PLoS Neglected Tropical Diseases Journal Impact Factor & Information

Publisher: Public Library of Science, Public Library of Science

Journal description

PLoS Neglected Tropical Diseases is the first open-access journal devoted to the world's most neglected tropical diseases (NTDs), such as elephantiasis, river blindness, leprosy, hookworm, schistosomiasis, and African sleeping sickness. The journal publishes high-quality, peer-reviewed research on all scientific, medical, and public-health aspects of these forgotten diseases affecting the world's forgotten people.

Current impact factor: 4.45

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 4.446
2013 Impact Factor 4.489
2012 Impact Factor 4.569
2011 Impact Factor 4.716
2010 Impact Factor 4.752
2009 Impact Factor 4.693
2008 Impact Factor 4.172

Impact factor over time

Impact factor

Additional details

5-year impact 4.93
Cited half-life 3.20
Immediacy index 0.71
Eigenfactor 0.05
Article influence 1.43
Website PLoS Neglected Tropical Diseases website
Other titles PLoS neglected tropical diseases (Online), PLoS neglected tropical diseases
ISSN 1935-2735
OCLC 77500770
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Public Library of Science

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Creative Commons Attribution License
    • Eligible UK authors may deposit in OpenDepot
    • Publisher's version/PDF may be used
    • All titles are open access journals
  • Classification

Publications in this journal

  • PLoS Neglected Tropical Diseases 11/2015; 9(11):e0003782. DOI:10.1371/journal.pntd.0003782

  • PLoS Neglected Tropical Diseases 11/2015; 9(11):e0004102. DOI:10.1371/journal.pntd.0004102
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Republic of Haiti is one of only several countries in the Western Hemisphere in which canine rabies is still endemic. Estimation methods have predicted that 130 human deaths occur per year, yet existing surveillance mechanisms have detected few of these rabies cases. Likewise, canine rabies surveillance capacity has had only limited capacity, detecting only two rabid dogs per year, on average. In 2013, Haiti initiated a community-based animal rabies surveillance program comprised of two components: active community bite investigation and passive animal rabies investigation. From January 2013 -December 2014, 778 rabies suspect animals were reported for investigation. Rabies was laboratory-confirmed in 70 animals (9%) and an additional 36 cases were identified based on clinical diagnosis (5%), representing an 18-fold increase in reporting of rabid animals compared to the three years before the program was implemented. Dogs were the most frequent rabid animal (90%). Testing and observation ruled out rabies in 61% of animals investigated. A total of 639 bite victims were reported to the program and an additional 364 bite victims who had not sought medical care were identified during the course of investigations. Only 31% of people with likely rabies exposures had initiated rabies post-exposure prophylaxis prior to the investigation. Rabies is a neglected disease in-part due to a lack of surveillance and understanding about the burden. The surveillance methods employed by this program established a much higher burden of canine rabies in Haiti than previously recognized. The active, community-based bite investigations identified numerous additional rabies exposures and bite victims were referred for appropriate medical care, averting potential human rabies deaths. The use of community-based rabies surveillance programs such as HARSP should be considered in canine rabies endemic countries.
    PLoS Neglected Tropical Diseases 11/2015; 9(11):e0004245. DOI:10.1371/journal.pntd.0004245
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Recent increased activity of the mosquito-borne Murray Valley encephalitis virus (MVEV) in Australia has renewed concerns regarding its potential to spread and cause disease. Methodology/principal findings: To better understand the genetic relationships between earlier and more recent circulating strains, patterns of virus movement, as well as the molecular basis of MVEV evolution, complete pre-membrane (prM) and Envelope (Env) genes were sequenced from sixty-six MVEV strains from different regions of the Australasian region, isolated over a sixty year period (1951-2011). Phylogenetic analyses indicated that, of the four recognized genotypes, only G1 and G2 are contemporary. G1 viruses were dominant over the sampling period and found across the known geographic range of MVEV. Two distinct sub-lineages of G1 were observed (1A and 1B). Although G1B strains have been isolated from across mainland Australia, Australian G1A strains have not been detected outside northwest Australia. Similarly, G2 is comprised of only Western Australian isolates from mosquitoes, suggesting G1B and G2 viruses have geographic or ecological restrictions. No evidence of recombination was found and a single amino acid substitution in the Env protein (S332G) was found to be under positive selection, while several others were found to be under directional evolution. Evolutionary analyses indicated that extant genotypes of MVEV began to diverge from a common ancestor approximately 200 years ago. G2 was the first genotype to diverge, followed by G3 and G4, and finally G1, from which subtypes G1A and G1B diverged between 1964 and 1994. Conclusions/significance: The results of this study provides new insights into the genetic diversity and evolution of MVEV. The demonstration of co-circulation of all contemporary genetic lineages of MVEV in northwestern Australia, supports the contention that this region is the enzootic focus for this virus.
    PLoS Neglected Tropical Diseases 11/2015; 9(11):e0004240. DOI:10.1371/journal.pntd.0004240
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Trachomatous trichiasis is thought to have a profound effect on quality of life (QoL), however, there is little research in this area. We measured vision and health-related QoL in a case-control study in Amhara Region, Ethiopia. Methodology/principal findings: We recruited 1000 adult trichiasis cases and 200 trichiasis-free controls, matched to every fifth trichiasis case on age (+/- two years), sex and location. Vision-related quality of life (VRQoL) and health-related quality of life (HRQoL) were measured using the WHO/PBD-VF20 and WHOQOL-BREF questionnaires. Comparisons were made using linear regression adjusted for age, sex and socioeconomic status. Trichiasis cases had substantially lower VRQoL than controls on all subscales (overall eyesight, visual symptom, general functioning and psychosocial, p<0.0001), even in the sub-group with normal vision (p<0.0001). Lower VRQoL scores in cases were associated with longer trichiasis duration, central corneal opacity, visual impairment and poor contrast sensitivity. Trichiasis cases had lower HRQoL in all domains (Physical-health, Psychological, Social, Environment, p<0.0001), lower overall QoL (mean, 34.5 v 64.6; p<0.0001) and overall health satisfaction (mean, 38.2 v 71.7; p<0.0001). This association persisted in a sub-group analysis of cases and controls with normal vision. Not having a marriage partner (p<0.0001), visual impairment (p = 0.0068), daily labouring (p<0.0001), presence of other health problems (p = 0.0018) and low self-rated wealth (p<0.0001) were independently associated with lower overall QoL scores in cases. Among cases, trichiasis caused 596 (59%) to feel embarrassed, 913 (91.3%) to worry they may lose their remaining eyesight and 681 (68.1%) to have sleep disturbance. Conclusions/significance: Trachomatous trichiasis substantially reduces vision and health related QoL and is disabling, even without visual impairment. Prompt trichiasis intervention is needed both to prevent vision loss and to alleviate physical and psychological suffering, social exclusion and improve overall well-being. Implementation of the full SAFE strategy is needed to prevent the development of trachomatous trichiasis.
    PLoS Neglected Tropical Diseases 11/2015; 9(11):e0004254. DOI:10.1371/journal.pntd.0004254

  • PLoS Neglected Tropical Diseases 11/2015; 9(11):e0004228. DOI:10.1371/journal.pntd.0004228
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. Methodology: We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d'Ivoire and validated against readily available survey data from school-aged children. Principal findings: Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d'Ivoire. Conclusions/significance: A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data.
    PLoS Neglected Tropical Diseases 11/2015; 9(11):e0004217. DOI:10.1371/journal.pntd.0004217
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: The study of endemic dengue transmission is essential for proposing alternatives to impact its burden. The traditional paradigm establishes that transmission starts around cases, but there are few studies that determine the risk. Methods: To assess the association between the peridomestic dengue infection and the exposure to a dengue index case (IC), a cohort was carried out in two Mexican endemic communities. People cohabitating with IC or living within a 50-meter radius (exposed cohort) and subjects of areas with no ICs in a 200-meter radius (unexposed cohort) were included. Results: Exposure was associated with DENV infection in cohabitants (PRa 3.55; 95%CI 2.37-5.31) or neighbors (PRa 1.82; 95%CI 1.29-2.58). Age, location, toilets with no direct water discharge, families with children younger than 5 and the House Index, were associated with infection. Families with older than 13 were associated with a decreased frequency. After a month since the IC fever onset, the infection incidence was not influenced by exposure to an IC or vector density; it was influenced by the local seasonal behavior of dengue and the age. Additionally, we found asymptomatic infections accounted for 60% and a greater age was a protective factor for the presence of symptoms (RR 0.98; 95%CI 0.97-0.99). Conclusion: The evidence suggests that dengue endemic transmission in these locations is initially peridomestic, around an infected subject who may be asymptomatic due to demographic structure and endemicity, and it is influenced by other characteristics of the individual, the neighborhood and the location. Once the transmission chain has been established, dengue spreads in the community probably by the adults who, despite being the group with lower infection frequency, mostly suffer asymptomatic infections and have higher mobility. This scenario complicates the opportunity and the effectiveness of control programs and highlights the need to apply multiple measures for dengue control
    PLoS Neglected Tropical Diseases 11/2015; Accepted.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Publication of accurate and detailed descriptions of methods in research articles involving animals is essential for health scientists to accurately interpret published data, evaluate results and replicate findings. Inadequate reporting of key aspects of experimental design may reduce the impact of studies and could act as a barrier to translation of research findings. Reporting of animal use must be as comprehensive as possible in order to take advantage of every study and every animal used. Animal models are essential to understanding and assessing new chemotherapy candidates for Chagas disease pathology, a widespread parasitic disease with few treatment options currently available. A systematic review was carried out to compare ARRIVE guidelines recommendations with information provided in publications of preclinical studies for new anti-Trypanosoma cruzi compounds. A total of 83 publications were reviewed. Before ARRIVE guidelines, 69% of publications failed to report any macroenvironment information, compared to 57% after ARRIVE publication. Similar proportions were observed when evaluating reporting of microenvironmental information (56% vs. 61%). Also, before ARRIVE guidelines publication, only 13% of papers described animal gender, only 18% specified microbiological status and 13% reported randomized treatment assignment, among other essential information missing or incomplete. Unfortunately, publication of ARRIVE guidelines did not seem to enhance reporting quality, compared to papers appeared before ARRIVE publication. Our results suggest that there is a strong need for the scientific community to improve animal use description, animal models employed, transparent reporting and experiment design to facilitate its transfer and application to the affected human population. Full compliance with ARRIVE guidelines, or similar animal research reporting guidelines, would be an excellent start in this direction.
    PLoS Neglected Tropical Diseases 11/2015; 9(11):e0004194. DOI:10.1371/journal.pntd.0004194