ACS Nano

Publisher: American Chemical Society, American Chemical Society


Impact factor 12.03

  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Other titles
    ACS nano (Online), ACS nano, American Chemical Society nano
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

American Chemical Society

  • Pre-print
    • Author cannot archive a pre-print version
  • Restrictions
    • Must obtain written permission from Editor
    • Must not violate ACS ethical Guidelines
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • If mandated by funding agency or employer/ institution
    • If mandated to deposit before 12 months, must obtain waiver from Institution/Funding agency or use AuthorChoice
    • 12 months embargo
  • Conditions
    • On author's personal website, pre-print servers, institutional website, institutional repositories or subject repositories
    • Non-Commercial
    • Must be accompanied by set statement (see policy)
    • Must link to publisher version
    • Publisher's version/PDF cannot be used
    • If mandated sooner than 12 months, must obtain waiver from Editors or use AuthorChoice
    • Reviewed on 07/08/2014
  • Classification
    ​ white

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present an approach for the synthesis of ternary and quaternary copper indium sulfide (CIS) and copper indium zinc sulfide (CIZS) nanocrystals (NCs) by means of partial cation exchange with In3+ and Zn2+. The approach consists of a sequential three-step synthesis: first, binary Cu2S NCs were synthesized, followed by the homogenous incorporation of In3+ by an in situ partial cation exchange reaction, leading to CIS NCs. In the last step, a second partial exchange is performed where Zn2+ partially replaced the Cu+ and In3+ cations at the surface, creating a ZnS-rich shell with the preservation of the size and shape. By careful tuning reaction parameters (growth and exchange times as well as the initial Cu+:In3+:Zn2+ ratios), control over both the size and composition was achieved. This led to a broad tuning of photoluminescence of the final CIZS NCs, ranging from 880 to 1030 nm without altering the NCs size. Cytotoxicity tests confirmed biocompatibility of CIZS NCs synthesized, which opens up opportunities for their application as near-infrared fluorescent markers in the biomedical field.
    ACS Nano 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We identify the influence of nitrogen-doping on charge- and magnetotransport of single layer graphene by comparing doped and undoped samples. Both sample types are grown by chemical vapour deposition (CVD) and transferred in an identical process onto Si/SiO2 wafers. We characterize the samples by Raman spectroscopy as well as by variable temperature magnetotransport measurements. Over the entire temperature range, the charge transport properties of all undoped samples are in line with literature values. The nitrogen doping instead leads to a six-fold increase in the charge carrier concentration up to 4×1013 cm-2 at room temperature, indicating its high effectiveness. Additionally it results in the opening of a charge transport gap as revealed by the temperature dependence of the resistance. The magnetotransport exhibits a conspicuous sign change from positive Lorentz magnetoresistance (MR) in undoped to large negative MR that we can attribute to the doping induced disorder. At low magnetic fields, we use quantum transport signals to quantify the transport properties. Analyses based on weak localization models allow us to determine an orders of magnitude decrease in the phase coherence and scattering times for doped samples, since the dopants act as effective scattering centres.
    ACS Nano 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A solution-processed, chitosan-based resistive-switching memory device is demonstrated with Pt/Ag-doped chitosan/Ag structure. The memory device shows reproducible and reliable bipolar resistive switching characteristics. A memory device based on natural organic material is a promising device toward the next generation of nonvolatile nanoelectronics. The memory device based on chitosan as a natural solid polymer electrolyte can be switched reproducibly between high and low resistance states. In addition, the data retention measurement confirmed the reliability of the chitosan-based nonvolatile memory device. The transparent Ag-embedded chitosan film showed an acceptable and comparable resistive switching behavior on the flexible plastic substrate as well. A cost-effective, environmentally benign memory device using chitosan satisfies the functional requirements of nonvolatile memory operations. Keywords: chitosan; natural solid polymers; redox-based memory; solution processes; resistive switching memory
    ACS Nano 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synthetic rigid-rod polymers incorporating multiple azobenzene photoswitches in the backbone were deposited from solution onto a monolayer of octadecylamine covering the basal plane of graphite. Large contractions and extensions of the single macromolecules on the surface were induced by irradiation with UV and visible light, respectively, as visualized by scanning force microscopy. Upon contraction, the single polymer chains form more compact nanostructures and also may move across the surface, resembling a crawling movement. We attribute the efficiency of these processes to the low mechanical and electronic coupling between the surface and polymers, the high density of azobenzenes in their backbones, and their rigidity, allowing for maximized photodeformations. The visualization of on-surface motions of single macromolecules directly induced by light, as reported herein, could help promote the development of optomechanical nanosystems.
    ACS Nano 12/2014; 8(12):11987-11993.
  • ACS Nano 11/2014; 8(11):11025.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability of metal nanoparticles to concentrate light via the plasmon resonance represents a unique opportunity for funneling the solar energy in photovoltaic devices. The absorption enhancement in plasmonic solar cells is predicted to be particularly prominent when the size of metal features falls below 20 nm, causing the strong confinement of radiation modes. Unfortunately, the ultrashort lifetime of such near-field radiation makes harvesting the plasmon energy in small-diameter nanoparticles a challenging task. Here, we develop plasmonic solar cells that harness the near-field emission of 5-nm Au nanoparticles by transferring the plasmon energy to band gap transitions of PbS semiconductor nanocrystals. The interfaces of Au and PbS domains were designed to support a rapid energy transfer at rates that outpace the thermal dephasing of plasmon modes. We demonstrate that central to the device operation is the inorganic passivation of Au nanoparticles with a wide gap semiconductor, which reduces carrier scattering and simultaneously improves the stability of heat-prone plasmonic films. The contribution of the Au near-field emission toward the charge carrier generation was manifested through the observation of an enhanced short circuit current and improved power conversion efficiency of mixed (Au, PbS) solar cells, as measured relative to PbS-only devices.
    ACS Nano 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previously we showed that the protein unfoldase ClpX could facilitate translocation of individual proteins through the α-hemolysin nanopore. This results in ionic current fluctuations that correlate with unfolding and passage of intact protein strands through the pore lumen. It is plausible that this technology could be used to identify protein domains and structural modifications at the single-molecule level that arise from subtle changes in primary amino acid sequence (e.g. point mutations). As a test, we engineered proteins bearing well-characterized domains connected in series along an ~700 amino acid strand. Point mutations in a titin immunoglobulin domain (titin I27) and point mutations, proteolytic cleavage, and rearrangement of beta-strands in green fluorescent protein (GFP), caused ionic current pattern changes for single strands predicted by bulk phase and force spectroscopy experiments. Among these variants, individual proteins could be classified at 86-99% accuracy using standard machine learning tools. We conclude that a ClpXP-nanopore device can discriminate among distinct protein domains, and that sequence-dependent variations within those domains are detectable.
    ACS Nano 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: X-ray reflectivity measurements of increasingly more complex interfaces involving silicon (001) substrates reveal the existence of a thin low density layer intruding between the single-crystalline silicon and the amorphous native SiO$_2$ terminating it. The importance of accounting for this layer in modeling silicon/liquid interfaces and silicon-supported monolayers is demonstrated by comparing fits of the measured reflectivity curves by models including and excluding this layer. The inclusion of this layer, with 6-8 missing electrons per silicon unit cell area, is found to be particularly important for an accurate and high-resolution determination of the surface normal density profile from reflectivities spanning extended momentum transfer ranges, now measurable at modern 3rd generation synchrotron sources.
    ACS Nano 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper examines charge transport by tunneling across a series of electrically insulating molecules with the structure HS(CH2)4CONH(CH2)2R) in the form of self-assembled monolayers (SAMs), supported on silver. The molecules examined were studied experimentally by Yoon et al. (Angew. Chem. Int. Ed., 51, 46584661, 2012), using junctions of the structure AgS(CH2)4CONH(CH2)2R==Ga2O3=EGaIn. The tail group R had approximately the same length for all molecules, but a range of different structures. Changing the R entity over the range of different structures (aliphatic to aromatic) does not influence the conductance significantly. To rationalize this surprising result, we investigate transport through these SAMs theoretically, using both full quantum methods and a generic, independent-electron tight-binding toy model. We find that the HOMO, which is largely responsible for the transport in these molecules, is always strongly localized on the thiol group. The relative insensitivity of the current density to the structure of the R group is due to a combination of the couplings between the carbon chains and the transmission inside the tail. Changing from saturated to conjugated tail groups, increases the latter but decreases the former. This work indicates that significant control over SAMs largely composed of nominally insulating groups may be possible when tail groups are used that are significantly larger than those used in the experiments of Yoon et al.1.
    ACS Nano 11/2014;