Journal of Tissue Engineering and Regenerative Medicine Impact Factor & Information

Publisher: Wiley InterScience (Service en ligne); Wiley InterScience (Online service), Wiley

Journal description

Current impact factor: 5.20

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 5.199
2013 Impact Factor 4.428
2012 Impact Factor 2.826
2011 Impact Factor 3.278
2010 Impact Factor 3.534
2009 Impact Factor 3.857
2008 Impact Factor 1.615

Impact factor over time

Impact factor

Additional details

5-year impact 4.33
Cited half-life 3.40
Immediacy index 0.86
Eigenfactor 0.01
Article influence 1.03
Other titles Journal of tissue engineering and regenerative medicine (En ligne), Journal of tissue engineering and regenerative medicine
ISSN 1932-6254
OCLC 300182675
Material type Periodical, Internet resource
Document type Internet Resource, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • Some journals have separate policies, please check with each journal directly
    • On author's personal website, institutional repositories, arXiv, AgEcon, PhilPapers, PubMed Central, RePEc or Social Science Research Network
    • Author's pre-print may not be updated with Publisher's Version/PDF
    • Author's pre-print must acknowledge acceptance for publication
    • Non-Commercial
    • Publisher's version/PDF cannot be used
    • Publisher source must be acknowledged with citation
    • Must link to publisher version with set statement (see policy)
    • If OnlineOpen is available, BBSRC, EPSRC, MRC, NERC and STFC authors, may self-archive after 12 months
    • If OnlineOpen is available, AHRC and ESRC authors, may self-archive after 24 months
    • Publisher last contacted on 07/08/2014
    • This policy is an exception to the default policies of 'Wiley'
  • Classification
    ​ yellow

Publications in this journal

  • Yunyi Kang · Anastasia I. Georgiou · Robert J. MacFarlane · Michail Klontzas · Manolis Heliotis · Eleftherios Tsiridis · Athanasios Mantalaris
    [Show abstract] [Hide abstract]
    ABSTRACT: Conditioned medium from human hepatocarcinoma cells (HepG2-CM) has been shown to stimulate the osteogenic/chondrogenic differentiation of murine embryonic stem cells (mESCs). HepG2-CM is considered to contain visceral endoderm (VE)-like signals and attempts have recently been made to characterize it, using proteomic profiling, with fibronectin being identified as one promising candidate. Herein, we investigated whether fibronectin is able to mimic the activities of HepG2-CM during the osteogenic differentiation of mESCs. Specifically, the addition of RGD peptides and heparin in HepG2-CM significantly reduced the growth- and adhesion-promoting effects of HepG2-CM, in addition to suppressing its osteogenic-inductive activity. Furthermore, direct addition of fibronectin to basal medium was able to reproduce, at least partially, the function of HepG2-CM. In particular, fibronectin induced the early onset of osteogenic differentiation in mESCs, as confirmed by gene expression of osteogenic markers, and resulted in the three-fold higher calcium deposition at day 11 of osteogenic culture compared to the control group. These data clearly suggest that fibronectin contributes to the biological activities of HepG2-CM and plays a stimulatory role during the process of osteogenesis in mESCs. Copyright © 2015 John Wiley & Sons, Ltd.
    Journal of Tissue Engineering and Regenerative Medicine 10/2015; DOI:10.1002/term.2090
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study examines the hypothesis that injectable collagen gel can be an effective carrier for recombinant human bone morphogenetic protein-2 (rhBMP-2)'s localization to the healing tendon-bone interface. In 36 mature New Zealand White rabbits, the upper long digital extensor tendon was cut and inserted into the proximal tibial bone tunnel. Then a rhBMP-2-containing collagen gel was injected into the tendon-bone tunnel interface, using a syringe. Histological and biomechanical assessments of the tendon-bone interface were conducted at 3 and 6 weeks after implantation. In vitro testing showed that the semi-viscous collagen gel at room temperature was transformed into a firm gel state at 37°C. The rhBMP-2 release profile showed that rhBMP-2 was released from the collagen gel for more than 28 days. In vivo testing showed that fibrocartilage and new bone are formed at the interface at 6 weeks after injection of rhBMP-2. On radiography, spotty calcification appeared and enthesis-like tissue was produced successfully in the tendon at 6 weeks after injection of rhBMP-2. Use of the viscous collagen gel and rhBMP-2 mixture increased the fusion rate between the bone tunnel and tissue graft. This study demonstrates that viscous collagen gel can be an effective carrier for rhBMP-2 delivery into surgical sites, and that the injectable rhBMP-2-containing collagen gel may be applied for the enhancement of tendon-bone interface healing in the future.
    Journal of Tissue Engineering and Regenerative Medicine 07/2015; DOI:10.1002/term.2041
  • Journal of Tissue Engineering and Regenerative Medicine 06/2014; 8(S1):58.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In drug delivery there has been great interest in the development of nano- and microcarriers of active agents to control their release kinetics and their efficacy by delivering them to where they are most needed. A possible method of delivery is that of carrier internalization by cells. By delivering an active agent directly to the cells, high drug concentrations can be made available to the target cells while circumventing undesirable side effects to surrounding tissues due to premature drug leakage. In this work, microcapsules prepared using layer-by-layer were conceived using chitosan and biomimetic elastin-like recombinamers (ELRs) as constituents assembled onto templates of calcium carbonate microparticles. Two types of ELRs were used: one containing the bioactive aminoacid sequence RGD and the other a scrambled nonfunctional RDG. Scanning electron microscopy (SEM) showed no morphological differences among both types of microcapsules, being spherical with around 4 μm in diameter. Cell viability studies were performed using human mesenchymal stem cells (hMSCs) and microcapsule/cell ratios from 5:1 to 100:1. After 3 and 72 hours of incubation, no significant cytotoxicity was observed in respect to a positive control of hMSCs co-incubated with microcapsules. The cells were kept in culture for another 7 days in absence of microcapsules. Live/dead assays confirmed that cells retained their cellular integrity, thus the contact of hMSCs with either functionalized microcapsule type does not result in cellular death. The internalization efficacy of microcapsules was assessed by flow cytometry and microscopy analysis. To our knowledge, this is the first time that the internalization effectiveness of RGD-functionalized LbL microcapsules is compared with a nonfunctional analogue microcapsule type. Loading them with DQ-ovalbumin permitted to follow the intracellular traffic and degradation by monitoring fluorescence changes. The data indicated that 63% of the hMSCs have internalized RGD-functionalized microcapsules, while their nonfunctional analogue triggered internalization in around 53% of the cells. No statistical differences were found between both cases, suggesting that macropinocytosis should be the major endocytosis mechanism involved in the cellular uptake of this class of carrier devices and that the exhibition of the RGD/RDG motifs does not influence significantly the incorporation of the microcapsules by the hMSCs. Intracellular processing was assessed by qualitative fluorescence variations showing that this phenomenon was faster for the RGD-functionalized microcapsules. The developed multilayer microcapsules using biomimetic ingredients for intracellular delivery let foresee new strategies to increase the availability of molecules of interest in cells and for targeted biomedical applications.
    Journal of Tissue Engineering and Regenerative Medicine 09/2013; 7(S1):16.
  • Journal of Tissue Engineering and Regenerative Medicine 08/2013; Vol. 6(1):(2012) 54-56.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cord blood‐derived haematopoietic stem cells (CB‐HSCs) are an attractive source for transplantation in haematopoietic disorders. However, the yield of CB‐HSCs per graft is limited and often insufficient, particularly for the treatment of adult patients. Here we compare the capacity of three cytokine cocktails to expand CB‐CD34+ cells. Cells were cultured for 5 or 14 days in media supplemented with: (a) SCF, FL, IL‐3 and IL‐6 (SFLIL3/6); (b) SCF, TPO, FGF‐1 and IL‐6 (STFIL6); and (c) SCF, TPO, FGF‐1, IGFBP2 and Angptl‐5 (STFAI). We observed that STFAI‐culture expansion sustained the most vigorous cell proliferation, maintenance of CD34+ phenotype and colony‐forming unit counts. In addition, STFAI‐cultured cells had a potent ex vivo migration activity. STFAI‐expanded cells were able to engraft NSG mice. However, no significant difference in overall engraftment was observed among the expansion cocktails. Assessment of short‐term reconstitution using multilineage markers demonstrated that the STFAI cocktail for HSCs expansion greatly improved total cell expansion but may impair short‐term lymphoid repopulation. Copyright © 2012 John Wiley & Sons, Ltd.
    Journal of Tissue Engineering and Regenerative Medicine 01/2013; 7(12).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Encased in lacunae, osteocytes receive nutrition and biomechanical signals through the lacunocanalicular system. We have developed a novel flow‐perfusion bioreactor designed to support lacunocanalicular fluid flow. We hypothesize that ex vivo fluid flow can maintain endochondral bone viability and, ultimately, serve as a novel model to study bone biology in vitro. Sprague–Dawley rat femurs were harvested, stripped of soft tissue, loaded into a custom‐designed bioreactor and perfused with osteogenic culture medium. After 14 days of flow‐perfusion or static culture, the bones were harvested, fixed, decalcified, embedded, sectioned and stained with haematoxylin and eosin. Fresh long bone samples were similarly processed for comparison. Osteocyte viability and function were also evaluated, using thiazolyl blue tetrazolium bromide (MTT), fluorospectrophotometric DNA quantification, alkaline phosphatase (ALP) colorimetric assay and fluorochrome labelling of mineralizing surfaces. All samples remained free of infection throughout the study period. After 14 days of flow perfusion, histological analysis showed normal‐appearing bony architecture, with 72% of lacunae being osteocyte‐filled compared with 93% in freshly harvested samples and only 36% in static samples. MTT staining and assay confirmed osteocyte viability in the flow‐perfusion samples as well as in fresh samples. DNA quantification demonstrated DNA to be preserved in flow‐perfused samples when compared with freshly harvested samples. ALP activity in flow‐perfusion explants was upregulated compared with fresh and static samples. Fluorochrome‐labelled mineralizing surfaces were seen throughout the explanted flow‐perfused samples. This is the first demonstration that flow perfusion provides adequate chemotransportation to explanted murine endochondal bones. Copyright © 2011 John Wiley & Sons, Ltd.
    Journal of Tissue Engineering and Regenerative Medicine 11/2012; 6(10).
  • Journal of Tissue Engineering and Regenerative Medicine 09/2012; 6(Supplement s1):151.
  • Journal of Tissue Engineering and Regenerative Medicine 09/2012; 6(s1):200.