipids were removed from the cartridges before the samples were eluted, concentrated and derivatized using N-methyl-N-trimethylsilyltrifluoroacetamide. The samples were analyzed using two-dimensional gas chromatography-mass spectrometry (2D GC-MS) in selective ion-monitoring mode. A low polarity Rxi(®)-5MS (30 m × 0.25 mm I.D. × 0.25 µm) was used as the primary column and the secondary column was a mid-polarity Rxi(®) -17Sil MS (15 m × 0.32 mm I.D. × 0.25 µm). The assay was linear from 1.0 to 50.0 ng/mL (r(2) > 0.99; n = 6). Intraday (n = 6) and interday (n = 9) imprecisions (percentage relative standard deviation, % RSD) were <5% and the average recovery was 60%. The limit of detection (LOD) of the method was 0.5 ng/mL and limit of quantification was 1.0 ng/mL. 2D GC-MS improved the LOD of buprenorphine by 20-fold compared with analysis on a conventional GC-MS. The method was highly selective with no interference from endogenous compounds or from 62 commonly encountered drugs. To prove method applicability to forensic postmortem cases, 14 authentic postmortem blood samples were analyzed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Journal of analytical toxicology 05/2015; DOI:10.1093/jat/bkv051
  • [Show abstract] [Hide abstract]
    ABSTRACT: The occurrence of structurally related synthetic cannabinoids makes the identification of unique markers of drug intake particularly challenging. The aim of this study was to identify unique and abundant metabolites of AKB-48 and 5F-AKB-48 for toxicological screening in urine. Investigations of authentic urine samples from forensic cases in combination with human liver microsome (HLM) experiments were used for identification of metabolites. HLM incubations of AKB-48 and 5F-AKB-48 along with 35 urine samples from authentic cases were analyzed with liquid chromatography quadrupole tandem time of flight mass spectrometry. Using HLMs 41 metabolites of AKB-48 and 37 metabolites of 5F-AKB-48 were identified, principally represented by hydroxylation but also ketone formation and dealkylation. Monohydroxylated metabolites were replaced by di- and trihydroxylated metabolites within 30 min. The metabolites from the HLM incubations accounted for on average 84% (range, 67-100) and 91% (range, 71-100) of the combined area in the case samples for AKB-48 and 5F-AKB-48, respectively. While defluorinated metabolites accounted for on average 74% of the combined area after a 5F-AKB-48 intake only a few identified metabolites were shared between AKB-48 and 5F-AKB-48, illustrating the need for a systematic approach to identify unique metabolites. HLMs in combination with case samples seem suitable for this purpose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Journal of analytical toxicology 05/2015; DOI:10.1093/jat/bkv045
  • Journal of analytical toxicology 05/2015; DOI:10.1093/jat/bkv033
  • [Show abstract] [Hide abstract]
    ABSTRACT: A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed, validated and applied to simultaneous analysis of oral fluid samples for the following 10 analytes: methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), buprenorphine, norbuprenorphine, morphine, codeine, 6-acetylmorphine, 6-acetylcodeine, amphetamine, and methamphetamine. The oral fluid sample was briefly centrifuged and the supernatant was directly injected into the LC-MS-MS system operated under reverse-phase chromatography and electrospray ionization (ESI). Deuterated analogs of the analytes were adopted as the internal standards and found to be effective (except for buprenorphine) to compensate for potential matrix effects. Each analytical run took <10 min. Linearity range (r(2) > 0.99) established for buprenorphine and the other nine analytes were 5-100 and 1-100 ng/mL. Intra- and interday precision (% CV) ranges for the 10 analytes were 0.87-12.2% and 1.27-12.8%, while the corresponding accuracy (%) ranges were 91.8-113% and 91.9-111%. Limits of detection and quantitation established for these 10 analytes were in the ranges of 0.1-1.0 and 0.25-1.0 ng/mL (5 ng/mL for buprenorphine). The method was successfully applied to the analysis of 62 oral fluid specimens collected from patients participating in methadone and buprenorphine substitution therapy programs. Analytical results of methadone and buprenorphine were compared with data derived from GC-MS analysis and found to be compatible. Overall, the direct injection LC-MS-MS method performed well, permitting rapid analysis of oral fluid samples for simultaneous quantification of methadone, buprenorphine, opiate and amphetamine drug categories without extensive sample preparation steps. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Journal of analytical toxicology 05/2015; DOI:10.1093/jat/bkv041
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this case report, we present an evaluation of the distribution of postmortem concentrations of acetyl fentanyl in a fatality attributed to the drug. A young man who had a history of heroin abuse was found deceased at his parents' home. Toxicology testing, which initially screened positive for fentanyl by ELISA, subsequently confirmed acetyl fentanyl by gas chromatography-mass spectrometry specific ion monitoring (GC-MS SIM) analysis following liquid-liquid extraction. No other drugs or medications, including fentanyl, were detected. The acetyl fentanyl peripheral blood concentration was quantified at 260 ng/mL compared with the central blood concentration of 250 ng/mL. The liver concentration was 1,000 ng/kg, the vitreous was 240 ng/mL and the urine was 2,600 ng/mL. The cause of death was certified due to acute acetyl fentanyl intoxication, and the manner of death was certified as an accident. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Journal of analytical toxicology 04/2015; DOI:10.1093/jat/bkv043
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was conducted to investigate the deposition and depletion process of clenbuterol (CL) in goat tissues, plasma and urine after the repeated administration of a growth-promoting dose. The experiment was conducted in 24 goats (21 treated and 3 controls). Treated animals were administered orally in a dose of 16 µg/kg body mass once daily for 21 consecutive days and randomly sacrificed on days 0.25, 1, 3, 7, 14, 21 and 28 of the withdrawal period. CL in goat tissues was extracted with organic solvents and determined using liquid chromatography tandem mass spectrometry. The depletion rates of tissue differed significantly. The highest concentrations of CL in all tissues are detected on day 0.25 of treatment discontinuation. After administration had been discontinued for 28 days, CL still residues in all tissues, especially, in whole eye, where the concentrations reach 363.29 ± 31.60 μg/kg. These findings confirmed that the whole eye, which are rich in pigment, showed a much higher concentration than any other studied tissue during the withdrawal period. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Journal of analytical toxicology 04/2015; DOI:10.1093/jat/bkv038
  • [Show abstract] [Hide abstract]
    ABSTRACT: Xylazine as veterinary medicine for sedation, but intoxication cases in humans were identified in the last few years. A highly sensitive method is required for analyzing xylazine and its metabolites in human blood and urine. This article presents an ultra high performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (UHPLC-QTOF) study for simultaneous determination of xylazine and 2,6-dimethylaniline (DMA) in human blood and urine. The samples were extracted and cleaned up by Oasis MCX solid-phase extraction. The analysis is performed using an UHPLC-QTOF. Analysis precision, accuracy, sensitivity, linear range, limit of detection (LOD) and limit of quantification (LOQ) were validated for the proposed method. In the blood and urine samples, the linear calibration curves with high linearity are obtained over the range of 2.0-1,000.0 ng/mL. The LOD for xylazine and DMA in blood are 0.2 and 0.1 ng/mL, in urine are 0.4 and 0.2 ng/mL; the LOQ for xylazine and DMA in blood are 0.6 and 0.3 ng/mL, in urine are 1.0 and 0.6 ng/mL, respectively. The intra- and interday precision is better than 8.6 and 11.9%. In conclusion, the proposed method is highly sensitive and reproducible, thus suitable for accurate quantification of xylazine and its metabolites in blood and urine. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Journal of analytical toxicology 04/2015; DOI:10.1093/jat/bkv040
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effect of long-term room temperature storage on the stability of ethanol in whole blood specimens was investigated. One hundred and seventeen preserved whole blood case samples (110 of 117 with two tubes of blood in each case) were used for this study. One tube from each case was initially tested for blood alcohol concentration (BAC) for criminal driving under the influence proceedings. Cases positive for ethanol ranged in BAC from 0.023 to 0.281 g/dL. The second tube, if present, remained sealed. All blood samples were then stored at room temperature. After 5.4-10.3 years, the opened tubes were reanalyzed for BAC by the same laboratory that performed the initial testing using the same method and same instrumentation. After the same storage period, the unopened tubes were sent to a different laboratory, using a different method and different instrumentation, and reanalyzed for BAC after a total of 5.6-10.5 years of room temperature storage. Seven samples initially negative for alcohol remained negative. All samples initially positive for ethanol demonstrated a decrease in BAC over time with a statistically significant difference in loss observed based on blood sample volume and whether or not the tube had been previously opened. The decrease in BAC ranged from 0.005 to 0.234 g/dL. Tubes that were not previously opened and were more than half full demonstrated better BAC stability with 89% of these tubes demonstrating a loss of BAC between 0.01 and 0.05 g/dL. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Journal of analytical toxicology 04/2015; DOI:10.1093/jat/bkv037