Radiation Research Journal Impact Factor & Information

Publisher: Radiation Research Society (U.S.), Radiation Research Society

Journal description

Current impact factor: 2.91

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 2.911
2013 Impact Factor 2.445
2012 Impact Factor 2.698
2011 Impact Factor 2.684
2010 Impact Factor 2.578
2009 Impact Factor 2.948
2008 Impact Factor 3.043
2007 Impact Factor 2.599
2006 Impact Factor 2.602
2005 Impact Factor 3.099
2004 Impact Factor 3.228
2003 Impact Factor 3.208
2002 Impact Factor 2.768
2001 Impact Factor 2.478
2000 Impact Factor 2.752
1999 Impact Factor 2.807
1998 Impact Factor 3.109
1997 Impact Factor 2.405
1996 Impact Factor 2.356
1995 Impact Factor 1.98
1994 Impact Factor 2.314
1993 Impact Factor 1.74
1992 Impact Factor 1.792

Impact factor over time

Impact factor

Additional details

5-year impact 2.88
Cited half-life >10.0
Immediacy index 0.57
Eigenfactor 0.01
Article influence 0.85
Other titles Radiation research (Online), Radiation research
ISSN 1938-5404
OCLC 47723402
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Radiation Research Society

  • Pre-print
    • Author cannot archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Conditions
    • On open access repositories or websites only
    • Publisher's version/PDF must be used
    • Publishers PDF can be obtained for a fee
    • Permission to use elsewhere must be obtained from Publisher
    • Publisher will deposit PDF in PubMed Central for NIH authors after 12 months
  • Classification
    ​ white

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ionizing radiation induces more cell death under normoxic conditions than under hypoxic conditions. This phenomenon, which is known as the oxygen enhancement effect, occurs primarily because ionizing radiation causes more DNA lesions in the presence of oxygen than in its absence. However, the roles these lesions play in terms of cell survival and chromosome damage have not been fully characterized. We exposed a panel of chicken DT40 mutant cells to ionizing radiation to categorize the type of lesion induced and the DNA-repair pathway involved under both normoxic and hypoxic conditions. Among the mutant panel, RAD54(-/-)/KU70(-/-) cells exhibited the greatest radiosensitivity, which was found to be significantly higher under normoxic conditions. This indicates that double-strand breaks (DSBs) were the major cause of cell death and that ionizing radiation induces more DSBs under normoxic condition. Interestingly, the sensitivity of the REV3(-/-) cells increased under hypoxic conditions. Indeed, the REV3(-/-) mutant exhibited a greater number of chromosomal aberrations under hypoxic conditions than under normoxic conditions. These results suggest that the Rev3-mediated translesion-synthesis pathway is more critical for cellular tolerance to ionizing radiation in hypoxic cells than in normoxic cells, and that more chemically modified DNA might be induced under hypoxic conditions. In this study, we identify a previously unappreciated radiation-induced pattern of DNA damage under hypoxic conditions.
    Radiation Research 10/2015; DOI:10.1667/RR14117.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields.
    Radiation Research 09/2015; DOI:10.1667/RR14036.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein synthesis is essential for growth, proliferation and survival of cells. Translation factors are overexpressed in many cancers and in preclinical models, their experimental inhibition has been shown to inhibit cancer growth. Differential regulation of translation also occurs upon exposure to cancer-relevant stressors such as hypoxia and ionizing radiation. The failure to regulate translation has been shown to interfere with recovery after genotoxic stress. These findings suggest that modulation of translation, alone or in conjunction with genotoxins, may be therapeutic in oncology. Yet, only two drugs that directly inhibit translation are FDA-approved for oncology therapies used today. We have previously identified the protein synthesis inhibitor, bouvardin in a screen for small molecule enhancers of ionizing radiation in Drosophila melanogaster . Bouvardin was independently identified in a screen for selective inhibitors of engineered human breast cancer stem cells. Here we report the effect of bouvardin treatment in preclinical models of head and neck cancer (HNC) and glioma, two cancer types for which radiation therapy is the most common treatment. Our data show that bouvardin treatment blocked translation elongation on human ribosomes and suggest that it did so by blocking the dissociation of elongation factor 2 from the ribosome. Bouvardin and radiation enhanced the induction of clonogenic death in HNC and glioma cells, although by different mechanisms. Bouvardin treatment enhanced the radiation-induced antitumor effects in HNC tumor xenografts in mice. These data suggest that inhibition of translation elongation, particularly in combination with radiation treatment, may be a promising treatment option for cancer.
    Radiation Research 09/2015; DOI:10.1667/RR14068.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: AEOL 10150 is a catalytic metalloporphyrin superoxide dismutase mimic being developed as a medical countermeasure for radiation-induced lung injury (RILI). The efficacy of AEOL 10150 against RILI through a reduction of oxidative stress, hypoxia and pro-apoptotic signals has been previously reported. The goal of this study was to determine the most effective dose of AEOL 10150 (daily subcutaneous injections, day 1-28) in improving 180-day survival in CBA/J mice after whole-thorax lung irradiation (WTLI) to a dose of 14.6 Gy. Functional and histopathological assessments were performed as secondary end points. Estimated 180-day survival improved from 10% in WTLI alone to 40% with WTLI-AEOL 10150 at 25 mg/kg (P = 0.065) and to 30% at 40 mg/kg (P = 0.023). No significant improvement was seen at doses of 5 and 10 mg/kg or at doses between 25 and 40 mg/kg. AEOL 10150 treatment at 25 mg/kg lowered the respiratory function parameter of enhanced pause (Penh) significantly, especially at week 16 and 18 (P = 0.044 and P = 0.025, respectively) compared to vehicle and other doses. Pulmonary edema/congestion were also significantly reduced at the time of necropsy among mice treated with 25 and 40 mg/kg AEOL 10150 compared to WTLI alone (P < 0.02). In conclusion, treatment with AEOL 10150 at a dose of 25 mg/kg/day for a total of 28 days starting 24 h after WTLI in CBA/J mice was found to be the optimal dose with improvement in survival and lung function. Future studies will be required to determine the optimal duration and therapeutic window for drug delivery at this dose.
    Radiation Research 09/2015; DOI:10.1667/RR14110.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Radiological dosimetry for nonhuman biota typically relies on calculations that utilize the Monte Carlo simulations of simple, ellipsoidal geometries with internal radioactivity distributed homogeneously throughout. In this manner it is quick and easy to estimate whole-body dose rates to biota. Voxel models are detailed anatomical phantoms that were first used for calculating radiation dose to humans, which are now being extended to nonhuman biota dose calculations. However, if simple ellipsoidal models provide conservative dose-rate estimates, then the additional labor involved in creating voxel models may be unnecessary for most scenarios. Here we show that the ellipsoidal method provides conservative estimates of organ dose rates to small mammals. Organ dose rates were calculated for environmental source terms from Maralinga, the Nevada Test Site, Hanford and Fukushima using both the ellipsoidal and voxel techniques, and in all cases the ellipsoidal method yielded more conservative dose rates by factors of 1.2-1.4 for photons and 5.3 for beta particles. Dose rates for alpha-emitting radionuclides are identical for each method as full energy absorption in source tissue is assumed. The voxel procedure includes contributions to dose from organ-to-organ irradiation (shown here to comprise 2-50% of total dose from photons and 0-93% of total dose from beta particles) that is not specifically quantified in the ellipsoidal approach. Overall, the voxel models provide robust dosimetry for the nonhuman mammals considered in this study, and though the level of detail is likely extraneous to demonstrating regulatory compliance today, voxel models may nevertheless be advantageous in resolving ongoing questions regarding the effects of ionizing radiation on wildlife.
    Radiation Research 09/2015; DOI:10.1667/RR14162.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: The acute period after total body irradiation (TBI) is associated with an increased risk of infection, principally resulting from the loss of hematopoietic stem cells, as well as disruption of mucosal epithelial barriers. Although there is a return to baseline infection control coinciding with the apparent progressive recovery of hematopoietic cell populations, late susceptibility to infection in radiation-sensitive organs such as lung and kidney is known to occur. Indeed, pulmonary infections are particularly prevalent in hematopoietic cell transplant (HCT) survivors, in both adult and pediatric patient populations. Preclinical studies investigating late outcomes from localized thoracic irradiation have indicated that the mechanisms underlying pulmonary delayed effects are multifactorial, including exacerbated and persistent production of pro-inflammatory molecules and abnormal cross-talk among parenchymal and infiltrating immune and inflammatory cell populations. However, in the context of low-dose TBI, it is not clear whether the observed exacerbated response to infection remains contingent on these same mechanisms. It is possible instead, that after systemic radiation-induced injury, the susceptibility to infection may be independently related to defects in alternative organs that are revealed only through the challenge itself; indeed, we have hypothesized that this defect may be due to radiation-induced chronic effects in the structure and function of secondary lymphoid organs (SLO). In this study, we investigated the molecular and cellular alterations in SLO (i.e., spleen, mediastinal, inguinal and mesenteric lymph nodes) after TBI, and the time points when there appears to be immune competence. Furthermore, due to the high incidence of pulmonary infections in the late post-transplantation period of bone marrow transplant survivors, particularly in children, we focused on outcomes in mice irradiated as neonates, which served as a model for a pediatric population, and used the induction of adaptive immunity against influenza virus as a functional end point. We demonstrated that, in adult animals irradiated as neonates, high endothelial venule (HEV) expansion, generation of follicular helper T cells (TFH) and formation of splenic germinal centers (GC) were rapidly and, more importantly, persistently impaired in SLO, suggesting that the early-life exposure to sublethal radiation had long-lasting effects on the induction of humoral immunity. Although the neonatal TBI did not affect the overall outcome from influenza infection in the adults at the earlier time points assessed, we believe that they nonetheless contribute significantly to the increased mortality observed at subsequent late time points. Furthermore, we speculate that the detrimental and persistent impact on the induction of CD4 T- and B-cell responses in the mediastinal lymph nodes will decrease the animals' ability to respond to other aerial pathogens. Since many of these pathogens are normally cleared by antibodies, our findings provide an explanation for the susceptibility of survivors of childhood HCT to life-threatening respiratory tract infections. These findings have implications regarding the need for increased monitoring in pediatric hematopoietic cell transplant patients, since they indicate that there are ongoing and cumulative defects in SLO, which, importantly, develop during the immediate and early postirradiation period when patients may appear immunologically competent. The identification of changes in immune-related signals may offer bioindicators of progressive dysfunction, and of potential mechanisms that could be targeted so as to reduce the risk of infection from extracellular pathogens. Furthermore, these results support the potential susceptibility of the pediatric population to infection after sublethal irradiation in the context of a nuclear or radiological event.
    Radiation Research 09/2015; DOI:10.1667/RR14047.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to high-energy charged particles (HZE ions) at low fluence could significantly affect astronaut health after prolonged missions in deep space by inducing mutations and related cancers. We tested the hypothesis that the mutagenic effects of HZE ions could be detected at low fluence in a mouse model that detects autosomal mutations in vivo. Aprt heterozygous mice were exposed to 0.2, 0.4 and 1.4 Gy of densely ionizing (48)Ti ions (1 GeV/amu, LET = 107 keV/μm). We observed a dose-dependent increase in the Aprt mutant fraction in kidney epithelium at the two lowest doses (an average of 1 or 2 particles/cell nucleus) that plateaued at the highest dose (7 particles/cell nucleus). Mutant cells were expanded to determine mutation spectra and translocations affecting chromosome 8, which encodes Aprt. A PCR-based analysis for loss of heterozygosity (LOH) events on chromosome 8 demonstrated a significant shift in the mutational spectrum from Ti ion exposure, even at low fluence, by revealing "radiation signature" mutations in mutant cells from exposed mice. Likewise, a cytogenetic assay for nonreciprocal chromosome 8 translocations showed an effect of exposure. A genome-wide LOH assay for events affecting nonselected chromosomes also showed an effect of exposure even for the lowest dose tested. Considered in their entirety, these results show that accelerated (48)Ti ions induce large mutations affecting one or more chromosomes at low dose and fluence.
    Radiation Research 09/2015; DOI:10.1667/RR14130.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer stem-like cells (CSCs) have been suggested to be the principal cause of tumor radioresistance, dormancy and recurrence after radiotherapy. However, little is known about CSC behavior in response to clinical radiotherapy, particularly with regard to CSC communication with bulk cancer cells. In this study, CSCs and nonstem-like cancer cells (NSCCs) were co-cultured, and defined cell types were chosen and irradiated, respectively, with proton microbeam. The bidirectional rescue effect in the combinations of the two cell types was then investigated. The results showed that out of all four combinations, only the targeted, proton irradiated NSCCs were protected by bystander CSCs and showed less accumulation of 53BP1, which is a widely used indicator for DNA double-strand breaks. In addition, supplementation with c-PTIO, a specific nitric oxide scavenger, can show a similar effect on targeted NSCCs. These results, showed that the rescue effect of CSCs on targeted NSCCs involves nitric oxide in the process, suggesting that the cellular communication between CSCs and NSCCs may be important in determining the survival of tumor cells after radiation therapy. To our knowledge, this is the first report demonstrating a rescue effect of CSCs by irradiated NSCCs that may help us better understand CSC behavior in response to cancer radiotherapy.
    Radiation Research 08/2015; 184(3). DOI:10.1667/RR14050.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to ionizing radiation causes cellular damage, which can lead to premature cell death or accumulation of somatic mutations, resulting in malignancy. The damage is mediated in part by free radicals, particularly reactive oxygen species. Fermented papaya preparation (FPP), a product of yeast fermentation of Carica papaya Linn, has been shown to act as an antioxidant. In this study, we investigated the potential of FPP to prevent radiation-induced damage. FPP (0-100 μg/ml) was added to cultured human foreskin fibroblasts and myeloid leukemia (HL-60) cells either before or after irradiation (0-18 Gy). After 1-3 days, the cells were assayed for: intracellular labile iron, measured by staining with calcein; reactive oxygen species generation, measured with dichlorofluorescein diacetate; apoptosis, determined by phosphatidylserine exposure; membrane damage, determined by propidium iodide uptake; and cell survival, determined by a cell proliferation assay. DNA damage was estimated by measuring 8-oxoguanine, a parameter of DNA oxidation, using a fluorescent-specific probe and by the comet assay. These parameters were also assayed in bone marrow cells of mice treated with FPP (by adding it to the drinking water) either before or after irradiation. Somatic mutation accumulation was determined in their peripheral red blood cells, and their survival was monitored. FPP significantly reduced the measured radiation-induced cytotoxic parameters. This finding suggests that FPP might serve as a radioprotector, and its effect on DNA damage and mutagenicity might reduce the long-term effects of radiation, such as primary and secondary malignancy.
    Radiation Research 08/2015; 184(3). DOI:10.1667/RR14000.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell populations that have been exposed to high-charge and energy (HZE) particle radiation, and then challenged by expression of a rare-cutting nuclease, show an increased frequency of deletions and translocations originating at the enzyme cut sites. Here, we examine whether this effect also occurs in nonirradiated cells that have been co-cultured with irradiated cells. Human cells were irradiated with 0.3-1.0 Gy of either 600 MeV/u (56)Fe or 1,000 MeV/u (48)Ti ions or with 0.3-3.0 Gy of 320 kV X rays. These were co-cultured with I-SceI-expressing reporter cells at intervals up to 21 days postirradiation. Co-culture with HZE-irradiated cells led to an increase in the frequency of I-SceI-stimulated translocations and deletions in the nonirradiated cells. The effect size was similar to that seen previously in directly irradiated populations (maximum effect in bystander cells of 1.7- to 4-fold depending on ion and end point). The effect was not observed when X-ray-irradiated cells were co-cultured with nonirradiated cells, but was correlated with an increase in γ-H2AX foci-positive cells in the nonirradiated population, suggesting the presence of genomic stress. Transcriptional profiling of a directly irradiated cell population showed that many genes for cytokines and other secretory proteins were persistently upregulated, but their induction was not well correlated with functional effects on repair in co-cultured cells, suggesting that this transcriptional response alone is not sufficient to evoke the effect. The finding that HZE-irradiated cells influence the DNA double-strand break repair fidelity in their nonirradiated neighbors has implications for risk in the space radiation environment.
    Radiation Research 08/2015; 184(3). DOI:10.1667/RR14092.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although radiation therapy is an important cancer treatment modality, patients may experience adverse effects. The use of a radiation-effect modulator may help improve the outcome and health-related quality of life (HRQOL) of patients undergoing radiation therapy either by enhancing tumor cell killing or by protecting normal tissues. Historically, the successful translation of radiation-effect modulators to the clinic has been hindered due to the lack of focused collaboration between academia, pharmaceutical companies and the clinic, along with limited availability of support for such ventures. The U.S. Government has been developing medical countermeasures against accidental and intentional radiation exposures to mitigate the risk and/or severity of acute radiation syndrome (ARS) and the delayed effects of acute radiation exposures (DEARE), and there is now a drug development pipeline established. Some of these medical countermeasures could potentially be repurposed for improving the outcome of radiation therapy and HRQOL of cancer patients. With the objective of developing radiation-effect modulators to improve radiotherapy, the Small Business Innovation Research (SBIR) Development Center at the National Cancer Institute (NCI), supported by the Radiation Research Program (RRP), provided funding to companies from 2011 to 2014 through the SBIR contracts mechanism. Although radiation-effect modulators collectively refer to radioprotectors, radiomitigators and radiosensitizers, the focus of this article is on radioprotection and mitigation of radiation injury. This specific SBIR contract opportunity strengthened existing partnerships and facilitated new collaborations between academia and industry. In this commentary, we assess the impact of this funding opportunity, outline the review process, highlight the organ/site-specific disease needs in the clinic for the development of radiation-effect modulators, provide a general understanding of a framework for gathering preclinical and clinical evidence to obtain regulatory approval and provide a basis for broader venture capital needs and support from pharmaceutical companies to fully capitalize on the advances made thus far in this field.
    Radiation Research 08/2015; 184(3). DOI:10.1667/RR14186.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the effects of radiation exposure on cognitive performance were evaluated. Rats were exposed to either helium ((4)He) particles (1,000 MeV/n; 0.1-10 cGy; head only) or cesium (137)Cs gamma rays (50-400 cGy; whole body), after which their cognitive performance was evaluated. The results indicated that exposure to doses of (4)He particles as low as 0.1 cGy disrupted performance in a variety of cognitive tasks, including plus-maze performance (baseline anxiety), novel location recognition (spatial performance) and operant responding on an ascending fixed-ratio reinforcement schedule (motivation and responsiveness to changes in environmental contingencies) but not on novel object recognition performance (learning and memory). In contrast, after exposure to (137)Cs gamma rays only plus-maze performance was affected. There were no significant effects on any other task. Because exposure to both types of radiation produce oxidative stress, these results indicate that radiation-produced oxidative stress may be a necessary condition for the radiation-induced disruption of cognitive performance, but it is not a sufficient condition.
    Radiation Research 08/2015; 184(3). DOI:10.1667/RR14001.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biodosimetry is an essential tool for providing timely assessments of radiation exposure. For a large mass-casualty event involving exposure to ionizing radiation, it is of utmost importance to rapidly provide dose information for medical treatment. The well-established cytokinesis-block micronucleus (CBMN) assay is a validated method for biodosimetry. However, the need for an accelerated sample processing is required for the CBMN assay to be a suitable population triage tool. We report here on the development of a high-throughput and miniaturized version of the CMBN assay for accelerated sample processing.
    Radiation Research 07/2015; 184(2). DOI:10.1667/RR13991.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Astronauts traveling outside Earth's magnetosphere risk exposure to charged particle radiation that may cause neurophysiological changes and behavioral deficits. Although proton particles comprise a large portion of the space radiation environment, little has been published on the effects of low-dose proton radiation on central nervous system function. In the current study, we irradiated young male mice with 0.5 Gy 150 MeV protons and assessed the effects on behavior and hippocampal neurophysiology. Spatial learning ability, a sensitive behavioral marker of hippocampal damage, was assessed using the water maze and Barnes maze before irradiation and repeatedly 3 and 6 months after irradiation. Evoked field excitatory postsynaptic potentials (fEPSPs) and population spikes, long-term potentiation (LTP) and spontaneous oscillations (SOs) triggered by incubation with Mg(2+)-free media (reflecting interictal epileptiform activity) were assessed 9 months after irradiation in vitro in hippocampal slice preparations. Irradiated mice exhibited impaired reversal learning in the water maze compared to control mice 6 months after irradiation. Proton radiation did not affect LTP, but significantly increased fEPSP slopes and reduced the incidence of SOs 9 months after irradiation. These findings suggest that a single exposure to low-dose proton radiation can increase synaptic excitability and suppress the propensity for epileptiform activity. Such findings of functional alterations in the irradiated mouse hippocampus have implications for extended manned space missions planned in the near future.
    Radiation Research 07/2015; 184(2). DOI:10.1667/RR13903.1