ACS Nano

Publisher: American Chemical Society, American Chemical Society

Description

  • Impact factor
    12.03
  • 5-year impact
    12.52
  • Cited half-life
    2.40
  • Immediacy index
    1.94
  • Eigenfactor
    0.20
  • Article influence
    4.01
  • Other titles
    ACS nano (Online), ACS nano, American Chemical Society nano
  • ISSN
    1936-086X
  • OCLC
    85374429
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

American Chemical Society

  • Pre-print
    • Author cannot archive a pre-print version
  • Restrictions
    • Must obtain written permission from Editor
    • Must not violate ACS ethical Guidelines
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • If mandated by funding agency or employer/ institution
    • If mandated to deposit before 12 months, must obtain waiver from Institution/Funding agency or use AuthorChoice
    • 12 months embargo
  • Conditions
    • On author's personal website, pre-print servers, institutional website, institutional repositories or subject repositories
    • Non-Commercial
    • Must be accompanied by set statement (see policy)
    • Must link to publisher version
    • Publisher's version/PDF cannot be used
    • If mandated sooner than 12 months, must obtain waiver from Editors or use AuthorChoice
    • Reviewed on 07/08/2014
  • Classification
    ​ white

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: A solution-processed, chitosan-based resistive-switching memory device is demonstrated with Pt/Ag-doped chitosan/Ag structure. The memory device shows reproducible and reliable bipolar resistive switching characteristics. A memory device based on natural organic material is a promising device toward the next generation of nonvolatile nanoelectronics. The memory device based on chitosan as a natural solid polymer electrolyte can be switched reproducibly between high and low resistance states. In addition, the data retention measurement confirmed the reliability of the chitosan-based nonvolatile memory device. The transparent Ag-embedded chitosan film showed an acceptable and comparable resistive switching behavior on the flexible plastic substrate as well. A cost-effective, environmentally benign memory device using chitosan satisfies the functional requirements of nonvolatile memory operations. Keywords: chitosan; natural solid polymers; redox-based memory; solution processes; resistive switching memory
    ACS Nano 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synthetic rigid-rod polymers incorporating multiple azobenzene photoswitches in the backbone were deposited from solution onto a monolayer of octadecylamine covering the basal plane of graphite. Large contractions and extensions of the single macromolecules on the surface were induced by irradiation with UV and visible light, respectively, as visualized by scanning force microscopy. Upon contraction, the single polymer chains form more compact nanostructures and also may move across the surface, resembling a crawling movement. We attribute the efficiency of these processes to the low mechanical and electronic coupling between the surface and polymers, the high density of azobenzenes in their backbones, and their rigidity, allowing for maximized photodeformations. The visualization of on-surface motions of single macromolecules directly induced by light, as reported herein, could help promote the development of optomechanical nanosystems.
    ACS Nano 12/2014; 8(12):11987-11993.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Highly photoconductive thin films of inorganic-capped PbS nanocrystal quantum dots (QDs) are reported. Stable colloidal dispersions of (NH4)3AsS3-capped PbS QDs were processed by a conventional dip-coating technique into a thin homogeneous film of electronically coupled PbS QDs. Upon drying at 130 °C, (NH4)3AsS3 capping ligands were converted into a thin layer of As2S3, acting as an infrared-transparent semiconducting glue. Photodetectors obtained by depositing such films onto glass substrates with interdigitate electrode structures feature extremely high light responsivity and detectivity with values of more than 200 A/W and 1.21013 Jones, respectively, at infrared wavelengths up to 1400 nm. Importantly, these devices were fabricated and tested under ambient atmosphere. Using a set of time-resolved optoelectronic experiments, the important role played by the carrier trap states - presumably localized on the arsenic-sulfide surface coating - has been elucidated. Foremost, these traps enable a very high photoconductive gain of at least 200. The trap state density as a function of energy has been plotted from the frequency dependence of the photoinduced absorption (PIA), whereas the distribution of lifetimes of these traps was recovered from PIA and photoconductivity (PC) phase spectra. These trap states also have an important impact on carrier dynamics, which led us to propose a kinetic model for trap state filling that consistently describes the experimental photoconductivity transients at various intensities of excitation light. This model also provides realistic values for the photoconductive gain and thus may serve as a useful tool to describe photoconductivity in nanocrystal-based solids.
    ACS Nano 12/2014;
  • ACS Nano 11/2014; 8(11):11025.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability of metal nanoparticles to concentrate light via the plasmon resonance represents a unique opportunity for funneling the solar energy in photovoltaic devices. The absorption enhancement in plasmonic solar cells is predicted to be particularly prominent when the size of metal features falls below 20 nm, causing the strong confinement of radiation modes. Unfortunately, the ultrashort lifetime of such near-field radiation makes harvesting the plasmon energy in small-diameter nanoparticles a challenging task. Here, we develop plasmonic solar cells that harness the near-field emission of 5-nm Au nanoparticles by transferring the plasmon energy to band gap transitions of PbS semiconductor nanocrystals. The interfaces of Au and PbS domains were designed to support a rapid energy transfer at rates that outpace the thermal dephasing of plasmon modes. We demonstrate that central to the device operation is the inorganic passivation of Au nanoparticles with a wide gap semiconductor, which reduces carrier scattering and simultaneously improves the stability of heat-prone plasmonic films. The contribution of the Au near-field emission toward the charge carrier generation was manifested through the observation of an enhanced short circuit current and improved power conversion efficiency of mixed (Au, PbS) solar cells, as measured relative to PbS-only devices.
    ACS Nano 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previously we showed that the protein unfoldase ClpX could facilitate translocation of individual proteins through the α-hemolysin nanopore. This results in ionic current fluctuations that correlate with unfolding and passage of intact protein strands through the pore lumen. It is plausible that this technology could be used to identify protein domains and structural modifications at the single-molecule level that arise from subtle changes in primary amino acid sequence (e.g. point mutations). As a test, we engineered proteins bearing well-characterized domains connected in series along an ~700 amino acid strand. Point mutations in a titin immunoglobulin domain (titin I27) and point mutations, proteolytic cleavage, and rearrangement of beta-strands in green fluorescent protein (GFP), caused ionic current pattern changes for single strands predicted by bulk phase and force spectroscopy experiments. Among these variants, individual proteins could be classified at 86-99% accuracy using standard machine learning tools. We conclude that a ClpXP-nanopore device can discriminate among distinct protein domains, and that sequence-dependent variations within those domains are detectable.
    ACS Nano 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: X-ray reflectivity measurements of increasingly more complex interfaces involving silicon (001) substrates reveal the existence of a thin low density layer intruding between the single-crystalline silicon and the amorphous native SiO$_2$ terminating it. The importance of accounting for this layer in modeling silicon/liquid interfaces and silicon-supported monolayers is demonstrated by comparing fits of the measured reflectivity curves by models including and excluding this layer. The inclusion of this layer, with 6-8 missing electrons per silicon unit cell area, is found to be particularly important for an accurate and high-resolution determination of the surface normal density profile from reflectivities spanning extended momentum transfer ranges, now measurable at modern 3rd generation synchrotron sources.
    ACS Nano 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper examines charge transport by tunneling across a series of electrically insulating molecules with the structure HS(CH2)4CONH(CH2)2R) in the form of self-assembled monolayers (SAMs), supported on silver. The molecules examined were studied experimentally by Yoon et al. (Angew. Chem. Int. Ed., 51, 46584661, 2012), using junctions of the structure AgS(CH2)4CONH(CH2)2R==Ga2O3=EGaIn. The tail group R had approximately the same length for all molecules, but a range of different structures. Changing the R entity over the range of different structures (aliphatic to aromatic) does not influence the conductance significantly. To rationalize this surprising result, we investigate transport through these SAMs theoretically, using both full quantum methods and a generic, independent-electron tight-binding toy model. We find that the HOMO, which is largely responsible for the transport in these molecules, is always strongly localized on the thiol group. The relative insensitivity of the current density to the structure of the R group is due to a combination of the couplings between the carbon chains and the transmission inside the tail. Changing from saturated to conjugated tail groups, increases the latter but decreases the former. This work indicates that significant control over SAMs largely composed of nominally insulating groups may be possible when tail groups are used that are significantly larger than those used in the experiments of Yoon et al.1.
    ACS Nano 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ionic interactions between proteins and polyelectrolytes are demonstrated as a method to trigger responsive transitions in block copolymer (BCP) photonic gels containing one neutral hydrophobic block and one cationic hydrophilic block. Poly(2-vinylpyridine) (P2VP) blocks in lamellar poly(styrene-b-2-vinylpyridine) block copolymer thin films are quaternized with primary bromides to yield swollen gels that show strong reflectivity peaks in the visible range; exposure to aqueous solutions of various proteins alters the swelling ratios of the quaternized P2VP (QP2VP) gel layers in the PS-QP2VP materials due to the ionic interactions between proteins and the polyelectrolyte. Parameters such as charge density, hydrophobicity, and cross-link density of the QP2VP gel layers as well as the charge and size of the proteins play significant roles on the photonic responses of the BCP gels. Differences in the size and pH-dependent charge of proteins provide a basis for fingerprinting proteins based on their temporal and equilibrium photonic response. The results demonstrate that the BCP gels and their photonic effect provide a robust and visually interpretable method to differentiate different proteins.
    ACS Nano 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stretchable electronic skins with multidirectional force-sensing capabilities are of great importance in robotics, prosthetics, and rehabilitation devices. Inspired by the interlocked microstructures found in epidermal-dermal ridges in human skin, piezoresistive interlocked microdome arrays are employed for stress-direction-sensitive, stretchable electronic skins. Here we show that these arrays possess highly sensitive detection capability of various mechanical stimuli including normal, shear, stretch, bending, and twisting forces. Furthermore, the unique geometry of interlocked microdome arrays enables the differentiation of various mechanical stimuli because the arrays exhibit different levels of deformation depending on the direction of applied forces, thus providing different sensory output patterns. In addition, we show that the electronic skins attached on human skin in the arm and wrist areas are able to distinguish various mechanical stimuli applied in different directions and can selectively monitor different intensities and directions of air flows and vibrations.
    ACS Nano 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A vibration sensor is usually designed to measure the vibration frequency but disregard the vibration amplitude, which is rather challenging to be quantified due to the requirement of linear response. Here, we show the application of triboelectric nanogenerator (TENG) as a self-powered tool for quantitative measurement of vibration amplitude based on an operation mode, the contact-mode freestanding triboelectric nanogenerator (CF-TENG). In this mode, the triboelectrically charged resonator can be agitated to vibrate between two stacked stationary electrodes. Under the working principle with a constant capacitance between two electrodes, the amplitudes of the electric signals are proportional to the vibration amplitude of the resonator (provided that the resonator plate is charged to saturation), which has been illuminated both theoretically and experimentally. Together with its capability in monitoring the vibration frequency, the CF-TENG appears as the triboelectrification-based active sensor that can give full quantitative information about a vibration. In addition, the CF-TENG is also demonstrated as a power source for electronic devices.
    ACS Nano 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous measurements of the electronic conductance of DNA nucleotides or amino acids have used tunnel junctions in which the gap is mechanically adjusted, such as scanning tunneling microscopes or mechanically controllable break junctions. Fixed junction devices have, at best, detected the passage of whole DNA molecules without yielding chemical information. Here, we report on a layered tunnel junction in which the tunnel gap is defined by a dielectric layer, deposited by atomic layer deposition. Reactive ion etching is used to drill a hole through the layers so that the tunnel junction can be exposed to molecules in solution. When the metal electrodes are functionalized with recognition molecules that capture DNA nucleotides via hydrogen bonds, the identities of the individual nucleotides are revealed by characteristic features of the fluctuating tunnel current associated with single-molecule binding events.
    ACS Nano 11/2014;